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Phase-field modeling of a fluid-driven fracture in a
poroelastic medium ∗

Andro Mikelić † Mary F. Wheeler ‡ Thomas Wick §

In this paper we present a phase field model for a fluid-driven fracture in a poroelas-
tic medium. In our previous work, the pressure was assumed given. Here we consider a
fully coupled system where the pressure field is determined simultaneously with the dis-
placement and the phase field. To the best of our knowledge, such a model is new in the
literature. The mathematical model consists of a linear elasticity system with fading elastic
moduli as the crack grows, which is coupled with an elliptic variational inequality for the
phase field variable and with the pressure equation containing the phase field variable in its
coefficients. The convex constraint of the variational inequality assures the irreversibility
and entropy compatibility of the crack formation. The phase field variational inequality
contains quadratic pressure and strain terms, with coefficients depending on the phase
field unknown. We establish existence of a solution to the incremental problem through
convergence of a finite dimensional approximation. Furthermore, we construct the cor-
responding Lyapunov functional that is linked to the free energy. Computational results
are provided that demonstrate the effectiveness of this approach in treating fluid-driven
fracture propagation.
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1 Introduction

The coupling of flow and geomechanics in porous media is a major research topic in energy and envi-
ronmental modeling. Of specific interest is induced hydraulic fracturing or hydrofracturing commonly
known as fracking. This technique is used to release petroleum and natural gas that includes shale
gas, tight gas, and coal seam gas for extraction. Here fracking creates fractures from a wellbore drilled
into reservoir rock formations. According to the US National Petroleum Council 95% of oil and gas
wells drilled today are hydraulically fractured. Clearly there are economic benefits of extracting vast
amounts of formerly inaccessible hydrocarbons. In addition, there are environmental benefits of pro-
ducing natural gas, much of which is produced in the United States from fracking. Opponents to
fracking point to environmental impacts such as contamination of ground water, risks to air quality,
migration of fracturing chemical and surface contamination from spills to name a few. For this rea-
son, hydraulic fracturing is being heavily scrutinized resulting in the need for accurate and robust
mathematical and computational models for treating fluid field fractures surrounded by a poroelastic
medium.

Even in the most basic formulation, hydraulic fracturing is complicated to model since it involves the
coupling of (i) mechanical deformation; (ii) the flow of fluids within the fracture and in the reservoir;
(iii) fracture propagation. Generally, rock deformation is modeled using the theory of linear elasticity
which can be represented by an integral equation that determines a relationship between fracture
width and the fluid pressure. Fluid flow in the fracture is modeled using lubrication theory that
relates fluid flow velocity, fracture width and the gradient of pressure. Fluid flow in the reservoir is
modeled as a Darcy flow and the respective fluids are coupled through a leakage term. The criterion for
fracture propagation is usually given by the conventional energy-release rate approach of linear elastic
fracture mechanics (LEFM) theory; that is the fracture propagates if the stress intensity factor at the
tip matches the rock toughness. Detailed discussion of the development of hydraulic fracturing models
for use in petroleum engineering can be found in [1] and in mechanical engineering and hydrology in
[18], [5], [11] and in references therein.

The goal of this paper is to develop a complete and robust phase field model for a fluid-driven
fracture propagation in a poroelastic medium with the solid structure displacement, pressure and the
phase-field variable as unknowns. We remark that in our preceding papers [15], [16] and [17], either
pressure or displacements were assumed to be given.

The novelties in this coupled approach are:

• Fracture propagation in a poroelastic medium rather than in an elastic medium;

• Solving a fluid equation inside the fracture interacting with the fluid in the bulk poroelastic
medium;

• Constructing the appropriate Lyapunov functional for the coupled three-field (displacement-
phase field-pressure) problem, which is linked to the phase-field modified free energy.

• Establishing mathematical stability of the three-field (displacement-phase field-pressure) equa-
tion, through constructing the corresponding Lyapunov functional and demonstrating effective-
ness by providing several representative numerical tests.

The outline of our paper is as follows: In Section 2 we recall the basic equations of the sharp
interface mesoscopic model and make some comments on the known phase-field approaches in the
fracture mechanics. In Section 3, we present a detailed phase-field modeling of the quasistatic fracture
propagation in a poroelastic medium. In Section 4 we introduce an incremental formulation of a
phase-field model for a pressurized crack from which we derive a Lyapunov functional. In Section 5,
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we present a mathematical analysis of the incremental problem. In Section 6, a numerical formulation
is briefly described. Finally in Section 7 we provide several numerical experiments demonstrating the
capabilities of our proposed model.

2 Fundamental Equations

In order to fix ideas we address the simplest model of real applied importance, namely, the quasi-static
single phase Biot system. We start by introducing the geometry.

2.1 Geometry

C

Ω

B = (0, L)3

Figure 1: A crack C embedded in a porous medium. Here, the dimensions of the crack are assumed to
be much larger than the pore scale size (black dots) of the porous medium.

Let C denote any open set homeomorphic to an ellipsoid in R3 (a crack set). Its boundary is a closed
surface ∂C. In most applications C is a curved 3D domain, with one dimension significantly smaller
than the dominant two. An example is a penny shape crack.

The crack set C is surrounded by the poroelastic domain Ω = B \ C, where B = (0, L)3 ⊃⊃ C.
In many fracture propagation references, the crack C is considered to be a lower dimensional manifold

and the lubrication theory is applied to describe the fluid flow (see e.g. [1] and [10]). We remark that
3D flow in C can be reconstructed from a lower dimensional lubrication approximation as described
in [17]. Nevertheless, we consider C as a 3D domain and use its particular geometry only when
discussing the stress interface conditions.

The boundary of B = (0, L)3 is denoted by ∂B, which is divided into open 2D surfaces ∂DB and
∂NB, with smooth boundaries, in the way that ∂B = ∂DB∪∂NB. On ∂DB Dirichlet boundary condi-
tions will be imposed and on ∂NB Neumann conditions, respectively. We assume that meas(∂DB) > 0.
Boundary conditions on ∂DB for the Biot system involve displacements and the normal pressure fluxes
and on ∂NΩ traction as well as pressure.

2.2 Biot equations

The quasi-static Biot equations (see e.g. [21]) are an elliptic-parabolic system of PDEs, valid in the
poroelastic domain Ω, where for every t ∈ (0, T ) we have

σpor − σ0 = Ge(u)− αpRI; − div
(
σpor

)
= ρbg; (1)

∂t
( 1

M
pR + div (αu)

)
+ div

(KR
ηR

(ρRg −∇pR)
)

= q, (2)
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where σ0 is the reference state total stress and q represents source terms. G is a constant symmetric
positive definite rank−4 tensor. In our examples (7.1) and (7.2) we model the stress Ge(u) using a
linear stress-strain relationship:

Ge(u) = 2µe(u) + λtr(e(u))I,

where I is the identity matrix, tr(·) the trace operator, and µ and λ are Lamé’s parameters, which are
linked to Young’s modulus E and Poisson’s ratio νs by µ = E/(2(1 + νs)) and λ = Eνs/

(
(1 + νs)(1 +

2νs)
)
.

SYMBOL QUANTITY UNITY

u displacement m

p fluid pressure Pa

σpor total poroelasticity tensor Pa

e(u) = (∇u +∇τu)/2 linearized strain tensor dimensionless

KR permeability of the poroelastic domain Darcy

KF fracture permeability Darcy

α Biot’s coefficient dimensionless

ρb bulk density kg/m3

ηF fracture fluid viscosity kg/m sec

ηR pore fluid viscosity kg/m sec

M Biot’s modulus Pa

cF fracture fluid compressibility 1/Pa

G Gassman rank-4 tensor Pa

ρF reference state fracture fluid density kg/m3

ρR reference state pore fluid density kg/m3

g gravity m/sec2

Table 1: Unknowns and effective coefficients

The important parameters and unknowns are listed in the Table 1.

Due to the fracture size, the relative velocity satisfies Darcy’s law

vF =
KF
ηF

(G−∇pF ). (3)

Note that for a penny shaped C the dominant velocity part is two-dimensional. An explicit expression
for the permeability KF as a function of the fracture shape is derived in [17]. The term G is a linear
function of the gravity and leakage (see [17], Sec 2.3 for details). In the fracture C, the pressure
satisfies the mass conservation equation

cF∂tp+ div
(KF
ηF

(G−∇p)
)

= q. (4)

Modeling the moving interface ∂C is delicate. We impose the following interface conditions

pR = pF and σporn = −pFn on the moving interface ∂C (5)

vF · n = vR · n =
KR
ηR

(ρRg −∇pR) · n on the moving interface ∂C, (6)

where n is the normal exterior to the fracture.
Condition (6) is discussed in [17], Sec 2.3. Condition (5) is a simplification of the pressure interface

conditions and more careful modeling by upscaling indicates presence of an additional term. We do
not dwell on this question here.

We are primarily interested in a fracture propagating due to pressure (water) injection effects.
Consequently, we keep the source/sink terms q and set σ0 = 0 and neglect gravity effects.
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Remark 1. The main difference in the present work as compared to [17] is that in [17], we solved
the (u, ϕ) system monolithically and coupled this system through fixed-stress to the pressure diffraction
equation in a sequential procedure. In the present paper, we formulate a fully-coupled system that now
allows us to formulate a free energy functional.

The strategy developed in [16]-[17] relies on regularity. For calculations of the displacement and
phase field in [16], we required p ∈ W 1,1(0, T ;W 1,2r((0, L)3)), with r > 3. In general, it is not clear
that such smoothness can be guaranteed. In [17] we assumed a sharp boundary between the poroelastic
domain and the fracture for which C1 regularity was needed. The new approach here does not require
higher regularity of the phase field. Hence it can be used as a general formulation. The strategy
applied in [17] can then be applied to obtain a more accurate approximation of the interface between
the poroelastic medium and the fracture.

2.3 Modeling fractures with a phase-field approach in solid mechanics

In the following, we present a continuous three-field hydraulic fracturing model. Then we discretize
in time and provide a complete mathematical theory for the equations of the corresponding incremen-
tal formulation of the system. The mathematical model involves the coupling of a linear elasticity
system with a) the pressure equation and b) with an elliptic variational inequality for the phase field
variable. With this approach, branching of fractures and heterogeneities in mechanical properties can
be effectively treated as demonstrated numerically in Section 7.

For the elasticity part, our formulation follows Miehe et al. in [12] and enters a generalization of the
thermodynamically consistent framework for phase-field models of quasi-static crack propagation in
elastic solids, together with incremental variational principles. The phase field equations are based on
the variational approach to elastic fractures by Francfort and Marigo ([9] and [4]). Our methodology
represents an extension to cracks in a poroelastic medium containing a viscous fluid.

In fracture mechanics, Griffith’s criterion states that crack propagation occurs when the elastic
energy restitution rate reaches its critical value Gc. If τ is the traction force applied at the part of the
boundary ∂NΩ, then one can associate to the crack C the following total energy

E(u, C) =

∫
Ω

1

2
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS −
∫

Ω
Fdiv u dx+GcH2(∂C), (7)

where F is a volume force. In fracture mechanics the crack is considered as a lower dimensional
manifold and would correspond to ∂C.

In [9] and [4] a phase field regularization of the term GcH2(∂C) was used. The equations in the
displacement unknown u and the phase-field unknown ϕ are derived as the corresponding Euler-
Lagrange equations. They are used for the determination of the cracks spreading in fracture mechanics.

The situation in poroelasticity is more complicated than the classical one from solid mechanics.

2.4 Specific challenges of phase-field fracture in poroelasticity

First, we recall that our fracture is a (thin) 3D body and not a surface, with dimensions being small
compared to B, but large compared to the characteristic pore size `. At the pore level we have a
complex interaction between fracture and the pore skeleton, but such a modeling is presently out of
reach. Nevertheless, the experimental observation is that if the stresses (respectively the free energy)
cross a threshold, the fracture will start growing and propagating. We will follow the ideas from [9]
and [4] and add to the free energy the phase field regularization of the term GcH2(∂C). Since the
observed and simulated fractures correspond to smeared two-dimensional surfaces, our treatment is
consistent with ideas from the literature (see e.g. [12]).
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Since we do not have a total energy functional for Biot’s system (1)-(2), the energy functional (7)
must be modified to include pressure effects and a term describing the propagation for some threshold
value of the stress. Our strategy is to generalize the notion of the free energy for poroelasticity in
order to include the phase-field. This is achieved by regularizing the sharp fracture surface topology
in the poroelastic medium by diffusive crack zones described by a scalar auxiliary variable. This
variable is a phase-field that interpolates between the unbroken and the broken states of the material.
After making all these modifications and taking into the account the pressure field, we will not have
an energy functional; however we will derive a generalized free energy. The latter will allow us to
construct a Lyapunov functional and as a consequence the incremental problem is well-posed.

3 Formulation of a fully-coupled displacement, phase-field, pressure
system

In fracture mechanics the phase field unknown ϕ is defined on B × (0, T ) by the regularized crack
functional

Γε(ϕ) = Gc

∫
B

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2) dx = Gc

∫
B
γ(ϕ,∇ϕ) dx, (8)

where γ is the crack surface density per unit volume and ε a positive constant. This regularization
of H2(∂C), in the sense of the Γ−limit when ε → 0, was used in [4]. Even if we do not deal with
a surface and its energy, it is observed that the fracture grows in a porous medium if the stress is
greater than some critical threshold Gc. Here, Gc depends on the skeleton compressibility and on the
fluid viscosity. In classical fracture mechanics setting Gc corresponds to the energy release rate. In
deference to classical fracture mechanics, the meaning of the problem for ε = 0 is not clear and our ε
will be a small positive parameter, but we will not aim to pass to the limit ε→ 0.

The crack phase-field unknown ϕ is introduced through a regularized elastic energy functional mini-
mization for given pressure field. Then the form of Γε(ϕ) yields that meas{(x, t) ∈ B×(0, T ) |ϕ(x, t) ≤
a < 1} ≤ Cε. Therefore the parameter ε represents the characteristic length scale and formally the
crack behaves as a surface when ε→ 0.

Our further considerations are based on the fact that evolution of cracks is fully dissipative in
nature. First, the crack phase field ϕ is intuitively a regularization of 1 − χC and we impose its
negative evolution

∂tϕ ≤ 0. (9)

After the seminal work by Biot [3], the Biot stress and the pressure are determined using the strain
energy W of a porous elastic medium. W is the free isothermal energy density of the fluid-solid system.
After [3], W depends on the strain tensor e(u) and on the increment of the fluid content ζ = p/M +α
div u, i.e. W = W (e, ζ). Since it is required that

p =
∂W

∂ζ
and σ =

∂W

∂e
,

we have

W (e, ζ) =
1

2
Ge(u) : e(u) + p2/(2M) =

1

2
Ge(u) : e(u) +

M

2

(
ζ − αdiv u

)2

.
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Our idea is to generalize this energy and to use the ‘phase field’ free energy. It has to take into the
account the following effects:

• The degradation of the elastic properties in the fracture, described by the multiplication of the
Gassmann tensor G by the function A, such that

A(ϕ) is a smooth monotone increasing function satisfying

A(0) = k > 0, k � ε, A′(0) = 0 and A(1) = 1. (10)

A usual choice is A(ϕ) = (1− k)ϕ2 + k.

• The change of the porosity being different in the poroelastic part and in the fracture, and now
described through a function c satisfying

c(ϕ) is a smooth bounded function such that c(0) = cF > 0,

inf
z
c(z) = cmin > 0, c′(0) = 0 and c(1) = 1/M. (11)

Note that the coefficients A and c are naturally defined on [0, 1]. We extend them for negative values
of argument by the value at ϕ = 0 and pose A(ϕ) = A(ϕ+) and c(ϕ) = c(ϕ+). Due to constraint (9),
ϕ will always remain smaller or equal to 1. For more discussion we refer to [16] and further comments
bellow. Our new ’phase-field’ free energy density including fractures is now

Wε(e, ζ, ϕ) =
1

2
A(ϕ+)Ge(u) : e(u) +

c(ϕ+)p2

2
+Gc

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
.

We note the presence of the term allowing the fracture to grow, once the threshold energy is crossed.
Furthermore the phase field unknown ϕ should allow a smooth change from the fracture zone to the
poroelastic zone. For the fracture spreading it is crucial to accurately model the interface and it has
to enter the phase field equation on the correct way.

Our strategy is to generalize the well-established approach from fracture mechanics. We proceed in
several steps:

3.1 The elastic part energy functional

We suppose a given pressure, but bear in mind that this pressure is linked to the displacement and the
phase-field unknown. Then we borrow the energy functional from fracture theory of solid mechanics
and modify by taking into the account the porosity change. Following modeling of a brittle fracture of
fluid-infiltrated material from [7], Sec. 4.4.2., we add a cross term involving the integral of the product
between the pressure and the porosity change. This is the main difference with the approaches in the
simplified case [15] , [16] and [17]. This yields the following functional:

Ẽε(u, ϕ) =

∫
B

1

2
A(ϕ)Ge(u) : e(u) dx−

∫
∂NB

τ · u dS −
∫
∂C
τ · u dS

−
∫
B
αϕpdiv u dx+Gc

∫
B

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx

+

∫
B

1

2
(

1

M
− c(ϕ+))p2 dx. (12)

The last term is constant with respect to the displacement u and does not contribute to the displace-
ment equation.
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3.2 Interface law for the normal stresses on the fracture boundary

Now we observe that the interface term
∫
∂C τ · u dS (12) has to be transformed into a volume term.

Here, we model the fracture pressure using an interface law. A general description of a crack embedded
in a porous medium is illustrated in Figure 1. We concentrate on a simplified situation in which the
complex interaction crack/pore structure is neglected. We recall that the crack is a 3D thin domain
with width much smaller than length, then lubrication theory can be applied. Hence, the leading
order of the stress in C is −pfI, where pf denotes the fracture pressure. From the poroelastic side
the stress is given by σ = σ0 + Ge(u) − αpBI, where pB denotes the Biot pressure in the poroelastic
medium. At the crack boundary we have the continuity of the contact force, which yields

σn = (Ge(u)− αpBI)n = −pfn, (13)

where n is the normal vector exterior to the poroelastic domain.
Next, we eliminate the traction crack surface integrals and obtain∫

∂C
σnw dS = −

∫
∂C
pfwn dS = −

∫
Ω

div (pBw) dx+

∫
∂NB

pBwn dS

= −
∫

Ω
pBdiv w dx−

∫
Ω
∇pBw dx+

∫
∂NB

pBwn dS,

where wn denotes the normal component of the vector function w.

Remark 2. In the previous calculations, the first line reads∫
∂C
σnw dS = −

∫
∂C
pfwn,poroelastic dS.

Setting now p = pf in the crack and p = pB in the poroelastic medium, then the above calculations
yield

−
∫
∂C
pfwn,poroelastic dS =

∫
C
∇pw dx−

∫
C

div (pw) dx

−
∫
∂C
pfwn,poroelastic dS =

∫
C
∇pw dx−

∫
∂C
p(wn,poroelastic − wn,crack) dS.

The last term coincides with the virtual work of the pressure force as introduced in [6].

In the above calculations, surface integrals are now treated with Gauss’ divergence theorem:

−
∫
∂NΩ

τ ·w dS +

∫
∂C
pwn dS −

∫
Ω
αp div w dx = −

∫
Ω

(α− 1)p div w dx+∫
Ω
∇pw dx−

∫
∂NΩ

τ ·w dS = −
∫

Ω
(α− 1)p div w dx+∫

Ω
∇p ·w dx−

∫
∂NΩ

(τ ·w + pwn) dS. (14)

Using (14), Ẽε transforms to

Êε(u, ϕ) =

∫
B

1

2
A(ϕ+)Ge(u) : e(u) dx−

∫
∂NB

(τ · u + pun) dS

+

∫
Ω

((1− α)pdiv u +∇p · u) dx

+Gc

∫
B

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx+

∫
B

(
1

M
− c(ϕ+)

2
)p2 dx. (15)
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We suppose that the crack C does not interact with ∂NΩ. Hence there is no need to insert ϕ in the
boundary integral over ∂NB.

3.3 Phase-field formulation of the pressure cross terms

It remains to extend the pressure cross term∫
Ω

((1− α)pdiv u +∇p · u) dx

to a term with integration over B by adding ϕ. Due to the complexity of our model, it is not
clear that we will be able to prove the nonnegativity of ϕ. Changing the pressure cross term to∫
B
ϕ

(
(1− α)pdiv u +∇p · u)

)
dx is likely to give nonzero values in the domain where ϕ is negative.

This is not admissible. Using ϕ+ instead of ϕ is also unsatisfactory, since the energy functional would
not be C1 any more. The lack of regularity would lead to complications in numerical simulations. Our
approach is to use the function ϕ2

+ instead of ϕ. For 0 ≤ ϕ ≤ 1, the choice between ϕ2
+ and ϕ+ in the

pressure cross term does not affect the phase field approximation. If ϕ = 1 − χC , the two functions
coincide.

After the above transformations, we have the following variant of the energy functional (15):

Eε(u, ϕ) =

∫
B

1

2
A(ϕ+)Ge(u) : e(u) dx−

∫
∂NB

(τ · u + pun) dS

+

∫
B
ϕ2

+

(
(1− α)pdiv u +∇p · u)

)
dx

+Gc

∫
B

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx+

∫
B

(
1

M
− c(ϕ+)

2
)p2 dx. (16)

3.4 Fréchet derivative of Eε

As in the literature, {u, ϕ} are critical points of the non-convex functional Eε . Taking the Fréchet
derivatives yields

− div

((
A(ϕ+)Ge(u)

)
+ ϕ2

+∇p+ (α− 1)∇(ϕ2
+p) = 0 in B, (17)

L(u, ϕ) = −Gcε∆ϕ−
Gc
ε

(1− ϕ) +
A′(ϕ+)

2
Ge(u) : e(u)− c′(ϕ+)

2
p2+

2(1− α)ϕ+p div u + 2ϕ+∇p · u ≤ 0 in B, (18)

∂tϕ ≤ 0 in B, (19)

∂tϕ · L(u, ϕ) = 0 in B. (20)

Here, the last expression (20) is a complementarity condition (namely the Rice condition) linked to
the irreversibility constraint (19).
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3.5 Adding reservoir and fracture pressure equations

We have seen that under the assumption of the weak compressibility of the fluid, the mass conservation
equation reads (2) in the poroelastic part and (4) in the fracture. Following [17] it can be written as
the pressure diffraction problem

θ∂tp− div

(
Keff (∇p− G̃)

)
= q̃ in B, (21)

where

θ = θ(x, t) = χΩ
1

M
+ χCcF , q̃ = q̃(x, t) := χΩ

qR
ρR
− αχΩ∂t div u + χC

qF
ρF

;

G̃ = χCG, Keff = χΩ
KR
ηR

+ χC
KF
ηF

.

We recall that gravity effects are neglected.

The formulation contains the interface between Ω and C, which changes in time, as the crack
propagates. Our idea is to replace the diffraction problem (21) by a phase field equation for the
pressure diffraction equation. Following the distinction between terms containing α− 1 as factor and
others from equation (17), we have the following global problem for the pressure:

∂t(c(ϕ+)p)− div
(
Keff (ϕ+)(∇p− G̃(ϕ+))

)
+ (α− 1)∂t(ϕ

2
+div u)+

div
(
∂t(ϕ

2
+u)

)
= q̃ in B. (22)

Note that for ϕ = 0 and ϕ = 1 we have again equation (21). G̃(0) = G and G̃(1) = 0.

3.6 The fully coupled system for {u, ϕ, p}

We now summarize the Euler-Lagrange equations from STEP 4 and the phase-field pressure diffraction
problem from STEP 5 and obtain the following fully-coupled system: Find u, ϕ, p such that:

− div

(
A(ϕ+)Ge(u)

)
+ ϕ2

+∇p+ (α− 1)∇(ϕ2
+p) = 0 in B, (23)

u = 0 and −Keff (ϕ+)(∇p− G̃(ϕ+)) · n = vinj on ∂DB, (24)

−Ge(u)n = τ + pbdryn on ∂NB, (25)
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−Gcε∆ϕ−
Gc
ε

(1− ϕ) +
1

2
A′(ϕ+)Ge(u) : e(u)− 1

2
c′(ϕ+)p2

+2ϕ+

(
((1− α)p div u +∇p · u

)
≤ 0 in B, (26)

∂tϕ ≤ 0 on B (27)

(
−Gcε∆ϕ−

Gc
ε

(1− ϕ) +
1

2
A′(ϕ+)Ge(u) : e(u)− 1

2
c′(ϕ+)p2

+2ϕ+

(
((1− α)p div u +∇p · u

))
∂tϕ = 0 in B, (28)

ϕ(x, 0) = ϕ0(x) and
∂ϕ

∂n
= 0 on ∂B; (29)

∂t(c(ϕ+)p)− div

(
Keff (ϕ+)(∇p− G̃(ϕ+))

)
+ (α− 1)∂t(ϕ

2
+div u)

+div

(
∂t(ϕ

2
+u)

)
= q̃ in B, (30)

p(x, 0) = p0(x) on B; p = pbdry on ∂NB, (31)

where (24) and (31) contain the boundary conditions for the displacement and the pressure.

3.7 Weak formulation of the fully coupled system

As functional spaces of admissible displacements and pressures, we choose

VU = {z ∈ H1(B)3 | z = 0 on ∂DB }
VP = {π ∈ H1(B) | π = 0 on ∂NB }.

We proceed by writing the variational formulation corresponding to problem (23)-(31):

Find {u, ϕ, p} such that∫
B
A(ϕ+)Ge(u) : e(w) dx+

∫
B
ϕ2

+∇p ·w dx+ (α− 1)

∫
B
∇(ϕ2

+p) ·w dx

=

∫
∂NB

(τ ·w + pbdrywn) dS, ∀w ∈ VU a.e. on (0, T ); (32)

B(ϕ,ψ) = Gc

∫
B

(
ε∇ϕ · ∇ψ − 1

ε
(1− ϕ)ψ

)
dx+

1

2

∫
B

(
A′(ϕ+)Ge(u) : e(u)

−c′(ϕ+)p2
)
ψ dx+ 2

∫
B
ϕ+

(
((1− α)p div u +∇p · u

)
ψ dx ≤ 0 a.e. on (0, T ),

∀ψ ∈ H1(B), ψ ≥ 0 a.e. on B; (33)
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∂tϕ ≤ 0 a.e. on B × (0, T ); (34)

B(ϕ, ∂tϕ) = 0 a.e. on (0, T ); (35)

ϕ(x, 0) = ϕ0(x) on B, 0 ≤ ϕ0(x) ≤ 1; (36)

d

dt

∫
B
c(ϕ+)pz dx+

∫
B

(
Keff (ϕ+)(∇p− G̃(ϕ+))

)
· ∇z dx+

(α− 1)

∫
B
∂t(ϕ

2
+div u)z dx+

∫
B

div (∂t(ϕ
2
+u))z dx =

∫
B
q̃z dx

−
∫
∂DB

vinjz dS, ∀z ∈ VP a.e. on (0, T ); (37)

p(x, 0) = p0(x) on B; p = pbdry on ∂NB. (38)

We notice that B(ϕ, ∂tϕ) = 0 is just another notation for the complementarity condition.
We will undertake the study of the incremental (i.e. the time discretized problem) in Sec. 4.

Nevertheless, the basic idea of this phase-field formulation is to formulate a Lyapunov functional for
our full model that generalizes the free energy. The corresponding calculations follow in the next step.

3.8 Construction of the Lyapunov functional

Proposition 1. Let us suppose smooth data and a smooth solution {u, ϕ, p} for problem (32)-(38).
Then the following energy equality holds

1

2

d

dt

{∫
B

(
A(ϕ+)Ge(u) : e(u) +Gc

(
ε|∇ϕ|2 +

1

ε
(1− ϕ)2

)
+ c(ϕ+)p2−

2c(ϕ+)ppbdry − 2(α− 1)ϕ2
+ div u pbdry − 2 div (ϕ2

+u) pbdry
)
dx

−2

∫
∂NB

(
τ · u + (1− α)pbdryun

)
dS

}
+

∫
B
Keff (ϕ+)|∇p|2 dx =

−
∫
∂NB

(
∂tτ · u + ∂tp

bdryun
)
dS −

∫
B
Keff (ϕ+)(∇p− G̃(ϕ+)) · ∇pbdry dx

−
∫
B
c(ϕ+)p∂tp

bdry dx− (α− 1)

∫
B
ϕ2

+ div u ∂tp
bdry dx

−
∫
B

div (ϕ2
+u) ∂tp

bdry dx+

∫
B
Keff (ϕ+)G̃(ϕ+) · ∇pbdry dx

−
∫
∂DB

vinj(p− pbdry) dS +

∫
B
q̃(p− pbdry) dx. (39)

Proof. We will discuss the proof only for the incremental problem, in Theorem 2.

Remark 3. The free energy for problem (32)-(38) is

{u, ϕ, p} → 1

2

(
A(ϕ+)Ge(u) : e(u) +Gc

(
ε|∇ϕ|2 +

1

ε
(1− ϕ)2

)
+ c(ϕ+)p2

)
. (40)
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4 An incremental formulation of the fully-coupled system

In the following, we consider a quasi-static formulation where velocity changes are small. First, we
derive an incremental form, i.e., we replace the time derivative in inequality (9) with a discretized
version; more precisely

∂tϕ→ ∂∆tϕ = (ϕ− Φ)/(∆t),

where ∆t > 0 is the time step and Φ is the phase field from the previous time step. After time
discretization, our quasistatic constrained minimization problem becomes a stationary problem, called
the incremental problem. The entropy condition (9) is imposed in its discretized form and we
introduce a convex set K:

K = {ψ ∈ H1(B) | ψ ≤ Φ ≤ 1 a.e. on B}. (41)

Note that the value of the phase field unknown ϕ from the previous time step enters only the convex
set K, as the obstacle Φ. U and P will denote the values of the displacement and the pressure from
the previous time step.
Let us write the incremental form of problem (23)-(31).

− div

(
A(ϕ+)Ge(u)

)
+ ϕ2

+∇p+ (α− 1)∇(ϕ2
+p) = 0 in B, (42)

u = 0 and −Keff (1)(∇p− G̃(Φ+)) · n = vinj on ∂DB, (43)

Ge(u)n = τ + pbdryn on ∂NB, (44)

−Gcε∆ϕ−
Gc
ε

(1− ϕ) +
1

2
A(ϕ)Ge(U) : e(U)− 1

2
J (ϕ)P (2p− P )

+D(ϕ)

(
(1− α)p div U +∇p ·U

)
≤ 0 in B, (45)

∂∆tϕ ≤ 0 on B (46)

(
−Gcε∆ϕ−

Gc
ε

(1− ϕ) +
1

2
A(ϕ)Ge(U) : e(U) +

1

2
J (ϕ)P (2p− P )

+D(ϕ)

(
((1− α)p div U +∇p ·U

))
∂∆tϕ = 0 in B, (47)

ϕ(x, 0) = ϕ0(x) and
∂ϕ

∂n
= 0 on ∂B; (48)

∂∆t(c(ϕ+)p)− div

(
Keff (Φ+)(∇p− G̃(Φ+))

)
+ (α− 1)∂∆t(ϕ

2
+div u)

+div

(
∂∆t(ϕ

2
+u)

)
= q̃ in B, (49)

ϕ(x, 0) = ϕ0(x) and p(x, 0) = p0(x) on B; p = pbdry on ∂NB, (50)
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where (47) is the strong form of Rice’ condition. The functions A,J and D correspond to discrete
derivatives of A, c and ϕ2 and are given by

A(ϕ) =
A(ϕ+)−A(Φ+)

ϕ− Φ
; J (ϕ) =

c(ϕ+)− c(Φ+)

ϕ− Φ
and D(ϕ) =

ϕ2
+ − Φ2

+

ϕ− Φ
. (51)

Here, the system (42)-(47) is a variational inequality; in [12] a penalization term is used for solving
the inequality. To the best of our knowledge the modeling of the full system and its analysis are new
in the literature.

5 Well-posedness of the model

We start by making the following assumptions on the data

Hypothesis 1.

G is a positive definite constant rank-4 tensor,

G̃ is a bounded continuous function of ϕ+, x and t,

Keff is a continuous bounded symmetric matrix, positively definite,

with the ellipticity constant independent of the argument,

A, c are continuously differentiable functions,

taking values between two positive constants;

Φ ∈ H1(B), Φ ≤ 1 a.e. on B; τ ∈ L2(∂NB)),

pbdry ∈ H1(B), vinj ∈ L2(∂DB) and q̃ ∈ L2(B).

5.1 A finite dimensional approximation

Let {ψr}r∈N be a smooth basis for H1(B), {πr}r∈N a smooth basis for VP and {wr}r∈N be a smooth
basis for VU . We start by defining a finite dimensional approximation to the problem (42)-(50).

Definition 1 (of a penalized approximation). Let us suppose that the data satisfy Hypothesis 1,
a penalization parameter δ ∈ R and in particular, let δ := M ∈ N in this section. Let ϕ̃ = inf{1, ϕ+}
and let VM

U = span {wr}r=1,...,M , VM
P = span {πr}r=1,...,M and WM = span {ψr}r=1,...,M . The

triple {uM , ϕM , pM}, uM =
∑M

r=1 arw
r, pM = pbdry +

∑M
r=1 drπr and ϕM = Φ +

∑M
r=1 brψr, is a

finite dimensional approximative solution for problem (42)-(50) if it satisfies the discrete variational
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formulation ∫
B

(
A(ϕ̃M )Ge(uM ) : e(wr) +

(
(ϕ̃M )2∇pM + (α− 1)∇((ϕ̃M )2pM )

)
·wr

)
dx

=

∫
∂NB

(τ ·wr + pbdrywrn) dS, ∀r = 1, . . . ,M, (52)

Gc

∫
B

(
− 1

ε
(1− ϕM )ψr + ε∇ϕM · ∇ψr

)
dx+

∫
B
δ(ϕM − Φ)+ψr dx

+

∫
B
D(ϕ̃M )

(
((1− α)pM div U +∇pM ·U

)
ψr dx+

1

2

∫
B

(
A(ϕ̃M )Ge(U) : e(U)− J (ϕ̃M )P (2pM − P )

)
ψr dx = 0, ∀ r = 1, . . . ,M, (53)

∫
B

(
c(ϕ̃M )pM + div ((ϕ̃M )2uM ) + (α− 1)(ϕ̃M )2 div uM

)
πr dx

+∆t

∫
B

(
Keff (Φ+)(∇pM − G̃(Φ+))

)
· ∇πr dx = ∆t

∫
B
q̃πr dx

−∆t

∫
∂DB

vinjπr dS +

∫
B

(
c(Φ+)P + div (Φ2

+U)+

(α− 1)Φ2
+ div U

)
πr dx, ∀ r = 1, . . . ,M, (54)

with

A(ϕ̃n) =
A(ϕ̃n)−A(Φ+)

ϕn − Φ
; J (ϕ̃n) =

c(ϕ̃n)− c(Φ+)

ϕn − Φ

and D(ϕ̃n) =
(ϕ̃n)2 − Φ2

+

ϕn − Φ
, n = 1, . . . ,M. (55)

Proposition 2. We suppose Hypothesis 1. Then there exists a finite dimensional penalized approxi-
mative solution for problem (52)-(54) that satisfies the a priori estimate

Gc

∫
B

(
(ϕM )2

ε
+ ε|∇ϕM |2) dx+

∫
B
δ(ϕM − Φ)2

+ dx+ ||uM ||2H1(B)3

+||pM ||2H1(B) ≤ C, (56)

where C is independent of M and δ.
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Proof. (of Proposition 2) Let ξ = {ar, br, dr}r=1,...,M = {ξ1, ξ2, ξ3} and X the finite dimensional
space spanned by the set of all such ξ. X is isomorphic to R3M and we take the natural scalar
product. After setting

P1,r(ξ) =

∫
B

(
A(ϕ̃M )Ge(uM ) : e(wr) + (α− 1)∇((ϕ̃M )2pM ) ·wr

)
dx+∫

B
(ϕ̃M )2∇pM ·wr dx−

∫
∂NB

(τ ·wr + pbdrywrn) dS, r = 1, . . . ,M ; (57)

P2,r(ξ) = Gc

∫
B

(
− 1

ε
(1− ϕM )ψr + ε∇ϕM · ∇ψr

)
dx+∫

B
ψrδ(ϕ

M − Φ)+ dx+

∫
B
D(ϕ̃M )

(
((1− α)pM div U +∇pM ·U

)
ψr dx

+
1

2

∫
B

(
A(ϕ̃M )Ge(U) : e(U)− J (ϕ̃M )P (2pM − P )

)
ψr dx, ∀ r = 1, . . . ,M, (58)

P3,r(ξ) =

∫
B

(
c(ϕ̃M )pM + div ((ϕ̃M )2uM ) + (α− 1)(ϕ̃M )2 div uM

)
πr dx

+∆t

∫
B

(
Keff (Φ+)(∇pM − G̃(Φ+))

)
· ∇πr dx−∆t

∫
B
q̃πr dx+

∆t

∫
∂DB

vinjπr dS +

∫
B

(
c(Φ+)P + div (Φ2

+U)+

(α− 1)Φ2
+ div U

)
πr dx, ∀ r = 1, . . . ,M, (59)

we see that problem (52)-(54) has a solution if and only if equation P(ξ) = 0 has a solution.
The nonlinear mapping P is obviously continuous between X and X. Using a well-known corollary1

of Brouwer’s fixed point theorem, it is enough to prove that (P(ξ), ξ)X > 0 for ξ with sufficiently large
norm. Existence of at least one root would follow.

We start by multiplying P1,r(ξ) by ar and taking the sum with respect to r. It yields

(P1(ξ), ξ1) =

∫
B

(
A(ϕ̃M )Ge(uM ) : e(uM ) + (α− 1)∇((ϕ̃M )2pM ) · uM

)
dx

+

∫
B

(ϕ̃M )2∇pM · uM dx−
∫
∂NB

(τ · uM + pbdryuMn ) dS. (60)

Since uM ∈ VU , the trace theorem and Korn’s inequality yield

|
∫
∂NB

(τ · uM + pbdryuMn ) dS| ≤ C||e(uM )||L2(B) (||τ ||L2(∂NB)3

+||pbdry||L2(∂NB)); (61)

A(ϕ̃M )Ge(uM ) : e(uM ) ≥ CK ||uM ||H1(B). (62)

1 Lemma 1.4. (see e.g. R. Temam, Navier-Stokes Equations, page 164) Let X be a finite dimensional Hilbert space
with scalar product (·, ·)X and norm || · ||X and let P be a continuous from X into itself such that

(P(ξ), ξ)X > 0 for ||ξ||X = R > 0.

Then there exists ξ ∈ X , ||ξ||X ≤ R, such that P(ξ) = 0.
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After inserting (61)-(62) into (60), we get

(P1(ξ), ξ1) ≥ C||uM ||2H1(B) − C

+

∫
B

(α− 1)∇((ϕ̃M )2pM ) · uM dx+

∫
B

(ϕ̃M )2∇pM · uM dx. (63)

Next we have

(P2(ξ), ξ2) = Gc

∫
B

(
− 1

ε
(1− ϕM )(ϕM − Φ) + ε∇ϕM · ∇(ϕM − Φ)

)
dx+∫

B
δ(ϕM − Φ)2

+ dx+

∫
B
D(ϕ̃M )

(
((1− α)pM div U +∇pM ·U

)
(ϕM − Φ) dx

+
1

2

∫
B

(
A(ϕ̃M )Ge(U) : e(U)− J (ϕ̃M )P (2pM − P )

)
(ϕM − Φ) dx. (64)

Estimating different the terms is straightforward:

Gc

∫
B
−1

ε
(1− ϕM )(ϕM − Φ) dx ≥ −C

ε
+Gc

∫
B

(ϕM )2

2ε
dx

−Gc
ε
||Φ||L2(B); (65)

|
∫
B
J (ϕ̃M )P (2pM − P )(ϕM − Φ) dx| ≤ C||P ||L2(B)(||P ||L2(B)

+||pM ||L2(B));

|
∫
B
D(ϕ̃M )∇pM ·U(ϕM − Φ) dx| ≤ C||U||L2(B)||∇pM ||L2(B);

|
∫
B
D(ϕ̃M )pM div U(ϕM − Φ) dx| ≤ C||U||H1(B)||pM ||L2(B).

Therefore, we have

(P2(ξ), ξ2) ≥ Gc
∫
B

((ϕM )2

2ε
+ ε|∇ϕM |2

)
dx− C||P ||L2(B)(||P ||L2(B)

+||pM ||L2(B))− C||U||H1(B)3 ||pM ||H1(B)3 − C − Cδ||ϕM ||L1(B)

−C||Φ||H1(B)3 + δ

∫
B

(ϕM − Φ)2
+ dx. (66)

It remains to consider the third component P3 of P :

(P3(ξ), ξ3) =

∫
B

(
c(ϕ̃M )pM + div ((ϕ̃M )2uM ) + (α− 1)(ϕ̃M )2 div uM

)
(pM

−pbdry) dx+ ∆t

∫
B
Keff (ϕ̃p)(∇pM − G̃(Φ+)) · ∇(pM − pbdry) dx

−∆t

∫
∂DB

vinj(pM − pbdry) dS −∆t

∫
B
q̃(pM − pbdry) dx+∫

B

(
c(Φ+)P + div (Φ2

+U) + (α− 1)Φ2
+ div U

)
(pM − pbdry) dx. (67)

The idea is to put (63), (66) and (67) together and to obtain a convenient lower bound. A quick
inspection of the obtained estimates shows that it remains to control the cross terms in (P1(ξ), ξ1)
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and in (P3(ξ), ξ3). Putting them together yields∫
B

(α− 1)
(
∇((ϕ̃M )2(pM − pbdry)) · uM + (ϕ̃M )2 div uM (pM − pbdry)

)
dx =

(α− 1)

∫
B

div
(
(ϕ̃M )2(pM − pbdry)uM

)
dx = 0;∫

B

(
(ϕ̃M )2∇(pM − pbdry) · uM + div ((ϕ̃M )2uM )(pM − pbdry)

)
dx = 0.

Therefore we have

(P(ξ), ξ) = (P1(ξ), ξ1) + (P2(ξ), ξ2) + P3(ξ), ξ3) ≥ Gc
∫
B

((ϕM )2

4ε
+ ε|∇ϕM |2

)
dx

+C||uM ||2H1(B)3 + C||pM ||2H1(B) − C||P ||
2
H1(B) − C||U||

2
H1(B)3 − C

−C||Φ||H1(B)3 + δ

∫
B

(ϕM − Φ)2
+ dx. (68)

It follows from (68) that (P(ξ), ξ) > 0 for ||ξ|| = R, with sufficiently large R.

Obviously corresponding solutions {uM , ϕM , pM} satisfy a priori estimate (56).

5.2 Existence of a solution to the incremental problem

In this section we show existence of a weak solution:

Theorem 1. Assume the Hypothesis 1. Then there exists at least one variational solution {u, ϕ, p} ∈
VU ×H1(B) ∩K × VP for problem (42)-(50).

Proof. (of Theorem 1) By Proposition 2 there is a solution {uM , ϕM , pM} for problem (52)-(54),
satisfying a priori estimate (56). Therefore there exists {u, ϕ, p} and a subsequence, denoted by the
same superscript, such that

{uM , ϕM , pM − pbdry} → {u, ϕ, p− pbdry} weakly in VU ×H1(B)× VP ,
strongly in Lq(B)5, q < 6, and a.e. on B, as M →∞. (69)

Obviously (ϕM − Φ)+ → 0, as M →∞, and ϕ ∈ K.

Since ϕ̃M → ϕ̃ strongly in LqB, for all q < +∞, we pass to the limit in equation (52) without
obstacles. Therefore, the triple {u, ϕ, p} satisfies equation (42) and boundary condition (44).

The analogous conclusion holds for variational equation (54) and the triple {u, ϕ, p} satisfies equation
(49) and boundary conditions (43), (50).

Next, let ψ ∈ KN
+ = {z ∈WN : z(x) ≤ 0 a.e. on B}, N ≤M . Then we have

Gc

∫
B

(
− 1

ε
(1− ϕM )ψ + ε∇ϕM · ∇ψ

)
dx+

∫
B
M(ϕM − Φ)+ψ dx

+

∫
B
D(ϕ̃M )

(
(1− α)pM div U +∇pM ·U

)
ψ dx+

1

2

∫
B

(
A(ϕ̃M )Ge(U) : e(U)− J (ϕ̃M )P (2pM − P )

)
ψ dx = 0. (70)
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Passing to the limit in equation (70) is straightforward and we conclude that

Gc

∫
B

(
− 1

ε
(1− ϕ)ψ + ε∇ϕ · ∇ψ

)
dx

+

∫
B
D(ϕ̃)

(
(1− α)p div U +∇p ·U

)
ψ dx+

1

2

∫
B

(
A(ϕ̃)Ge(U) : e(U)− J (ϕ̃)P (2p− P )

)
ψ dx ≥ 0. (71)

After passing to the limit N → ∞, we conclude that {u, ϕ, p − pbdry} ∈ VU × H1(B) ∩K × VP is a
solution to the inequality (45) and (46) is satisfied. It remains to prove the Rice condition (47).

To prove it, we observe that with the choice ψ = ϕ−Φ inequality (71) holds true. Finally, we choose
ϕM − Φ as a test function in equation (70). Using the weak lower semi-continuity of the quadratic
terms yields

Gc

∫
B

(
− 1

ε
(1− ϕ)(ϕ− Φ) + ε∇ϕ · ∇(ϕ− Φ)

)
dx

+

∫
B
D(ϕ̃)

(
(1− α)p div U +∇p ·U

)
(ϕ− Φ) dx+

1

2

∫
B

(
A(ϕ̃)Ge(U) : e(U)− J (ϕ̃)P (2p− P )

)
(ϕ− Φ) dx ≤ 0. (72)

After comparing (71) and (72), we obtain Rice’s condition (47).

5.3 The Lyapunov functional for the incremental problem

In this subsection we construct the Lyapunov functional corresponding to the sequence of incremen-
tal problems (42)-(50).

We suppose the quasistatic problem (23)-(31) is discretized with a uniform time step ∆t. Given
solutions at discrete times tj , j = 0, . . . , N , {uj , ϕj , pj}, with Φ = ϕj−1, U = uj−1 and P = pj−1, are
extended from the discrete times {tj}0≤j≤N to (0, T ) by

ϕ∆t(t) = ϕj if tj ≤ t < tj+1, j = 0, . . . N − 1; (73)

ϕ∆t(t0) = ϕ0; (74)

u∆t(t) = uj if tj ≤ t < tj+1, j = 0, . . . N − 1. (75)

p∆t(t) = pj if tj ≤ t < tj+1, j = 0, . . . N − 1; (76)

p∆t(t0) = p0. (77)

u∆t(t0) ∈ VU is the solution for (42), (43), (44). In the formulation we need values at t −∆t, which
correspond to the previous time step. We set

Φ∆t(t) = ϕ∆t(t−∆t); U∆t(t) = u∆t(t−∆t) and P∆t(t) = p∆t(t−∆t) ∆t ≤ t ≤ T.

The variational formulation of the incremental problem is then
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Find {u∆t, ϕ∆t, p∆t} ∈ VU ×H1(B)× VP such that ϕ∆t(t) ≤ ϕ∆t(t−∆t) for every t ∈ (0, T ) and∫
B

(
A(ϕ̃∆t)Ge(u∆t) : e(w) +

(
(ϕ̃∆t)

2∇p∆t + (α− 1)∇((ϕ̃∆t)
2p∆t)

)
·w
)
dx

=

∫
∂NB

(τ∆t ·w + pbdry∆t wn) dS, ∀w ∈ VU , (78)

Gc

∫
B

(
− 1

ε
(1− ϕ∆t)ψ + ε∇ϕ∆t · ∇ψ

)
dx

+

∫
B
D(ϕ̃∆t)

(
((1− α)p∆t div U∆t +∇p∆t ·U∆t

)
ψ dx+

1

2

∫
B

(
A(ϕ̃∆t)Ge(U∆t) : e(U∆t)− J (ϕ̃∆t)P∆t(2p∆t − P∆t)

)
ψ dx ≤ 0,

∀ψ ∈ H1(B), ψ ≥ 0, a.e. on B, (79)

Gc

∫
B

(
− 1

ε
(1− ϕ∆t)(ϕ∆t − Φ∆t) + ε∇ϕ∆t · ∇(ϕ∆t − Φ∆t)

)
dx

+

∫
B
D(ϕ̃∆t)

(
((1− α)p∆t div U∆t +∇p∆t ·U∆t

)
(ϕ∆t − Φ∆t) dx+

1

2

∫
B

(
A(ϕ̃∆t)Ge(U∆t) : e(U∆t)− J (ϕ̃∆t)P∆t(2p∆t − P∆t)

)
(ϕ∆t − Φ∆t) dx = 0, (80)

∫
B
∂∆t

(
c(ϕ̃∆t)p∆t + div ((ϕ̃∆t)

2u∆t) + (α− 1)(ϕ̃∆t)
2 div u∆t

)
π dx

+

∫
B
Keff (Φ̃∆t)

(
∇p∆t − G̃(Φ∆t)

)
· ∇π dx =∫

B
q∆tπ dx−

∫
∂DB

vinj∆t π dS, ∀ π ∈ VP , (81)

with

A(ϕ̃∆t) =
A(ϕ̃∆t)−A(Φ̃∆t)

ϕ∆t − Φ∆t
; J (ϕ̃∆t) =

c(ϕ̃∆t)− c(Φ̃∆t)

ϕ∆t − Φ∆t

and D(ϕ̃∆t) =
ϕ̃2

∆t − Φ̃2
∆t

ϕ∆t − Φ∆t
. (82)

We start with several auxiliary results, which will allow us to construct the Lyapunov functional:

Lemma 1. Let N ∈ N. Then we have

∆t

N−1∑
n=0

A(ϕ̃n+1)Ge(un+1) : e(∂∆tun+1) =
1

2

(
A(ϕ̃N )Ge(uN ) : e(uN )−

A(ϕ̃0)Ge(u0) : e(u0)

)
+

1

2

N−1∑
n=0

A(ϕ̃n+1)Ge(un+1 − un) : e(un+1 − un)−

∆t

2

N−1∑
n=0

A(ϕ̃n+1)Ge(un) : e(un)∂∆tϕn+1. (83)
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Lemma 2. Let N ∈ N. Then we have

N−1∑
n=0

(
c(ϕ̃n+1)pn+1 − c(ϕ̃n)pn

)
pn+1 =

1

2

(
c(ϕ̃N )p2

N − c(ϕ̃0)(p0)2
)
+

1

2

N−1∑
n=0

c(ϕ̃n+1)
(
pn+1 − pn

)2
+

1

2

N−1∑
n=0

J (ϕ̃n+1)(2pn+1 − pn)pn. (84)

Lemma 3. Let N ∈ N. Then for the combination of the cross-terms, which are not multiplied by
(α− 1), we have

N−1∑
n=0

(
(ϕ̃n+1)2∇pn+1∂∆tun+1 + div ∂∆t((ϕ̃n+1)2un+1)pn+1

+D(ϕ̃n+1)∂∆tϕn+1un∇pn+1

)
=

N−1∑
n=0

div
(
pn+1∂∆t((ϕ̃n+1)2un+1)

)
. (85)

Lemma 4. Let N ∈ N. Then for the combination of the cross-terms, which are multiplied by (α− 1),
we have

N−1∑
n=0

(
∇((ϕ̃n+1)2pn+1)∂∆tun+1 + pn+1∂∆t((ϕ̃n+1)2 div un+1)−

D(ϕ̃n+1)∂∆tϕn+1pn+1 div un

)
=

N−1∑
n=0

div
(
pn+1((ϕ̃n+1)2∂∆tun+1)

)
. (86)

In the considerations which follow we will suppose that pbdry = 0. Working with the non-homogeneous
pressure boundary condition would lead to long and cumbersome expressions but, on the other hand,
their presence would not present any problem.

We introduce the incremental Lyapunov functional (or the incremental free energy functional) by

JN =
1

2

∫
B

(
A(ϕ̃N )Ge(uN ) : e(uN ) +Gc

(
ε|∇ϕN |2 +

1

ε
(1− ϕN )2

)
+c(ϕ̃N )p2

N

)
dx−

∫
∂NB

τ(tN ) · uN dS. (87)

Then we have the following result

Theorem 2. Let us suppose Hypothesis 1 and, in addition, pbdry = 0. Then the following estimate
holds:

JN + ∆t

N−1∑
n=0

∫
B
Keff (ϕ̃n)∇pn+1 · ∇pn+1 dx ≤ J0+

∆t
N−1∑
n=0

∫
B
Keff (ϕ̃n)G̃(ϕ̃n) · ∇pn+1 dx−∆t

N−1∑
n=0

∫
∂NB

∂∆tτ(tn+1) · un+1 dS

+∆t
N−1∑
n=0

∫
∂DB

vinj(tn+1)pn+1 dS + ∆t
N−1∑
n=0

∫
B
q̃(tn+1)pn+1 dx, (88)

where J0 is calculated using the initial values of the unknowns.
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Proof. We consider system (78)-(81) for times tn, n = 1, . . . , N. We test equation (78) by ∂∆tun+1,
using equality (80) with ∂∆tϕn+1 and testing equation (81) by pn+1. Then we sum up the obtained
equalities from n = 0 to n = N − 1 and, finally, sum up the three equalities obtained this way.
Application of equalities (83)-(86) yields the estimate (88).

6 Discretization and Solution Algorithm

For numerical treatment of the whole system, we work with Definition 1; namely equations (52)-(54), in
which the setting is time-discretized using a backward difference quotient. Then, we describe spatial
discretization that is based on a Galerkin finite element scheme. Finally, we propose a combined
Newton method that simultaneously solves for the nonlinear (forward) problem and the enforcement
of the crack irreversibility.

6.1 Aspects of temporal discretization

All time derivatives are approximated with backward difference quotients as described in the theoret-
ical part of the article. That is:

∂tϕ ≈
ϕ− Φ

∆t
,

where Φ := ϕ(tn−1) and the time step size is ∆t = tn − tn−1. In a similar way the time derivative of
the pressure equation is formulated.

Moreover, we time-lag in terms of a linear extrapolation ϕex of the true ϕ in several terms in order
to resolve numerical difficulties related to the indefiniteness of the Jacobian matrix. This is of most
importance in the displacement equation. In [13], it has been shown that this procedure is efficient
and robust.

6.2 Spatial discretization

Spatial discretization is performed with conforming finite elements; namely the discrete spaces consists
of bilinears using a mesh decomposed into quadrilaterals. This space is denoted as usually by Qc1. The
discretization parameter is denoted by h and since the method is conforming, we have V h

U ⊂ VU for
the displacements, W h ⊂W for the phase-field variable, and V h

P ⊂ VP for the pressure. We employ a
Galerkin scheme and formulate a semi-linear form A(Uh)(Ψh) with Uh = (uh, ϕh, ph) ∈ V h

U ×W h×V h
P

such that the discrete nonlinear system then reads:

Definition 2 (of a single semi-linear form for the penalized formulation). In each time step
tn, solve for a discrete solution Uh = (uh, ϕh, ph) ∈ VU ×W × VP such that

A(Uh)(Ψh) =

∫
B

(
A(ϕhex)Ge(uh) : e(wh) +

(
(ϕhex)2∇ph + (α− 1)∇((ϕhex)2ph)

)
·wh) dx− ∫

∂NB

(τ ·wh + pbdrywhn) dS

+Gc

∫
B

(
− 1

ε
(1− ϕh)ψh + ε∇ϕh · ∇ψh

)
dx+

∫
B

δ(ϕh − Φ)+ψ
h dx

+

∫
B

D(ϕhex)

(
((1− α)ph div U +∇ph ·U

)
ψh
)
dx+

1

2

∫
B

(
A(ϕhex)Ge(U) : e(U)− J (ϕhex)P (2ph − P )

)
ψh

+

∫
B

(
c(ϕhex)ph + div ((ϕhex)2uh) + (α− 1)(ϕhex)2 div uh

)
πh dx

+∆t

∫
B

(
Keff (Φ+)(∇ph − G̃(Φ+))

)
· ∇πh dx = ∆t

∫
B

q̃πh dx

−∆t

∫
∂DB

vinjπr dS +

∫
B

(
c(Φ+)P + div (Φ2

+U) + (α− 1)Φ2
+ div U

)
πr dx (89)

for all Ψh = (wh, ψh, πh) ∈ V h
U ×W h × V h

P .
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Remark 4 (Treatment of the crack irreversibility condition). The crack irreversibility can be either
treated via penalization using the parameter δ as it has been used for related problems of pressurized and
fluid-filled fractures [17, 22]; or as recently proposed in [13], employing a robust primal-dual active set
strategy that can be interpreted as a semi-smooth Newton method [14]. Further aspects are explained
in more detail below in Section 6.4.

6.3 Newton’s method for the nonlinear forward problem

In this section, we restrict our attention to the nonlinear solution of the main equations (i.e., the
forward problem). We apply Newton’s method to the fully-coupled problem in order to identify
optimal convergence rates. Here, the Jacobian matrix is derived analytically in order to identify
optimal Newton convergence whenever possible. The semi-linear form of the forward problem is
defined in Definition 2 and neglects the penalization term. The nonlinear iteration reads:

Algorithm 1 (Newton iteration of the fully-coupled system). At a given time level; repeat the Newton
iterations for k = 0, 1, 2, . . . :

1. Find dUhk := {duhk , dϕhk , dphk} by solving the linear system

A′(Uhk )(dUhk ,Ψ
h) = −A(Uhk )(Ψh) ∀Ψ ∈ V h ×W h × V h. (90)

2. Find a step size 0 < ω ≤ 1 using line search (see Remark 5) to get

Uhk+1 = Uhk + ωdUhk , (91)

with A(Uhk+1)(Ψh) < A(Uhk )(Ψh).

Finish the Newton loop if the stopping criteria is fulfilled:

|A(Uhk )(Ψh)| < TOL .

In Algorithm 1, the Jacobian is derived by computing the Gâteaux derivative. The application to
a semi-linear form reads:

A′(U)(dU,Ψ) := lim
s→0

1

s
{A(U + sdU)(Ψ)−A(U)(Ψ)} =

d

ds
A(U + sdU)(Ψ)|s=0 .

The Jacobian to Definition 2 reads:

A′(Uh)(dUh,Ψh) =

∫
B

(
A(ϕhex)Ge(duh) : e(wh) +

(
(ϕhex)2∇dph + (α− 1)∇((ϕhex)2dph)

)
·wh

)
dx

+Gc

∫
B

(1

ε
(dϕh)ψh + ε∇dϕh · ∇ψh

)
dx

+

∫
B
D(ϕhex)

(
((1− α)dph div U +∇dph ·U

)
ψh
)
dx+

1

2

∫
B

(
− J (ϕhex)P (2dph)

)
ψh

+

∫
B

(
c(ϕhex)dph + div ((ϕhex)2duh) + (α− 1)(ϕhex)2 div duh

)
πh dx

+∆t

∫
B

(
Keff (Φ+)(∇dph − G̃(Φ+))

)
· ∇πh dx = 0 (92)

for all Ψh = (wh, ψh, πh) ∈ V h
U ×W h × V h

P .
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Remark 5 (Backtracking line search). A crucial role for (highly) nonlinear problems includes the
appropriate determination of ω. A simple backtracking strategy is employed in the present paper and
consists of modifying the update step in (91) as follows: For given ω ∈ (0, 1) (in our numerical tests,
we choose ω = 0.6) determine the minimal l∗ ∈ N via l = 0, 1, . . . , Nl, such that

R(Uhk+1,l) < R(Uhk,l),

Uhk+1,l = Uhk+1 + ωldUhk .

For the minimal l∗, we set

Uhk+1 := Uhk+1,l∗ .

In this context, the nonlinear residual R(·) is defined as

R(Uh) := max
i

{
A(Uh)(Ψi)− F̂ (Ψi)

}
∀Uh = (wh, ψh, πh) ∈ V h

U ×W h × V h
P ,

where {Ψi} denotes the nodal basis of V h
U ×W h×V h

P . This algorithm works quite well for our problems
and is applied to both the nonlinear forward model and the semi-smooth Newton method to realize the
primal-dual active set.

6.4 A combined Newton method for the variational inequality system

We combine the Newton solver from the previous section with a semi-smooth Newton iteration for
treating the crack irreversibility. Such an algorithm has been proposed in [13]. Instead of penalizing
the equations to solve the variational inequality, key idea of the primal-dual active set algorithm is that
the domain is partitioned into an active set and an inactive set. In the active set, the constraint (here
ϕ = Φ) is active, whereas in the inactive set we have ϕ < Φ and we solve the PDE. The interpretation
as a semi-smooth Newton method allows detailed convergence analysis [14] and fast convergence; i.e.
a locally superlinear convergence.

With these preparations, we extend Algorithm 1 and define the combined Newton active-set itera-
tion:

Algorithm 2 (Combined Newton of the fully-coupled system). At a given time level; repeat the
Newton iterations for k = 0, 1, 2, . . . :

1. Assemble the residual A(Uhk )(Ψh) with Uhk = (uhk , ϕ
h
k , p

h
k) formulated in Definition 2 consisting

of displacements, phase-field, and pressure

2. Compute active set Ak (see Remark 6 and [13]).

3. Assemble matrix A′(Uhk )(·,Ψh) and right-hand side −A(Uhk )(Ψh)

4. Eliminate rows and columns in active set Ak from matrix and right hand side to obtain Ã′(Uhk )(·,Ψh)

and −Ã(Uhk )(Ψh)

5. Solve the linear system using a GMRES method with block-diagonal preconditioning; namely find
dUhk such that

Ã′(Uhk )(dUhk ,Ψ
h) = −Ã(Uhk )(Ψh) ∀Ψ ∈ V h ×W h × V h. (93)
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6. Find a step size 0 < ω ≤ 1 using the line search algorithm explained in Remark 5 to compute

Uhk+1 = Uhk + ωdUhk ,

with Ã(Uhk+1)(Ψh) < Ã(Uhk )(Ψh).

Finish the Newton loop if both stopping criteria are fulfilled simultaneously:

Ak+1 = Ak and Ã(Uhk )(Ψh) < TOL .

Remark 6 (Computing the active set). Determining the active set follows the procedure as it has
been described, for example, in [14]. On the discrete level, we check at each degree of freedom if the
index i is in the active set Ak:

(B−1)ii(R(Uhk ))i + c(dUkh )i > 0. (94)

Otherwise, the index belongs to the inactive set I. Here, B is a mass matrix (details in [14]), R(Uhk )
the nonlinear residual from before, c > 0 a constant, and dUkh Newton’s update. Each row and
corresponding column of degree of freedoms i that are part of the active set are then eliminated from the
Jacobian A′(Uhk )(·,Ψh) and the right hand side A(Uhk )(Ψh) and thus the reduced systems are denoted

by Ã′(Uhk )(dUhk ,Ψ
h) and Ã(Uhk )(Ψh), respectively.

Inside Algorithm 2, we solve the linear equations with the generalized minimal residual (GMRES)
method and block-diagonal preconditioning as implemented in [13] for the fully-coupled solution for
{u, ϕ}. That program has been extended to solve the {u, ϕ, p} system. The (reduced) linear equation
system (93) (AdU = b) has the following structure:Auu 0 Bup

Cϕu Aϕϕ Mϕp

Bpu 0 App

duhk
dϕhk
dphk

 =

bu
bϕ
bp

 .

Here, the right hand side values {bu, bϕ, bp} are assembled in terms of Newton’s (reduced) resid-

ual Ã(Uhk )(Ψh). The terms in the Jacobian matrix are specified through assembling the directional
derivatives in (6.3). Let Nu, Nϕ and Np be the dimensions of the spaces V h

u ,W
h and V h

p . Then,

Auu = (A(ϕhex)Ge(wj) : e(wi))Nu,Nui,j=1 , (95)

Bup = ((ϕhex)2∇πj + (α− 1)∇((ϕhex)2πj) ·wi)
Nu,Np
i,j=1 , (96)

Cϕu = 0, (97)

Aϕϕ = Gc(
(1

ε
(ψj)ψi + ε∇ψj · ∇ψi

)
)
Nϕ,Nϕ
i,j=1 , (98)

Mϕp = (D(ϕhex)(((1− α)πj div U +∇πj ·U)ψi) (99)

− ((J (ϕhex)P (2πj))ψi))
Nϕ,Np
i,j=1 , (100)

Bpu = (( div ((ϕhex)2wj) + (α− 1)(ϕhex)2 div wj)πi)
Np,Nu
i,j=1 , (101)

App = ((Keff (Φ+)(∇πj − G̃(Φ+))) · ∇πi)Np,Npi,j=1 . (102)

The structure of the Jacobian Ã′(Uhk )(dUhk ,Ψ
h) is important since with this information, a precondi-

tioner P−1 can be constructed such that P−1A has a moderate condition number. Here we simply
choose

P−1 =

A−1
uu 0 0
0 A−1

ϕϕ 0

0 0 A−1
pp

 .
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This preconditioner is computed with an algebraic multigrid method from Trilinos [23] and yields a
moderate number of iterations of the GMRES solver. For the examples in this paper we observed
between 10 and 90 GMRES iterations per Newton step.

7 Numerical tests

In this final section, three different configurations of fluid-filled fractures in poroelasticity are consid-
ered. Specifically, Biot’s coefficient is chosen as α = 1. All remaining parameters are summarized in
Table 2.

SYMBOL QUANTITY VALUE UNITS (in SI)

k bulk regularization 10−12 m

ε phase-field regularization 0.088 m

h discretization parameter 0.088, 0.044, 0.022 m

∆t time step size 0.01 s

T Total number of time steps 30 (ex. 1), 50 (ex. 2,3)

α Biot coefficient 1

KR Reservoir permeability 10−11 (ex.1,2), 10−14 − 10−11 (ex.3) Darcy

KF Fracture permeability w2/12 in the propagation direction Darcy

w Fracture width (COD, aperture) w = [u · n] m

cR Reservoir fluid compressibility 10−8 1/Pa

cF Fracture fluid compressibility 10−8 1/Pa

ηR Reservoir fluid viscosity 10−3 kg/m sec

ηF Fracture fluid viscosity 10−3 kg/m sec

ppb Injection pressure 10−8 Pa

E Young’s modulus 108 Pa

νS Poisson’s ratio 0.2

Gc Critical energy release rate 1 J/m2

Table 2: Parameters for the numerical examples

The domain is Ω = (0, 4)2m with boundary ∂Ω. As boundary conditions, we describe u = 0 on
∂Ω, ∂nϕ = 0 on ∂Ω and ∂np = 0 on ∂Ω (no flow). In order to study the robustness of our numerical
solutions, we compute the first two examples on three different meshes using global mesh refinement.
We emphasize that ε = 0.088m is fixed such that we are able to study h convergence.

A point source injection is modeled as q = pph
d
π exp(−d∗(x−x0)2) with d = 10000 with x0 = (2, 2).

The fracture permeability is computed as KF ∼ w2/12ηF where w is the width of the fracture; for a
detailed derivation, we refer to [17]. The function c(ϕ+) is a linear interpolation with c(0) = cF and
c(1) = 1

M .

As functionals, we observe the crack length and the maximum pressure over time.

7.1 A straight propagating fracture

In this first example, an initial crack is described with length l0 = 0.4 on C = (1.8− h, 2.2 + h)× (2−
h, 2−h) ⊂ Ω. A single-phase fluid with source term q is injected into the middle of the domain in the
point (2, 2).

Our findings can be observed in Figures 2 - 5. The crack pattern is displayed in Figure 2. The
pressure fields of the fracture and the reservoir interact. Specifically, the pressure at the tips of the
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fracture is very low and even becomes negative as observed in Figure 3. These findings are confirmed
in Figure 4 in which the pressure is plotted over the middle cross section. This behavior has been
already discussed in the literature by others [8, 19, 18]. The displacement field are illustrated in Figure
5. We observe the typical shape of the crack opening displacement; namely zero opening at the tips
of the fracture and largest opening in the middle. This phenomenon was predicted by the theoretical
calculations made in [20] in their Section 2.4 for 2D configurations. Finally, we observe in Figure 6
the crack length and the total pressure on three different meshes in order to study the robustness of
our solutions. Our findings indicate that our method is computationally stable for h-refinement while
keeping ε fixed.

Figure 2: Example 1: Crack pattern at times T = 1, 10, 20, 30s using the phase-field variable ϕ. In the
crack (red colored) region ϕ = 0 and in the unbroken material, ϕ = 1. In between 0 < ϕ < 1,
which denotes the smooth transition zone.
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Figure 3: Example 1: Pressure (in Pa) at times T = 1, 10, 30, 40s. Here, we observe a large pressure
difference with negative pressures in front of the tips of the fracture.
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Figure 4: Example 1: Pressure plot over the cross section {(x, 2)|0 ≤ x ≤ 4} at times T = 1, 10, 30, 40s.
The units of horizontal and vertical axes are m and Pa, respectively. Here, we observe large
pressures in the fracture and low (negative) pressures at the (propagating) tips. As long as
the fracture is not propagating, i.e., between T = 1s and T = 10s, the pressure increases.
While the fracture is propagating we observe a slight pressure decrease. In addition, while
the fracture is propagating negative pressures at the tips remain but they do not decrease
further.
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Figure 5: Example 1: y-displacement field (in m) at times T = 1, 10, 30, 40s. Here, the displacements
are zero at the tips of the fracture and the highest value is obtained in the middle. As in
the first example, this corresponds to the theoretical calculations of [20] in their Section 2.4.
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Figure 6: Example 1: Convergence studies of crack length and maximum pressure versus time on three
different mesh levels. For fixed ε, we observe h-convergence in the length as well as in the
pressure. In particular, we observe a pressure drop while the crack is growing. On the coarse
mesh the pressure again increases while the pressure is monotonically decreasing on the two
fine meshes.

7.2 Propagation of multiple fractures in a homogeneous porous medium

In this second test, the domain, boundary conditions and the first fracture (the horizontal one) remain
the same as in the first example. We now add a second, vertically-aligned fracture on (2.6± h, 2.0±
0.2)m. We only do inject a fluid into fracture 1 (like in the first example). Consequently, the second
fracture can be seen as a natural non-pressurized fracture.

Analyzing our findings, the following conclusions can be inferred: In Figure 7, we observe the crack
pattern evolution and see that only fracture 1 starts propagating because fracture 2 is not pressurized.
They join at time T = 7. Next, the horizontal crack continues further propagating. Later, the second
crack also starts propagating. That fracture 2 is not pressurized can be justified in Figure 8 since
high pressure is in the first time steps only being seen in fracture 1. When they join, also fracture 2 is
pressurized and fluid flows inside. Similarly to Example 7.1, the pressure field is negative at the tips
of the fractures. Finally, convergence studies of the half crack length of the horizontal fracture and
maximum pressure versus time on three different mesh levels are shown in Figure 9.
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Figure 7: Example 2: Crack pattern at times T = 1, 6, 7, 20, 30, 50s with two fractures. Fracture 1 (the
horizontal fracture) joins fracture 2 (the vertical fracture) at T = 7s. The crack pattern is
displayed with the help of the phase-field variable ϕ. In the crack (red colored) region ϕ = 0
and in the unbroken material, ϕ = 1. In between 0 < ϕ < 1, which denotes the smooth
transition zone.
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Figure 8: Example 2: Pressure (in Pa) at times T = 1, 6, 7, 20, 30, 50s. Again, we observe a large
pressure difference with low pressures (in blue color) in front of the fracture tips. In fact,
the pressure is lowest first at right when fracture 1 joins fracture 2. Then, fracture 1 further
grows and we observe lowest pressure at T = 20s at left in front of the growing fracture.
Later, the two fracture tips of the second fracture start growing and now the lowest pressures
are seen here at T = 50s. In this final figure properly the pressure might be still very low
for the fracture 1 tip at left, but this fracture is leaving the domain in this moment. Here,
we notice that boundary interactions/influences are still subject of current research. But in
the last figure, our primary focus is on the tips of fracture 2.
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Figure 9: Example 2: Convergence studies of half crack length of the horizontal fracture and maximum
pressure versus time on three different mesh levels. For fixed ε, we observe h-convergence
in the length as well as in the pressure. In particular, we observe a huge pressure drop at
T = 7s when the horizontal crack joins the vertical crack. In this example, we also observe
that a too coarse mesh does might give wrong answers as here seen for the pressure. The
pressure increase towards T = 50 is due to the fact that this crack reaches the boundary
and lead to disputable results.

7.3 Fracture propagation in a heterogeneous porous medium

In this final example, the reservoir permeability KR varies. This is an important example motivated
by practical applications. Examples with varying geomechanics parameters have been presented in
[16, 13] as well as in [24] to couple phase-field fracture propagation with a reservoir simulator.

Except of the reservoir permeability, the configuration, boundary conditions, model and material
parameters are the same as in Example 7.1. Analyzing our results, we observe that the fracture now
grows on a non-planar way due to the non-constant permeability field (see Figure 11). The pressure
field is displayed in Figure 12. Again, low pressures occur at the tips of the fracture.

Figure 10: Example 3: Initial crack, pressure and permeability distribution
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Figure 11: Example 3: Crack pattern at times T = 10, 20, 30, 50s using the phase-field variable ϕ. In
the crack (red colored) region ϕ = 0 and in the unbroken material, ϕ = 1. In between
0 < ϕ < 1, which denotes the smooth transition zone.

34 Accepted for publication in Computational Geosciences, 2015



Figure 12: Example 3: Pressure (in Pa) field at times T = 10, 20, 30, 50s.
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Figure 13: Example 3: y-displacement field (in m) at times T = 10, 20, 30, 50s.

We note that the displacements are zero at the tips of the fracture and the highest value is obtained
in the middle. As in the first example, this corresponds to the theoretical calculations of [20] in their
Section 2.4.

8 Conclusion

In this paper, we formulated a fully-coupled phase-field model describing propagating cracks in a
poroelastic medium. The model consists of coupled nonlinear PDEs for the displacement, the pressure
and the phase field unknowns. The phase-field algorithm is based on an incremental formulation and
existence of a weak solution is established. Furthermore, the corresponding Lyapunov functional,
based on the free energy, is constructed. Numerical tests demonstrate the correctness of the model.
Specifically, this approach can treat crack growth in heterogeneous porous media, pressurized crack
evolutions and multiple interacting cracks allowing them to join and branch. Moreover, the numerical
simulations confirm findings from literature that low (negative) pressures arise at fracture tips.
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