
HAL Id: hal-01202396
https://hal.science/hal-01202396v2

Preprint submitted on 9 Oct 2015 (v2), last revised 21 Dec 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ExBLAS: Reproducible and Accurate BLAS Library
Roman Iakymchuk, Caroline Collange, David Defour, Stef Graillat

To cite this version:
Roman Iakymchuk, Caroline Collange, David Defour, Stef Graillat. ExBLAS: Reproducible and
Accurate BLAS Library. 2015. �hal-01202396v2�

https://hal.science/hal-01202396v2
https://hal.archives-ouvertes.fr


ExBLAS: Reproducible and Accurate BLAS Library

Roman Iakymchuk∗†, Sylvain Collange‡, David Defour§, Stef Graillat∗
∗Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005 Paris, France

Email: {roman.iakymchuk, stef.graillat}@lip6.fr
†Sorbonne Universités, UPMC Univ Paris 06, ICS, F-75005 Paris, France

‡INRIA – Centre de recherche Rennes – Bretagne Atlantique, Campus de Beaulieu, F-35042 Rennes Cedex, France
Email: sylvain.collange@inria.fr

§DALI–LIRMM, Université de Perpignan, 52 avenue Paul Alduy, F-66860 Perpignan, France
Email: david.defour@univ-perp.fr

Abstract—Due to non-associativity of floating-point operations
and dynamic scheduling on parallel architectures, getting a bit-
wise reproducible floating-point result for multiple executions of
the same code on different or even similar parallel architectures
is challenging. We address the problem of reproducibility in the
context of fundamental linear algebra operations – like the ones
included in the BLAS library – and propose algorithms that
yield both reproducible and accurate results (correct rounding,
except for triangular solver). We present implementations of these
algorithms for the BLAS routines along with the performance
results in parallel environments such as Intel desktop and server
CPUs, Intel Xeon Phi, and both NVIDIA and AMD GPUs.

Keywords—BLAS library, reproducibility, accuracy, superac-
cumulator, floating-point expansions, error-free transformations,
multi- and many-core architectures.

I. INTRODUCTION

Exascale computing (1018 operations per second) is likely
to be reached within a decade. This increased computational
power of modern supercomputers enables us to solve more
complex and larger problems. That, consequently, leads to
the higher number of floating-point (FP) operations to be
performed, each of them potentially causing a round-off error.
As FP operations like addition and multiplication are non-
associative, so that, for instance, parallel implementations
of the BLAS routines become non-reproducible. We define
reproducibility as an ability to obtain a bit-wise identical FP
result from multiple runs of the code on the same input data.
However, the result often varies from one parallel machine to
another or even from one run to another. These discrepancies
worsen on heterogeneous architectures such as clusters with
co-processors or GPUs. Such non-determinism of FP calcu-
lations in parallel programs causes validation and debugging
issues and may even lead to deadlocks. The problem of both
non-determinism and non-reproducibility of FP computations
becomes so important that it is listed among the top ten
ExaScale challenges [5].

Numerical reproducibility can be addressed by targeting
either the order of operations or the error resulting from
the finite arithmetic. One solution consists in providing the
deterministic control over rounding errors by, for example,
enforcing the execution order for each operation. However,
this approach is not portable and/or does not scale well with
the number of processing cores. The other solution aims at
avoiding cancellation and rounding errors by using an exact
accumulation method such as the superaccumulator proposed

by Kulisch [8]. This solution increases the accuracy at the price
of more operations and memory transfers. Because of that, for
a long time, it was considered too costly.

To enhance reproducibility, Intel proposed a “Conditional
Numerical Reproducibility” (CNR) in its MKL. However,
CNR does not ensure correct rounding and it induces large
performance overhead. For instance, for large arrays the MKL’s
summation with CNR is 85−93% slower than both the regular
MKL’s and our reproducible summation. Demmel and Nguyen
introduced a family of algorithms for reproducible summation
in FP arithmetic [3]. Their solution induces a twofold slow-
down as data transfers and reductions need to be performed
twice. They improved the algorithm [4] using a single reduc-
tion among nodes, which minimized the overhead to roughly
20%. Demmel and Nguyen have extended their concept to the
other BLAS-1 routines, distributed as ReproBLAS. Arteaga et
al. [1] used this approach with improved communication for
summation and obtained the same accuracy with roughly 10%
overhead. Neal [10] considered scalar superaccumulators of
different sizes for summation in the R software. Alternatively,
we introduced in [2] a multi-level approach to compute repro-
ducible sums. This approach is based on FP expansions (FPEs)
and superaccumulators. The proposed implementations showed
that the numerical reproducibility and bit-perfect accuracy can
be achieved at no additional cost for large sums with dynamic
ranges of up to 90 orders of magnitude.

In this work, we address the problem of reproducibility
of the BLAS routines due to the cancellations and rounding
errors that occur during FP operations. We begin with parallel
reduction using our multi-level summation approach, which
allows to perform accumulation in any order without loosing
a bit of information. Then, we extend this approach to some
of the BLAS routines from level-1 to level-3. The paper is
organized as follows. Section II reviews aspects of computer
arithmetic. Section III presents our multi-level reproducible
approach. We evaluate our implementations in Section IV and
discuss conclusions in Section V.

II. COMPUTER ARITHMETIC

FP arithmetic consists in approximating real numbers with
a mantissa, an exponent, and a sign:

x = ±x0.x1 . . . xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b− 1, x0 6= 0



where b is the basis, M is the precision, and e is the exponent
(emin ≤ e ≤ emax). The IEEE-754 standard specifies FP
formats and operations as well as requires correctly rounded
results for the basic FP operations (+,−,×, /,√ ) and fma1.
This means the operations are performed as if the result was
computed with the infinite precision and rounded to the FP
format. In this paper, we extend the correct rounding criterion
to the BLAS routines. We consider double precision format
(binary64) and assume rounding-to-nearest.

Two approaches exist to perform one FP addition with-
out introducing rounding error. The first solution aims at
computing the error which occurred during rounding using
FP expansions in conjunction with error-free transformations
(EFTs). FPEs represent the result as an unevaluated sum of
FP numbers, whose components are ordered by magnitude
with minimal overlap to cover a wide range of exponents.
FPEs of sizes 2 are described in [9]. When working with
the rounding-to-nearest mode, the rounding error of addition
and multiplication can be represented as a FP number. This
error can be computed in FP arithmetic using EFTs: TwoSum,
Alg. 1, for addition; TwoProd, Alg. 2, for multiplication.

Algorithm 1: EFT for the sum of two FP numbers.
Function [r, s] = TwoSum(a, b)

r ← a+ b
z ← r − a
s← (a− (r − z)) + (b− z)

Algorithm 2: EFT for the product of two FP numbers.
Function [r, s] = TwoProd(a, b)

r ← a× b
s← fma(a, b,−r)

Adding one FP number to an expansion is an iterative
operation. The FP number is first added to the head of the
expansion. The rounding error is recovered as a FP number,
using an EFT such as TwoSum, and recursively accumulated
to the remainder of the expansion. FPE computations are free
of conditional branches and memory accesses, making fast
pipelined and vectorized implementations practical. However,
their complexity is linear with the number of terms in the FPE,
so they are best suited for low dynamic range sums.

The second solution exploits the finite range of repre-
sentable FP numbers by storing every bit of the sum. It can be
implemented as a large fixed-point accumulator (superaccumu-
lator). This accumulator covers the range from the minimum
representable FP value to the maximum value independently
of the sign. We use a superaccumulator of 2098 (emin + emax
+ mantissa = 1022 + 1023 + 53) bits for double precision
FP accumulation. Superaccumulator implementations involve
irregular memory accesses, but the amortized complexity of
accumulation does not depend on the accumulator length,
making it suitable for large dynamic range sums.

III. MULTI-LEVEL REPRODUCIBLE APPROACH

We split the reproducible parallel reduction algorithm into
five stages [2]:filtering, private superaccumulation, local super-

1fma(a, b, c) computes a× b+ c with a single rounding.

accumulation, parallel reduction, and rounding. This decom-
position is suitable for nested parallelism on modern archi-
tectures. The idea is to accumulate numbers with commonly-
occurred exponents using a fast small FPE cache and to
use slower superaccumulators only for numbers of unlikely
exponents.

The first stage uses FPEs with EFTs for addition of two
FP numbers, see Alg. 1. Each vector lane or GPU thread
maintains its own FPE of size p. In case the accuracy provided
by FPEs is not enough, the remaining rounding error is
accumulated to private superaccumulators on the second stage.
Private superaccumulators belong to a CPU thread or a set of
GPU threads. Each private superaccumulator also receives the
contents of the FPEs at the end of the summation. On the third
stage, private superaccumulators are merged into a single local
superaccumulator (one per a node or a GPU warp). The fourth
stage performs a parallel reduction of local superaccumulators
to a final superaccumulator. Finally, on the fifth stage, the result
is rounded to the desired FP format.

We extended and adapted this approach to dot product,
triangular solver [7], and matrix-matrix multiplication [6].

IV. PERFORMANCE EXPERIMENTS

This section details our implementations of the multi-level
approach and presents their evaluation on a range of parallel
platforms, which are listed in Tab. I. We verify the correctness
of our implementations against the generic multiple precision
library MPFR, which is sequential and runs on CPUs only.

TABLE I: Hardware platforms employed in the evaluation.

A Intel Core i7-4770 4 cores with Hyper-Threading 3.400 GHz
B Intel Xeon E5-4650L 64 nodes with 2 × 8 cores 2.600 GHz
C Intel Xeon Phi 5110P 60 cores × 4-way Multi-Threading 1.053 GHz
D NVIDIA Tesla K20c 13 SMs × 192 CUDA cores 0.705 GHz
E AMD Radeon HD 7970 32 CUs × 64 units 0.925 GHz

Our implementations profit from the technical features
of the considered architectures: SIMD instructions, fused-
multiply-and-add (FMA) instructions, and multi-threading on
CPUs and Xeon Phi; local memory and atomic instructions
on GPUs. For example, on the Intel Haswell architecture,
we use AVX intrinsics to benefit from the 4−way SIMD
and implement TwoSum by replacing half of the 6 addi-
tions/subtractions by FMAs (multiplying by one). The latter
optimization allows to use both the FP adder and FMA units
that can run in parallel on Haswell. Thread-level parallelism is
exposed using OpenMP to benefit from multi-core and hard-
ware multi-threading. The final inter-node reduction within
a cluster is performed using MPI. On the Intel Xeon Phi
co-processor, we benefit from 8-way SIMD by using 512-
bit vector intrinsics. We perform explicit memory prefetching
in order to maximize memory throughput. We develop hand-
tuned OpenCL implementations for NVIDIA and AMD GPUs.
They use multiple superaccumulators per work group, which
are stored in local or global memory. In order to avoid bank
conflicts, superaccumulators are interleaved together to spread
their digits among different memory banks. Concurrency be-
tween multiple threads, which share single superaccumulator,
is handled through atomics.

As baselines, we consider our vectorized and parallelized
non-deterministic algorithms. In case of summation, we also
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Fig. 1: Performance results on various architectures from Tab. I.

use: the deterministic Intel TBB reduction (referred as “TBB
deterministic”); the Fast Deterministic Parallel Sum algo-
rithm [3] (“Demmel fast”); the one reduction reproducible
summation [4] (“ReproBLAS”) from the ReproBLAS library;
the single-sweep reduction [1] with two and three levels
(“bitrep2” and “bitrep3”, accordingly) from the bitrep library.

Figs. 1a and 1b present the timings achieved by the
summation algorithms as a function of the input dataset size
N of double precision FP numbers. In the legends of all
figures, “Superacc” corresponds to our algorithm that is solely
based on superaccumulators; “FPEp + Superacc” stands for
our algorithm with FPEs of size p (p = 2 : 8) in conjunction
with superaccumulators when needed; “FPEpEE + Superacc”
represents our algorithm based on the expansion of size p and
the early-exit optimization technique, meaning stop propagat-
ing errors when they are zeros. These plots show that on large
datasets the performance of the baseline unordered sum as
well as the expansion cache is constrained by the memory
bandwidth on all platforms. For instance, these algorithms
achieve 23.3GB/s on platform A over the theoretical peak
bandwidth of 25.6GB/s. As expected, for small dataset that
fits in cache, the non-reproducible parallel sum outperforms
our implementations by a factor of 2 to 5. “TBB deterministic”
and MPFR (not shown on the plot) run two and three orders of
magnitude, respectively, slower than our implementations. The
Fast Deterministic Parallel Sum algorithm requires two passes
on the data. In memory-bounded scenarios, its execution is two
times slower than the unordered reduction and the other single-
pass algorithms. In addition, the overhead of the second kernel
call impacts the performance of the GPU implementation.

Fig. 2 compare the performance scaling of the reduction
algorithms on platform B. The number of MPI process varies
from 1 to 64, each of them performing the summation of 16M

double-precision FP numbers. This dataset size ensure that we
fall in the out-of-cache case. For each process, we measure
the local summation time, which is colored red, and the MPI
reduction time, which is colored green. For the whole range of
processors, the execution time of each algorithm is dominated
by the local summation time because of the dataset size. In
addition, due to the equal distribution of computations among
MPI processes, the computation time is roughly equivalent on
the whole range of MPI processes, while the reduction time
changes according to the number of MPI processes involved.
We normalize the total runtime of each algorithm by the total
execution time of the parallel FP summation. The “bitrep2”,
“bitrep3”, “Demmel fast”, and “ReproBLAS” algorithms are
2.9%, 3.1%, 95.5%, and 20.6%, accordingly, slower than the
conventional parallel summation on 64 CPUs. In contrast, our
“FPE2 + Superacc” and “FPE8EE + Superacc” deliver both
correctly rounded and bit-wise reproducible results with the
overhead of 9.2% and 7.8%, respectively.

We extend the multi-level summation algorithm to dot
product by applying TwoProd for exact multiplication of
two FP numbers. Fig. 1c shows the performance results of
dot product on platform D, see Tab. I. TwoProd induces
small performance overhead due to summation of two arrays:
one for the result and another for the error. Therefore, the
performance penalties are slightly higher than in case of
ExSUM. Nevertheless, for large array sizes, ExDOT delivers
numerically reproducible results with no performance loses.

On the BLAS level-2, we propose a blocked multi-level
reproducible algorithm for triangular solver (ExTRSV). The
idea behind is to divide matrix by blocks and apply Ex-
TRSV on diagonal blocks and matrix-vector multiplication
(ExGEMV) on sub/upper diagonal blocks; the later is benefi-
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Fig. 2: Performance scaling of parallel reduction on platform B.

cial for the performance. Both blocked ExTRSV and ExGEMV
are built upon ExSUM and ExDOT. Fig. 1d presents the
measured time achieved by the substitution algorithms as a
function of the matrix size n on platform D, see Tab. I. The
implementations with expansions deliver better performance
than with superaccumulators only. However, due to switches
to superaccumulators at the end of computing each element
of the solution as well as when the accuracy provided by
expansions is not sufficient, the benefit of using expansions
is small. Moreover, the division by diagonal elements and the
following accumulated errors have negative impact on the final
accuracy of the solution, see Fig. 1e, but not on reproducibility.
As an enhancement of the accuracy, we propose to use one
step of iterative refinement, which is based on ExGEMV,
ExTRSV, and ExAXPY. Although this solution will induce
larger performance overhead, the accuracy of the results will
be improved significantly.

We also tackle the core of BLAS – matrix-matrix mul-
tiplication (GEMM) kernel – by providing a blocked multi-
level reproducible ExGEMM algorithm. Fig. 1f presents the
performance results achieved by the GEMM implementations
as a function of the matrix size n on platform E, see Tab. I. The
performance of ExGEMM, even with FPEs in conjunction with
superaccumulators is limited, because the non-deterministic
double precision GEMM already squeezes the architecture per-
formance and does not leave much resources for our approach.
That leads to 12−16 times performance overhead on NVIDIA
and AMD GPUs. We consider to ameliorate the performance
of both ExTRSV and ExGEMM in order to be within the 10
times performance overhead.

V. CONCLUSIONS AND FUTURE WORK

We presented a multi-level approach that delivers both ac-
curate and bit-wise reproducible results for fundamental linear
algebra operations such as the ones included in the BLAS
library. We derived an algorithm for parallel FP reduction,
which is a common operation among the BLAS routines,
and provided implementations on multi- and many-core ar-
chitectures. For large sums with more than 107 elements of
moderate dynamic range, which cover the most common cases
in practice, the proposed implementations deliver comparable
performance to the highly optimized parallel FP summations

along with bit-wise reproducible results on a large range of
platforms. Moreover, our summation algorithm either compa-
rable to or outperforms the existing alternatives.

We extended the multi-level approach to dot product,
triangular solver with one right-hand side, and matrix-matrix
multiplication. ExDOT delivers similar performance results
to ExSUM. Even though the performance of ExTRSV and
ExGEMM lag behind their non-reproducible counterparts, their
outputs are consistently reproducible and accurate, in terms
of rounding-to-nearest in case of the later, independently of
threads scheduling and data partitioning. We proposed to use
the iterative refinement technique in order to improve accuracy
of ExTRSV, which is saturated by the division.

Our roadmap includes deriving a complete set of repro-
ducible, accurate, and fast BLAS routines on parallel archi-
tectures from desktop and server processors to Intel Xeon Phi
co-processors and GPU accelerators. We plan to conduct a
priori error analysis of the derived ExBLAS (Exact BLAS)
routines. More information on the ExBLAS project as well as
its sources can be found at https://exblas.lip6.fr/.
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