

Marie-Lou Barnaud, Raphaël Laurent, Pierre Bessière, Julien Diard, Jean-Luc Schwartz

Workshop on Infant Language Development (WILD) 11.06.2015

Research supported by a grant from the European Research Council (FP7/2007-2013 Grant Agreement no. 339152, "Speech Unit(e)s").

The invariants of speech perception

11/06/2015

11/06/2015

11/06/2015

Recent results in neuroscience support the role of the motor system in speech perception.

Perceptuo-motor theories :

The invariants are perceptuo-motor units characterised by both their articulatory coherence and its perceptual value.

Question of interest

Why would we use perceptuo-motor units ?

The auditory and the motor systems would be complementary.

Hypothesis

11/06/2015

COSMO : A model of communication

11/06/2015

11/06/2015

Speech perception task

11/06/2015

Speech perception task

 \circ Sensory identification P(O_L | S)

11/06/2015

Speech perception task

- Sensory identification P(O_L | S)
- Motor identification $P(O_S | S)$

11/06/2015

Speech perception task

- Sensory identification P(O_L | S)
- Motor identification $P(O_S | S)$
- \circ Perceptuo-motor identification P(O_LO_S | S [C=1])

11/06/2015

11/06/2015

11/06/2015

Sending of a sound s and an object o

11/06/2015

11/06/2015

Summary

- Sensory learning
 - Simple structure
 - Fully supervised

Motor learning

- More complex structure
- Not fully-supervised

11/06/2015

Assumptions

- Sensory learning
 - More focused
 - Better for learned stimuli

Motor learning

- More wandering,
- Better for non-learned stimuli

Simulations

$\,\circ\,$ 2 objects O_1 and O_2 $\,\circ\,$ For instance : /ba/ for O1 and /da/ for O2

Spaces S and M in one dimension
For instance : S is voicing, M is the tongue position.

11/06/2015

Results : Learning speed

Results : Categorization in noise

Evaluation of motor, auditory and perceptuo-motor systems

Auditory learning

- Fast
- Better in nominal conditions

VS

Motor learning

- Complex => slow
- Better in adverse conditions

Comparison in adverse and nominal conditions

Conclusion / Perspective

Conclusion : differences in development lead to different roles

- The auditory system acts as a narrowband
- The motor system acts a wideband

Perspective (ongoing)

- More realistic simulations (syllables , vowels, etc)
- \circ More complex learning

1/06/2015

Thanks for your attention !

11/06/2015