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Abstract

The inference and the verification of numerical relationships among
variables of a program is one of the main goals of static analysis. In this
paper, we propose an Abstract Interpretation framework based on higher-
dimensional ellipsoids to automatically discover symbolic quadratic invari-
ants within loops, using loop counters as implicit parameters. In order to
obtain non-trivial invariants, the diameter of the set of values taken by
the numerical variables of the program has to evolve (sub-)linearly during
loop iterations. These invariants are called ellipsoidal cones and can be
seen as an extension of constructs used in the static analysis of digital
filters. Semidefinite programming is used to both compute the numerical
results of the domain operations and provide proofs (witnesses) of their
correctness.

keywords: static analysis, semidefinite programming, ellipsoids, conic
extrapolation

1 Introduction

Ellipsoids have been widely used to overapproximate convex sets. For instance,
in Control Theory they naturally arise as sublevel sets of quadratic Lyapunov
functions. They are chosen to minimize some criterion, such as the volume. In
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Abstract Interpretation [9], they have been used to compute bounds on the out-
put of linear digital filters [4, 5]. Roux et al. [6, 7] further extended that approach
by borrowing techniques from Semidefinite Programming (SDP). However, all
those works try to recover an ellipsoid that is known to exist as the Lyapunov in-
variant of some control system from the numerical algorithm implementing that
system. The analysis algorithms are tailored for the particular type of numerical
code considered. Ellipsoids are interesting in and of themselves because they
provide a space-efficient yet expressive representation of convex sets in higher
dimensions (quadratic compared to exponential for polyhedra). In this paper,
we devise an Abstract Interpretation framework [10] to automatically compute
an overapproximation of the values of the numerical variables in a program by
an ellipsoid.

We focus our attention on the case when the program variables grow linearly
with respect to the enclosing loop counters. We call this approximation an
‘ellipsoidal cone’. Our work also relates to the gauge domain [8], which discovers
simple linear relations between loop counters and the numerical variables of a
program. Even though the definitions of the abstract operations are general,
this model arises more naturally when the analyzed system naturally tends
to exhibit quadratic invariants, for instance in the analysis of switched linear
systems. Section 2 defines the basic ellipsoidal operations and their verification,
and Sect. 4 extends this to the conic extrapolation. The soundness of our
analysis relies on the verification of Linear Matrix Inequalities (LMI), which
we describe in Sect. 3 before delving into the description of ellipsoidal cones.
Finally Sect. 5 presents experiments and discusses applications to switched linear
systems.

2 Ellipsoidal Operations

Ellipsoids are the building blocks of our conic extrapolation. We define how to
compute the result of basic operations (union, affine transformation. . . ). Since
there is generally no minimal ellipsoid in the sense of inclusion, we choose the
heuristic of minimizing the volume. Other choices, such as minimizing the so
called ‘condition number’ or preserving the shape, are compared in [6].

We mainly rely on SDP optimization methods [3, 11, 12] both to find a
covering ellipsoid and test the soundness of our result. However, we do not rely
on the correctness of the SDP solver. For each operation whose arguments and
results are expressed in function of matrices (Ai)1≤i≤r, we define a linear matrix

inequality (LMI) of the form
r∑
i=0

αiAi � 0, where A � 0 means “A is semidefinite

positive”, such that proving the soundness of the result is equivalent to showing
that the LMI is satisfied for some reals (αi). We find (αi) candidates using an
SDP solver and then verify the inequality with a sound procedure described in
Sect. 3.

Definition 1 (Ellipsoid). Ell(Q, c) = {x ∈ Rn|(x − c)TQ(x − c) ≤ 1} is the
definition of an ellipsoid where c ∈ Rn and Q is a definite positive n×n matrix.
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For practical use, we also define the function F : (Q, c) 7→
(

Q −Qc
−cTQ cTQc− 1

)
.

2.1 A Test of Inclusion

Let Ell(Q, c) and Ell(Q∗, c∗) be two ellipsoids, using the function F of Defini-
tion 1 we have the following duality result (proven in [1]):

Theorem 1.

max
x∈Ell(Q,c)

(
(x− c∗)TQ∗(x− c∗)− 1

)
=

min
λ,β∈R

{β s.t. λ ≥ 0 and βEn+1 + λF (Q, c) � F (Q∗, c∗)}

Where En+1 is an (n+1)×(n+1) matrix, with (En+1)i,j = 1 if i = j = n+1,
else (En+1)i,j = 0. Hence Ell(Q, c) ⊂ Ell(Q∗, c∗) if and only if the minimizing
value β∗ is nonpositive.

For given Ell(Q, c), Ell(Q∗, c∗) and candidates λ and β computed by the
SDP solver, the right hand term provides the LMI to check.

2.2 Computation of the Union

Let (Ell(Qi, ci))1≤i≤p be p ellipsoids, we want to find an ellipsoid Ell(Q∗, c∗)
which is of nearly minimal volume containing them. To do so, we can solve the
following SDP problem. It is decomposed into a first part ensuring the inclusion,
proven in [1], and a second part describing the volume minimization criterion,
proven in [3, example 18d].

The unknowns of the SDP problem are X an n × n symmetric matrix,
z ∈ Rn a vector, ∆ a lower triangular matrix and real numbers t, (τi)1≤i≤p
(ui)1≤i≤2l+1−2 where n ≤ 2l < 2n:
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maximize t such that

Inclusion conditions, see [1]:

∀i, 1 ≤ i ≤ p, ∃τi ≥ 0 s.t.

τi

 Qi −Qici 0
−cTi Qi cTi Qici − 1 0

0 0 0

 �
 X −z 0
−zT −1 zT

0 z −X


Volume minimization, see [3, example 18d]:(
X ∆

∆T D(∆)

)
� 0

where D(∆) is the diagonal matrix with the diagonal of ∆.(
u1 t
t u2

)
� 0 and ∀i, 1 ≤ i ≤ 2l − 2,

(
u2i+1 ui
ui u2i+2

)
� 0

∀i, 2l − 1 ≤ i < 2l − 1 + n, ui = δi−2l+2

where (δ1, . . . , δn) are the diagonal coefficients of ∆.

∀i, 2l − 1 + n ≤ i ≤ 2l+1 − 2, ui = 1
(1)

We then define Q∗ = X and c∗ = Q∗−1z (in floating-point numbers, then
we possibly increase the ratio of Q to ensure the inclusion condition). We can
check that the resulting ellipsoid really contains the others with Theorem 1.

2.3 Affine Assignments

In this section, we are interested in computing the sound counterpart of an
assignment x← Ax+ b, where x is the vector of variables, A is a matrix and b
a vector.

2.3.1 Computation.

We want to find a minimal volume ellipsoid such that the inclusion Ell(Q∗, c∗) ⊃
{Ax+ b|(x− c)TQ(x− c) ≤ 1} is verified.

By a symmetry argument, we can set c∗ = Ac+b. By expanding the inclusion
equation, we find {Ax+ b|x ∈ Ell(Q, c)} ⊂ Ell(Q∗, Ac+ b) ⇐⇒ Q � ATQ∗A.

Hence Q∗ is a solution of the following SDP problem with unknowns X an
n× n symmetric matrix, z ∈ Rn a vector, ∆ a lower triangular matrix and real
numbers t, (τi)1≤i≤p (ui)1≤i≤2l+1−2 where n ≤ 2l < 2n:
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Volume minimization:

The same constraints and objective as in (1).

Inclusion conditions:

Q � ATXA and
1

ε
Id � X where Id is the n× n identity matrix and ε > 0

(2)
We then set Q∗ = X and c∗ = Ac+ b.
The second inclusion condition is here to ensure the numerical convergence

of the SDP solving algorithm: if A is singular, the image by A of an ellipsoid is
a flat ellipsoid. With this condition, we ensure that Ell(Q∗, c∗) contains a ball
of radius ε.

To add an input defined by the convex hull of a finite set of vectors (for
instance a hypercube), we can just compute the sum for every one of these
vectors and compute the union [6].

2.3.2 Verification.

The previous procedure gives us inequalities whose correctness ensures that the
ellipsoid Ell(Q∗, Ac+b) contains the image of Ell(Q, c) by x 7→ Ax+b. However,
c∗ = Ac+ b is computed in floating-point arithmetic, hence the soundness does
not extend to our actual result Ell(Q∗, c∗). Therefore, we have to devise a test
of inclusion for an arbitrary c∗. Let us compute the resulting center in two
steps: we first assume that b = 0. We have from [1]:

(∀x, x ∈ Ell(Q, c)⇒ Ax ∈ Ell(Q∗, c∗))

⇐⇒ max
x∈Ell(Q,c)

(xTATQ∗Ax− 2xTATQ∗c∗ + c∗TQ∗c∗) ≤ 1

⇐⇒ min
λ,β∈R

{β|λ ≥ 0 and λF (Q, c) + βEn+1 � G} ≤ 0

where G =

(
ATQ∗A −ATQ∗c∗

(−ATQ∗c∗)T c∗TQ∗c∗ − 1

) (3)

We can hence verify the inclusion by finding suitable parameters and veri-
fying the resulting LMI.

We finally have to perform the sound computation of the center translation
(c + b). Again, this is computed in floating-point arithmetic and we may have
to increase the ratio of Q to ensure the verification of the inclusion condition
in interval arithmetics: in the test of Theorem 1, we first compute (c + b) and
F (Q, c + b) in floating-point arithmetic (and possibly increase the ratio), and
with the LMI we check that it “contains” F (Q, c + b) directly computed in
interval arithmetic.
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2.4 Variable Packing

It can be useful to analyze groups of variables independently, and merge the
results. Given a set of variables {x1, . . . , xp, xp+1, . . . , xp+q} and an ellipsoidal
constraint over these variables (Q, c), we can find an ellipsoidal constraint linking

x1, . . . , xp by computing the assignment defined by the matrix

(
Ip 0
0 0

)
.

Given two sets of variables {x1, . . . , xp} and {xp+1, . . . , xp+q} linked respec-
tively by (Q1, c1) and (Q2, c2), their product is tightly overapproximated by:

Ell

((
Q1

2 0

0 Q2

2

)
,

(
c1
c2

))
.

3 Verifying Linear Matrix Inequalities

We now describe how we check the LMI’s that determine the soundness of our
analysis. We use interval arithmetic: the coefficients are intervals of floating-
point numbers. Each atomic operation (addition, multiplication. . . ) is overap-
proximated in the interval domain.

3.1 Cholesky Decomposition

Recall that the SDP solver gives us an inequality of the form
r∑
i=0

αiAi � 0, and

candidate coefficients (αi).
We translate each matrix and coefficient into the interval domain, and sum

them up in interval arithmetic so that the soundness of the result does not
depend on the floating-point computation of the linear expression.

Then, we compute the Cholesky decomposition of the resulting matrix in
interval arithmetic. That is, we decompose [16] the matrix A into A = LDLT

where D is an interval diagonal matrix and L a (non interval) lower triangular
matrix with ones on the diagonal. Checking that D has only positive coefficients
implies that A is definite positive.

3.2 Practical Aspects of the Ellipsoidal Operations

3.2.1 The Precision Issue.

The limitation in the precision of the computations makes us unable to actually
test whether a matrix is semidefinite positive: we can only decide when a matrix
is definite positive “enough”. For instance, standard libraries1 fail at deciding
that the null matrix 0 is semidefinite positive.

It means that for all the operations and verifications, we have to perform
additional overapproximations in addition to those made by the SDP solver,
such as multiplying the ratio of the ellipsoid by a number (1 + ε). Moreover,
in the verification of LMI’s, it can prove useful to explore the neighborhood

1E.g mpmath[16]

6



αi ± ε > 0 of the parameters (αi). As Roux and Garoche write in [7]: “Finding
a good way to pad equations to get correct results, while still preserving the
best accuracy, however remains some kind of black magic.”

3.2.2 Complexity Results.

From the complexity results of Porkolab and Khachiyan, the resolution of an
LMI with m terms in dimension n has a complexity of O(mn4) + nO(min(m,n2))

[13]. Hence the complexity of the abstract operations is polynomial as a function
of the dimension n (i.e., the number of variables), with a degree almost always
smaller than 4 (for most operations, m ≤ 4). The complexity of the Cholesky
decomposition can be directly computed and is O(n3).

4 Conic Extrapolation

Now that the ellipsoidal operations are well defined, we can describe the con-
struction of the conic extrapolation. The goal is to analyze variable transforma-
tions when the ellipsoidal radius evolves (sub-)linearly in the value of the loop
counters.

Let us have numerical variables x = (x1, . . . , xn) and loop counters y =
(y1, . . . , yk), we want to control the evolution of x depending on the counters y,
which are expected to be monotonically increasing.

Inspired by the ellipsoidal constraints, we can use intersections of linear
inequalities and a quadratic constraint of the form:

Definition 2 (Conic extrapolation). Let q be a definite positive quadratic form
(that is, there is a matrix Q � 0 such that ∀x ∈ Rn, q(x) = xTQx), c ∈ Rn,
and for i ∈ J1, kK, βi > 0, δi ∈ Rn, λi ∈ R, and bi a boolean value. We define
the ellipsoidal cone:

Con((q, c), (βi, δi, λi, bi)1≤i≤k) =

{(x, y) ∈ Rn × Rk|∀i ∈ J1, kK, yi ≥ λi ∧
∀i ∈ J1, kK, (bi ∨ (yi = λi)) ∧

q(x− c−
k∑
i=1

(yi − λi)δi) ≤ (

k∑
i=1

βi(yi − λi) + 1)2}

Let Q be the matrix associated with q, Ell(Q, c) is the ellipsoidal base of the
cone. The λi ∈ R are the base levels of the cone, that is the minimum values of
the loop counters (usually zero). The δi ∈ Rn are the directions toward which
the cone is “leaning” (for instance, with a single loop iterating x← x + 1, we
would want δ to be equal to 1). The βi ∈ R determine the slope of the cone in
each dimension. The bi are boolean values stating, for each dimension, whether
an extrapolation has been made in this dimension. That is, do we consider only
the (x, y) with yi = λi (case bi = False) or all those with yi ≥ λi and verifying
the other conditions (case bi = True).
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Figure 1: Example for p = 1, k = 1.

4.1 Conditions of Inclusion

We need to be able to test the inclusion of two cones. The following theorem
shows that this inclusion can be reframed as conditions that can be verified with
an SDP solver.

Theorem 2. If we consider two cones C = Con((q, c), (βi, δi, λi, bi)1≤i≤k) and
C ′ = Con((q′, c′), (β′i, δ

′
i, λ
′
i, b
′
i)1≤i≤k), then C ⊂ C ′ if and only if

(i) ∀i ∈ J1, kK, λ′i ≤ λi and λi > λ′i ⇒ b′i

(ii) Ell(q, c) ⊂ Ell

 q′

(1 +
k∑
i=1

β′i(λi − λ′i))2
, c′ +

k∑
i=1

(λi − λ′i)δ′i


(iii) ∀i ∈ J1, kK, bi ⇒

(
b′i and β′i

2 ≥ max
u∈Rn,q(u)≤1

q′(βiu+ δi − δ′i)
)

To prove this theorem, we first consider the case when the two cones have
the same base levels. That is, we reduce it to the case when all the λi’s are
equal to 0.

Lemma 1. If we consider two cones C = Con((q, c), (βi, δi, 0, bi)1≤i≤k) and
C ′ = Con((q′, c′), (β′i, δ

′
i, 0, b

′
i)1≤i≤k), then C ⊂ C ′ if and only if

(i) Ell(q, c) ⊂ Ell(q′, c′)

(ii) ∀i ∈ J1, kK, bi ⇒
(
b′i and β′i

2 ≥ max
u∈Rn,q(u)≤1

q′(βiu+ δi − δ′i)
)

The proof of these two results is postponed to the end of the section.
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4.2 Test of Inclusion

Theorem 2 enables us to build a sound test of inclusion between two cones C
and C ′. Condition (i) can be directly tested. We can use the procedure of the
previous section to test the ellipsoidal inclusion of condition (ii).

Note that in practice, the test of inclusion will be used (during widening
iterations) on cones with the same ellipsoidal base. In these cases, we do not
want the overapproximations of the SDP solver to reject the inclusion. Therefore
we should directly test whether the bases (Q, c) and the λi’s are equal (as
numerical values) and answer True for the test of base inclusion in this case.

To perform a sound test on the subcondition of (iii):

β′i
2 ≥ max

u∈Rn,q(u)≤1
q′(βiu+ δi − δ′i)

we can compute an overapproximation of M = maxu∈Rn,q(u)≤1 q
′(βiu+ δi − δ′i)

From Theorem 1, we know that

M = 1 + min
s,t∈R

{
t | s ≥ 0 and sF (

Q

β2
i

, 0) + tEn+1 � F (Q′, δ′i − δi)
}

So for any feasible solution (s, t) of this SDP problem, 1 + t is a sound overap-
proximation of M .

4.3 Affine Operations on Cones

4.3.1 Counter Increment.

The abstract counterpart of a statement yi ← yi + v for some value v, is the
operation λi ← λi + v: after the statement, the constraint is verified for yi − v,
and making this change in Definition 2 leads to the new value of λi. To have a
sound result, we can compute the sum in interval arithmetic, and take the lower
bound. Note that, in general, the loop counters are integer valued. In that case,
the value can be computed exactly.

4.3.2 Affine Transformations.

We want to have a sound counterpart for the affine assignment x ← Ax + b
where A is a matrix and b a vector. Let us fix the values of (yi)1≤i≤k and note

R = (1 +
k∑
i=1

βi(yi − λi)) and ĉ = c+
k∑
i=1

(yi − λi)δi. Let Q

be the matrix of q. We first want to find (Q′, c′) such that we have the inclusion

{Ax + b|x ∈ Ell( QR2 , ĉ)} ⊂ Ell(Q
′

R2 , c
′). By symmetry, we can set c′ = Aĉ + b.

Thus, by doing the same calculations as in Sect.2.3, we have

{Ax+ b|x ∈ Ell(
Q

R2
, ĉ)} ⊂ Ell(

Q′

R2
, c′) ⇐⇒ Q � ATQ′A

The last condition does not depend on the yi’s, so for any quadratic form q′

whose matrix Q′ verifies Q � ATQ′A (which is an SDP equation, we can add
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the conditions of volume minimization of (1), and Q′ � 1
ε In with ε small enough,

to ensure numerical convergence), we have

{(Ax, y)|(x, y) ∈ Con((q, c), (βi, δi, λi, bi)1≤i≤k)} ⊂
Con((q′, Ac), (βi, Aδi, λi, bi)1≤i≤k)

As in the case of ellipsoidal assignments, Ac + b and Aδi are computed in
floating-point arithmetic. Hence once they are computed, we have to ensure
that the resulting numerical cone contains the formally defined cone, i.e. we
need to verify the inclusion of ellipsoidal bases with (3) and the procedure
described in Sect.2.3. We also need to verify the conic inclusion, i.e. the fact
that β′i ≥ βi+

√
q′(Aδi − δ′i), where β′i and δ′i are the parameters of the resulting

cone. So we may have to update the parameters and verify the inequalities in a
sound manner.

4.4 Addition and Removal of Counters

When the analyzer enters a new loop, it needs to take into account the previous
constraint and add a dependency on the current loop counter yi. Moreover,
when it exits a loop, it needs to build a new constraint overapproximating the
previous one that does not involve the counter yi.

Ellipsoidal constraints can be seen as conic constraints with k = 0. Hence
we study the problem of adding and removing counters to a conic constraint
Con((q, c), (βi, δi, λi, bi)1≤i≤k).

4.4.1 Adding a Counter.

Let yk+1 be the counter we want to add. Let λk+1 be the minimal value of the
counter inferred at this point. We set βk+1 = 0, δk+1 = 0 and bk+1 = True if
the value of yk+1 at this point of the analysis is not known precisely, else if we
know that yk+1 = λk+1, then bk+1 = False.

That gives us the constraint Con((q, c), (βi, δi, λi, bi)1≤i≤k+1).

Proof. It is immediate from Definition 2 and the distinction made on what we
know about yi, that this constraint overapproximates the set of reachable (x, y)
at this point.

4.4.2 Removing a Counter.

We now want to remove the counter yk from the conic constraint, provided
that we know that yk ∈ [λk,M ] with M < +∞ (note that if it happens that
bk = False, then M = λk).

Theorem 3. Let C = Con((q, c), (βi, δi, λi, bi)1≤i≤k+1). Then C is convex and
we have

C|yk∈[a,b] = C ∩ {(x, y)|yk ∈ [a, b]} = Conv(C ∩ {(x, y)|yk = a ∨ yk = b}).

where we suppose a ≥ λk and where Conv(X) is the convex hull of X.

10



Figure 2: Removing the counter yk, hence projecting along its direction.

Proof. Up to translation, we can assume that ∀i ∈ J1, kK, λi = 0. If a = b, it
is immediate. We suppose a < b. Then, if Q is the matrix of q, let S be the
inverse of its square root (S−2 = Q). We have

(x, y) ∈ C ⇐⇒ q(x− c−
k∑
i=1

yiδi) ≤ (1 +

k∑
i=1

βiyi)
2

⇐⇒ ∃u ∈ Rp, ||u||2 ≤ 1, x− c−
k∑
i=1

yiδi = (1 +

k∑
i=1

βiyi)Su

⇐⇒ ∃u ∈ Rp, ||u||2 ≤ 1, x =
yk − a
b− a

xb + (1− yk − a
b− a

)xa

where xb = (c+

k−1∑
i=1

yiδi + (1 +

k−1∑
i=1

βiyi)Su+ b(δk + βkSu))

xa = (c+

k−1∑
i=1

yiδi + (1 +

k−1∑
i=1

βiyi)Su+ a(δk + βkSu))

From the previous equivalences, we have za = (xa, y1, . . . , yk−1, a) ∈ C and
zb = (xb, y1, . . . , yk−1, b) ∈ C. Moreover (x, y) = yk−a

b−a zb+ (1− yk−a
b−a )za.

Let πyk be the projection along yk. Since convexity and barycenters are
preserved up to projections, πyk(C|yk∈[a,b]) = Conv(πyk(C|yk=a)∪ πyk(C|yk=b)).
So, by a direct calculation

πyk(C|yk=a) = Con((
q

(1 + βk(a− λk))2
, c+ (a− λk)δk),

(
βi

1 + (a− λk)βk
, δi, λi, bi)1≤i≤k−1)

We have a similar equality for πyk(C|yk=b), hence we just have to compute
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the join (πyk(C|yk=a)
⊔

Con πyk(C|yk=b)), which is an overapproximation of the
convex hull of the union.

However, we have to implement this operation such that it is sound when
computed in floating-point arithmetic. Via affine transformation, we can soundly
compute an ellipsoidal base Ell(q∗, c∗) such that{

q(x− (c+ (a− λk)δk)) ≤ (1 + βk(a− λk))2

q(x− (c+ (b− λk)δk)) ≤ (1 + βk(b− λk))2
⇒ q∗(x− c∗) ≤ 1

Then, for any i ∈ J1, k − 1K such that bi = True, if we note β∗i and δ∗i the
parameters of the resulting cone, in order to have an inclusion of C|yk=a and
C|yk=b in C∗, we need to establish by Theorem 2 that:

β∗2i ≥ max
q(u)

(1+βk(a−λk))2
≤1
q∗(

βi
1 + (a− λk)βk

u+ δi − δ∗i )

β∗2i ≥ max
q(u)

(1+βk(b−λk))2
≤1
q∗(

βi
1 + (b− λk)βk

u+ δi − δ∗i )

And since from our hypothesis on Ell(q∗, c∗) we know that q � q∗, we can just
set δ∗i = δi and the condition becomes β∗i ≥ βi. So we can just define β∗i = βi,

hence the resulting cone after the removing of the kth counter is

Con((q∗, c∗), (βi, δi, λi, bi)1≤i≤k−1)

4.5 A Widening Operator

Let C = Con((q, c), (βi, δi, λi, bi)1≤i≤k) and C ′ = Con((q′, c′), (β′i, δ
′
i, λ
′
i, b
′
i)1≤i≤k).

We suppose that ∀i ∈ J1, kK, λi ≤ λ′i and ∃i ∈ J1, kK, λi < λ′i.
We want to define a widening operator

`
over cones. The intuitive idea

is that if C “starts strictly below” C ′ (cf. the conditions on the λi’s), then
C∗ = C

`
C ′ has the same ellipsoidal base as C, but its opening has been

“widened” to contain C ′. The decision of only changing the opening and the
orientation of the cone (i.e., to change only the βi’s and δi’s) relies on the
hypothesis that the relative shift of C ′ from C has good chances to be reproduced
again. Hence the name of “conic extrapolation”.

4.5.1 Definition of
`
p.

More formally, we first study the special case in which we know that Ell(q′, c′) ⊂
C and we define a partial widening operator

`
p.

Let C∗ = C
`
p C
′ = Con((q, c), (β∗i , δ

∗
i , λi, b

∗
i )1≤i≤k). We note (i), (ii), (iii)

(resp. (i′), (ii′), (iii′)) the conditions of Theorem 2 relative to the inclusion
C ⊂ C∗ (resp. C ′ ⊂ C∗). By construction of C∗, we already have (ii) and with
our hypothesis Ell(q′, c′) ⊂ C ′, we just need to verify C ⊂ C∗ to have (ii′). We
can define ∀i ∈ J1, kK, b∗i = (bi ∨ b′i ∨ λi < λ′i), which gives us (i) and (i′).

12



Finally to verify (iii) and (iii′), we only need to define the β∗i ’s and δ∗i ’s
such that

∀i ∈ J1, kK,


bi ⇒ β∗i

2 ≥ max
q(u)≤1

q(βiu+ δi − δ∗i )

b′i ⇒ β∗i
2 ≥ max

q′(u)≤1
q(β′iu+ δ′i − δ∗i )

which we overapproximate by a triangle inequality for the norm defined by q:

∀i ∈ J1, kK,


bi ⇒ β∗i ≥ βi +

√
q(δi − δ∗i )

b′i ⇒ β∗i ≥ β′ir +
√
q(δ′i − δ∗i )

where r ≥ min{ρ > 0| q
′

ρ2
� q}

With the SDP methods of the first section, we can compute an overapprox-
imating r. For each i, if none of bi or b′i is True, then from our hypothesis
Ell(q′, c′) ⊂ C ′, b∗i = False and we do not have to give values to either βi or δi.
If only bi (resp. b′i) is True, then we define δ∗i = δi and β∗i = βi (resp. δ∗i = δ′i
and β∗i ≥ rβ′i).

If bi = b′i = True, we want to minimize max(βi+
√
q(δi − δ∗i ), β′ir+

√
q(δ′i − δ∗i )).

If we fix the q-distance
√
q(δi − δ∗i ), we want to minimize the q-distance

√
q(δ′i − δ∗i ).

With this geometrical point of view, we see that the optimal δ∗i is a barycenter
of δi and δ′i.

So we define δ∗i = µδi+(1−µ)δ′i where we want to find µ ∈ [0, 1] minimizing

max(βi +
√
q(δi − µδi − (1− µ)δ′i), β

′
ir +

√
q(δ′i − µδi − (1− µ)δ′i)) =

max(βi + (1− µ)
√
q(δi − δ′i), β

′
ir + µ

√
q(δi − δ′i)).

Hence, we can exactly (up to floating-point approximations) compute µ, define
δ∗i and then β∗i . This construction of (β∗i , δ

∗
i , b
∗
i )1≤i≤k ensures that C,C ′ ⊂ C∗

and defines
`
p.

4.5.2 Definition of
`

.

We now study the general case in which the only assumption made is that
∀i ∈ J1, kK, λi ≤ λ′i and ∃i ∈ J1, kK, λi < λ′i.

We define a cone C+ = Con((q, c), (β+
i , δ

+
i , λi, b

+
i )1≤i≤k), which contains the

ellipsoidal base of the two cones. The definition (with q, c and the λi) ensures

the inclusion of the ellipsoidal base of C. Let R = 1 +
k∑
i=1

β+
i (λ′i − λi) and

∆ =
k∑
i=1

δ+i (λ′i − λi).

We define ∀i ∈ J1, kK, b+i = (λi < λ′i). Let r = min{ρ > 0| qρ2 � q′},
if we have Ell( qr2 , c

′) ⊂ Ell( q
R2 , c + ∆) then Ell(q′, c′) ⊂ Ell( q

R2 , c + ∆) and
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from the definitions of the b+i ’s and Definition 2, we would have Ell(q′, c′) ×
{(λ′1, . . . , λ′k)} ⊂ C+. To get this result, we need:

Ell(
q

r2
, c′) ⊂ Ell(

q

R2
, c+ ∆) ⇐⇒ {q(c′ − c−∆) ≤ (R− r)2} ∧ {R ≥ r}

If the transformations applied to the cone are affine, the shift can be seen as
the difference between centers. So we choose to define ∆ = c′ − c. Then we
choose the minimal possible value of R to have a cone as tight as possible: once
the δi’s corresponding to ∆ are computed in floating-point arithmetic, we can
define an upper bound on

√
q(c′ − c−∆) + r and define R accordingly, so that

the above inequality is verified.
These definitions of ∆ and R must be implemented in terms of β+

i and δ+i .
Since we ensured that there is at least one i such that (λ′i − λi) 6= 0, there is
always a solution. If only one i fits this criterion the solution is unique, otherwise
a choice must be made on how to weight the different variable.

This uncertainty can be easily explained: recall that in real programs, only
one loop counter is increased at a time, so we know what causes the change in
our constraint. This is not the case if many loop counters are increased at the
same time.

Finally, this definition of C+ allows us to define the widening operator
`

by:

C
`
C ′ =

(
C

`
p C

+
)`

p C
′. Note that the assumptions of

`
p are verified since

C and C+ have the same ellipsoidal base, and C+, hence C
`
p C

+, contains the
base of C ′.

To ensure the convergence of the widening sequence in the cases described
in Sect. 5, we can use a real widening operator on the βi’s that sets them to
+∞ after a certain number of steps, for instance.

Figure 3: Example showing the various cones involved in the definition of
`

:
C1 in black, C2 in blue, C+ in green and C1

`
C2 in red.
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4.6 Proof of the Characterization of Conic Inclusion

Proof of Lemma 1.
• We first prove that (i) ∧ (ii)⇒ C ⊂ C ′. From (i), we know that
∀u ∈ Rp, q(u) ≤ 1⇒ q′(u+c−c′) ≤ 1. Thus, for (x, y) ∈ Rp×Rk+ such that q(x−

c−
k∑
i=1

yiδi) ≤ (1+
k∑
i=1

βiyi)
2, we define ν = (1+

k∑
i=1

βiyi) ≥

√
q(x− c−

k∑
i=1

yiδi)

and u = 1
ν (x− c−

k∑
i=1

yiδi). We have q(u) ≤ 1.

q′(x− c′ −
k∑
i=1

yiδ
′
i) = q′

(
u+ (c− c′) + (ν − 1)u+

k∑
i=1

yi(δi − δ′i)

)

≤

(√
q′(u+ c− c′) +

k∑
i=1

yi

√
q′(βiu+ δi − δ′i)

)2 (4)

So if bi = False then yi = 0, hence yi
√
q′(βiu+ δi − δ′i) ≤ yiβ′i, and from (ii), if

bi = True, then we have the same inequality since q(u) ≤ 1. So this inequality
is true for all i ∈ J1, kK.

Thus, we have q′(x− c′ −
k∑
i=1

yiδ
′
i) ≤ (1 +

k∑
i=1

β′iyi)
2 and ∀i ∈ J1, kK we have

yi ≥ 0 and from (ii), yi > 0⇒ bi ⇒ b′i. So (x, y) ∈ C ′. So C ⊂ C ′.
• Now we prove that C ⊂ C ′ ⇒ (i) ∧ (ii). It is obvious that C ⊂ C ′ ⇒ (i)

by taking the intersections of the cones with the set {(x, 0) ∈ Rp+k}.
If ∃i ∈ J1, kK s.t. b′i = False and bi = True, then there exist a point (x, y) of

C with yi > 0, so (x, y) /∈ C ′ and C 6⊂ C ′.
If ∃i ∈ J1, kK s.t. bi = True and β′i < maxq(u)≤1

√
q′(βiu+ δi − δ′i), then let

us take u ∈ Rp such that q(u) ≤ 1 and β′i <
√
q′(βiu+ δi − δ′i). We define

x(t) = (1 + βit)u+ tδi + c.

For any t ≥ 0, q′(x(t)− c′− tδ′i) ≥
(√

q′(u+ c− c′)− t
√
q′(βiu+ δi − δ′i)

)2
Since β′i <

√
q′(βiu+ δi − δ′i), and from the previous inequality, we have

for t big enough, q′(x(t) − tδ′i − c′) > (1 + β′i)
2. By a direct computation

q(x(t) − tδi − c) ≤ (1 + βit)
2. And since bi = True, we have for y(t) such that

y(t)i = t and y(t)j 6=i = 0, (x(t), y(t)) ∈ C, (x(t), y(t)) /∈ C ′ so C 6⊂ C ′.
We have proven ¬(i) ∨ ¬(ii) ⇒ C 6⊂ C ′, so we finally have (i) ∧ (ii) ⇐⇒

C ⊂ C ′.

Proof of Theorem 2. Since (c, (λi)1≤i≤k) ∈ C, it is clear that (i) is a necessary
condition. Moreover, C ⊂ {(x, y) ∈ Rp+k|∀i ∈ J1, kK, yi ≥ λi} =: Orthλ,
therefore C ⊂ C ′ ⇐⇒ C ⊂ C ′ ∩Orthλ ⇐⇒ C ⊂ C ′ ∩Orthλ ∧(i).

Directly from Definition 2, we have for R = (1 +
k∑
i=1

β′i(λi − λ′i)) the impli-

cation (i)⇒ C ′ ∩Orthλ = Con(( q
′

R2 , c
′+

k∑
i=1

(λi−λ′i)δ′i), (
β′i
R , δ

′
i, λi, b

′
i)1≤i≤k). So
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up to translation, we can reduce this case to λi = λ′i = 0 and apply Lemma 1.

C ⊂ C ′ ⇐⇒ C ⊂ C ′ ∩Orthλ ∧(i)

⇐⇒ (i) ∧ Ell(q, c) ⊂ Ell(
q′

R2
, c′ +

k∑
i=1

(λi − λ′i)δ′i)

∧ ∀i ∈ J1, kK, bi ⇒

(
b′i and

β′i
2

R2
≥ max
q(u)≤1

q′

R2
(βiu+ δi − δ′i)

)
⇐⇒ (i) ∧ (ii) ∧ (iii)

5 Application and Convergence

1: x← 0 ∈ Rn
2: for y from 0 to ∞ do
3: pick i ∈ J1, nK
4: pick ε ∈ {−1, 1}
5: xi ← xi + ε

n 2 4 6 8 10 12 14 16
Ell. cones 3s 7s 19s 49s 1m56s 4m16s 8m 12m
Polyhedra <0.1s <0.1s 0.3s 2.5s 54s 47m >1h >1h

Figure 4: Example of a program and its average analysis time on a 2 GHz
CPU. Ellipsoidal cones have been prototyped3 in Python using NumPy[17],
CVXOPT[15], mpmath[16]. The Apron[18] C library has been used for polyhe-
dra.

In the definition of the conic extrapolation, we did not describe how to
choose the ellipsoidal base. For instance, it is possible to get an ellipsoidal
shape by computing some iterates of the loop. This seems to work well in the
case of programs composed of loops and nondeterministic counter increments:
the iterations capture in which direction the counters globally increase (Fig. 4).
Since the diameter of the set containing the numerical variables grows linearly,
any cone will be overapproximating for β big enough.

5.1 Switched Linear Systems

However, the picture is not as nice if we add linear transformation. This is
the case, for instance, for switched linear systems in control theory (Fig.5): if
the quadratic form associated with the ellipsoid is not a Lyapunov function of
the linear part of the system (of the matrices Ai in Fig.5), then the growth of
its radius is exponential in the loop counters, and cannot be captured by our
conic extrapolation. So if Q is the matrix of the ellipsoidal base of the cone, the
Lyapunov conditions should be verified simultaneously : ∀i, Q − ATi QAi � 0.

3The prototype Python code and details about benchmarks are available on
http://www.eleves.ens.fr/home/oulamara/ellcones.html
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1: x← 0 ∈ Rn
2: (Ai, bi)1≤i≤k
3: where bi ∈ Rn, Ai ∈Mn(R)
4: for y from 0 to ∞ do
5: i← rand(1, n)
6: x← Aix+ bi

Benchmark 1 2 3 4 5 6 7
Ell. Cones 1s 2s 2s 2s 1.8s 1.2s 1.3s
Polyhedra 3.2s 16.6s 18s 24s >1h >1h 2m35s

Figure 5: The structure of a Switched Linear System and some benchmarks.
Experimental conditions are the same as in Fig. 4. Except for Benchmarks 1
and 2, the resulting polyhedron is trivial.

This is not always possible, but one can use the SDP solver to try to find a
suitable Q. Note that the identity matrix is not stable in the sense of control
theory and should not be included in the search of Q. When Q verifies the
Lyapunov conditions, it is easy to show that for βi large enough, the cone will
be invariant during loops iterations.

5.2 Proof of Convergence with the Lyapunov Condition

Now we show the converse of the assertion of the previous paragraph: if q is a
Lyapunov function for the matrix A and b is a vector, then for β large enough
C = Con((q, c), (β, δ, λ,True)) is stabilized by the iteration of x← Ax+ b.

Proof. Up to translation, we show the result for λ = 0. We know than for any
x ∈ C, q(x − c − yδ) ≤ (βy + 1)2 and by the Lyapunov condition, there exist
ε > 0 such that ∀x, q(Ax) ≤ (1− ε)q(x).

Let η = 1−
√

1− ε and M = (A− Id)c+ b− δ. We have√
q(Ax+ b− c− (y + 1)δ) =

√
q(A(x− c− yδ) + (A− Id)(c+ yδ) + b− δ)

≤
√

1− ε(βy + 1) +
√
q((A− Id)(c+ yδ) + b− δ)

≤ βy + 1 +
√
q(M + y(A− Id)δ)− ηβy

≤ βy + 1 +
√
q(M) + y(

√
q((A− Id)δ)− ηβ)

So for β large enough (β >
√
q(M) and β >

√
q((A− Id)δ)/η), we have

q(Ax+ b− c− (y + 1)δ) ≤ (β(y + 1) + 1)2.

6 Concluding Remarks and Perspectives

We proposed an abstract interpretation framework based on ellipsoidal cones to
study systems with (sub-)linear growth in loop counters. The aim of this work
is twofold: to build an extension of the formal verification of linear systems,
and to devise a framework that can be used outside the context of digital filters.
Indeed, only the choice of the ellipsoidal base of the cone has to deal with control
theory considerations.
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The next step is obviously to go beyond the prototype and have a robust
implementation to test this framework on actual systems. This will involve a
research on how to accurately tune and use the SDP solver, how to deal with
precision issues.

The main tools are the SDP solver and the SDP duality to check the sound-
ness of the results of operations via LMI’s. However, we are not bound to use
SDP solvers to compute these results, and exploring other options might speed
up the analysis.

It would also be interesting to generalize this framework to switched linear
systems that are more complex than those studied above. An example is the
analysis in [14].
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