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Abstract— Recently, there is a growing interest in the spectral approximation by the Prolate
Spheroidal Wave Functions (PSWFs) ψn,c, c > 0. This is due to the promising new contributions
of these functions in various classical as well as emerging applications from Signal Processing, Geo-
physics, Numerical Analysis, etc. The PSWFs form a basis with remarkable properties not only for
the space of band-limited functions with bandwidth c, but also for the Sobolev space Hs([−1, 1]).
The quality of the spectral approximation and the choice of the parameter c when approximating a
function in Hs([−1, 1]) by its truncated PSWFs series expansion, are the main issues. By considering
a function f ∈ Hs([−1, 1]) as the restriction to [−1, 1] of an almost time-limited and band-limited
function, we try to give satisfactory answers to these two issues. Also, we illustrate the different
results of this work by some numerical examples.

2010 Mathematics Subject Classification. Primary 42C10, 65L70. Secondary 41A60, 65L15.
Key words and phrases. Prolate spheroidal wave functions, eigenvalues and eigenfunctions estimates,
spectral approximation, Sobolev spaces.

1 Introduction

Let f be a function that belongs to some Sobolev space Hs(I), s > 0, I = [−1, 1]. The main issue
of this work concerns the speed of convergence in L2(I) of its expansion in some PSWF basis.

Let us recall that, for a given value c > 0, called the bandwidth, PSWFs (ψn,c)n≥0 constitute an
orthonormal basis of L2([−1,+1]) of eigenfunctions of the two compact integral operators Fc and
Qc = c

2πF
∗
cFc, defined on L2(I) by

Fc(f)(x) =

∫ 1

−1

ei c x yf(y) dy, Qc(f)(x) =

∫ 1

−1

sin c(x− y)

π(x− y)
f(y) dy. (1)

PSWFs are also eigenfunctions of the Sturm-Liouville operator Lc, defined by

Lc(ψ) = − d

d x

[
(1− x2)

dψ

dx

]
+ c2x2ψ, (2)

We call χn(c) the eigenvalues of Lc, and λn(c) the eigenvalues of Qc. The first ones are arranged in
the increasing order, the second ones in the decreasing order 1 > λ0(c) > λ1(c) > · · · > λn(c) > · · · .
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We finally call µn(c) the eigenvalues of Fc. They are given by

µn(c) = in
√

2π

c
λn(c).

By Plancherel identity, PSWFs are normalized so that∫ 1

−1

|ψn,c(x)|2 dx = 1,

∫
R
|ψn,c(x)|2 dx =

1

λn(c)
, n ≥ 0. (3)

We adopt the sign normalization of the PSWFs, given by

ψn,c(0) > 0 for even n, ψ′n,c(0) > 0, for odd n. (4)

A breakthrough in the theory and the computation of the PSWFs goes back to the 1960’s and is
due to D. Slepian and his co-authors H. Landau and H. Pollack. For the classical and more recent
developments in the area of the PSWFs, the reader is referred to the recent books on the subjects
[13, 16]. This paper is a companion paper of [3] and we refer to it for further notations and references.

This question of the quality of approximation has attracted a growing interest while, at the
same time, were built PSWFs based numerical schemes for solving various problems from numerical
analysis, see [4, 5, 6, 12, 14, 17, 20]. In particular, in [4], the author has shown that a PSWF
approximation based method outperforms in terms of spatial resolution and stability of time-step,
the classical approximation methods based on Legendre or Tchebyshev polynomials. The authors of
[6] were among the first to compare the quality of approximation by the PSWFs for different values
of c. In particular, they have given an estimate of the decay of the PSWFs expansion coefficients
of a function f ∈ Hs(I), see also [4]. Recently, in [20], the author studied the speed of convergence
of the expansion of such a function in a basis of PSWFs. We should mention that the methods
used in the previous three references are heavily based on the use of the properties of the PSWFs
as eigenfunctions of the differential operator Lc, given by (2). They pose the problem of the best
choice of the value of the band-width c > 0, for approximating well a given f ∈ Hs(I), but their
answer is mainly experimental. It has been numerically checked in [4, 20] that the smaller the value
of s, the larger the value of c should be.

Our study tries to give a satisfactory answer to this important problem of the choice of the
parameter c. More precisely, we show that if f ∈ Hs(I), for some positive real number s > 0, then
for any integer N ≥ 1, we have

‖f − SNf‖L2(I) ≤ K(1 + c2)−s/2‖f‖Hs(I) +K
√
λN (c)‖f‖L2(I). (5)

Here, SNf =

N∑
k=0

< f, ψn,c > ψn,c and K is a constant depending only on s. With this expression,

one sees clearly how to distribute a fixed error between that part which is due to the smoothness
of the function and that part which is due to the speed of convergence for the PSWFs. We also
study an L2(I)−convergence rate of the projection SNf to f. This is done by using the decay of
the eigenvalues (λn(c))n as well as estimates of Legendre expansion coefficients of PSWFs and the
decay of Fourier coefficients of PSWFs. We prove an exponential decay rate, given by

|〈eikπx, ψn,c(x)〉| ≤M ′e−an, |k| ≤ n/M, n ≥ max (cM, 3) . (6)

Here, c ≥ 1, M ≥
√

2 and M ′, a > 0 are two positive constants. Under these hypotheses and
notations, our rate of convergence of SNf to f ∈ Hs(I) is given by

‖f − SN (f)‖L2(I) ≤M ′′(1 +N2)−s/2‖f‖Hs +M ′e−aN‖f‖L2 . (7)
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This work is organized as follows. In Section 2, we first give bounds for the moments of the
PSWFs, which we use to improve estimates of the decay of the Legendre expansion coefficients of
the PSWFs. In Section 3, we first consider the quality of approximation by the PSWFs in the set
of almost time and band-limited functions. Then, we combine these results with those of Section
2 and give a first L2(I)−error bound of approximating a function f ∈ Hs(I) by the N−th partial
sum of its PSWFs series expansion. Then, we study a more elaborated error analysis of the spectral
approximation by the PSWFs in the periodic Sobolev space. This is afterwards extended to the usual
Sobolev space Hs(I). These new estimates provide us with a way for the choice of the appropriate
bandwidth c > 0 to be used by a PSWFs based method for the approximation in a given Sobolev
space Hs(I). In Section 4, we provide the reader with some numerical examples that illustrate the
different results of this work.

We will frequently skip the parameter c in χn(c) and ψn,c, when there is no doubt on the value
of the bandwidth. We then note q = c2/χn and skip both parameters n and c when their values are
obvious from the context.

2 Decay estimates of the Legendre expansion coefficients

In this paragraph, we give bounds for the Legendre expansion coefficients of PSWFs, which will
be used later and are of general interest. Legendre expansion coefficients of PSWFs have been the
object of many studies, in particular in relation with numerical methods for their evaluation. In
particular, the classical method known as Flammer’s method, [7] that uses the differential operator
Lc, is extensively used to compute the PSWFs and their eigenvalues.

The Legendre expansion of the PSWFs is given by

ψn(x) =
∑
k≥0

βnkPk(x). (8)

Recall that ψn has the same parity as n. Hence, the previous Legendre expansion coefficients of the
ψn satisfy βnk = 0 if n and k have different parities.

It is well known that the different expansion coefficients (βnk )k as well as the corresponding
eigenvalues χn are obtained by solving the following eigensystem

(k + 1)(k + 2)

(2k + 3)
√

(2k + 5)(2k + 1)
c2βnk+2 +

(
k(k + 1) +

2k(k + 1)− 1

(2k + 3)(2k − 1)
c2
)
βnk (9)

+
k(k − 1)

(2k − 1)
√

(2k + 1)(2k − 3)
c2βnk−2 = χn(c)βnk , k ≥ 0.

The eigenvalues χn satisfy the following well known bounds

n(n+ 1) ≤ χn ≤ n(n+ 1) + c2. (10)

In the case where q = c2/χn ≤ 1, we have the following less classical bounds

n(n+ 1) + (3− 2
√

2)c2 ≤ χn ≤
(π

2
(n+ 1)

)2

. (11)

The above lower bound has been given in [2] and the upper bound is given in [15]. The previous
inequalities will be needed in different parts of this work.

The decay of the coefficients βnk has been the object of many studies. We give here upper bounds
of the |βnk | with k varying from 0 to a certain order depending on n. Such bounds have been proposed
in [6]. There was a gap in their proof, which has been filled up in the book [13] with some loss in the
results. We improve these estimates that have been proposed by [6], both for the range of k and the
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constant. In view of these results we also prove auxiliary properties, which may be of independent
interest. We first provide bounds for the successive derivatives of ψn at 0. For n = 0, we have proved
in [2] that, for q < 2,

|ψn(0)|2 + χ−1
n |ψ′n(0)|2 ≤ 1. (12)

Recall that either ψn(0) or ψ′n(0) is zero, depending on the parity. The same is valid for higher
derivatives at 0.

Proposition 1. Assume that c2 < χn. Then for any integer k ≥ 0 satisfying k(k + 1) ≤ χn, we
have ∣∣∣ψ(k)

n (0)
∣∣∣ ≤ (

√
χn)k(|ψn(0)|2 + χ−1

n |ψ′n(0)|2)1/2. (13)

Proof. Since ψn,c has same parity as n, then it is sufficient to consider even derivatives or odd
derivatives depending on the parity of n. We assume that n is even and consider k = 2l. The proof
is identical for odd values. By an iterative use of the identity

(1− x2)ψ′′n(x) = 2xψ′n(x) + (c2x2 − χn)ψn(x),

one can easily check that the ψ(k)
n,c(0) = ψ(k)(0) are given by the recurrence relation

ψ(k+2)(0) = (k(k + 1)− χn)ψ(k)(0) + k(k − 1)c2ψ(k−2)(0), k ≥ 0. (14)

Let us show by induction that for a fixed n, ψ(2l)
n,c (0) has alternating signs, that is ψ

(k)
n,c(0)ψ

(k−2)
n,c (0) <

0. Indeed, with ψ(0) > 0, ψ(2)(0) = −χnψ(0) so that the induction hypothesis is fulfilled for
k = 2. Multiplying both sides of (14) by ψ(k)(0), using the assumption that k(k + 1) ≤ χn as well
as the induction hypothesis, one concludes that the induction assumption holds for the order k.
Consequently, we have,∣∣∣ψ(k+2)(0)

∣∣∣ = (χn − k(k + 1))
∣∣∣ψ(k)(0)

∣∣∣+ k(k − 1)c2
∣∣∣ψ(k−2)(0)

∣∣∣ , k ≥ 0. (15)

This may be rewritten as

mk+2 =

(
1− k(k + 1)

χn

)
mk + k(k − 1)

q

χn
mk−2. (16)

The fact that all the m2l are bounded by m0 = ψ(0) = m2 follows at once by induction. For n odd
the proof follows the same lines.

As a consequence of the previous proposition, we have the following corollary concerning the sign
and the bounds of the different moments of the ψn.

Corollary 1. Let c > 0, be a positive real number. We assume that q = c2/χn < 1. Then, for

j(j + 1) ≤ χn, all moments
∫ 1

−1
yjψn(y) dy are non negative and

0 ≤
∫ 1

−1

yjψn(y) dy ≤
(

1

q

)j
|µn(c)|. (17)

Proof. It is sufficient to consider moments of odd order when n is odd and of even order when n is

even. By taking the j−th derivative at zero on both sides of

∫ 1

−1

eicxyψn(y) dy = µn(c)ψn(x), one

gets ∫ 1

−1

yjψn(y) dy = (−i)jc−jµn(c)ψ(j)
n (0). (18)

Since ψ
(j)
n (0) and ψ

(j+2)
n (0) have opposite signs, then the previous equation implies that moments

have the same sign for any positive integer j with j(j + 1) ≤ χn. The inequality (17) follows from
the previous proposition.
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We now study the positivity of βnk for small values of k. Remark that for c = 0 all these
coefficients vanish when k < n. The positivity of βn0 (when n is even) and βn1 (when n is odd)
follows from the fact that

βn0 =
1√
2

∫ +1

−1

ψn(y)dy =
1√
2
|µn(c)|ψn(0), βn1 =

√
3

2

∫ +1

−1

yψn(y)dy = |µn(c)|ψ
′
n(0)

c
. (19)

Lemma 1. Let c > 0, be a fixed positive real number. Then, for all positive integers k, n such that
k(k − 1) + 1.13 c2 ≤ χn(c), we have βnk ≥ 0.

Proof. We recall that the βnk are given by the eigensystem (9). Let us first consider k = 2 (when n
is even) and k = 3 (when n is odd) and compute

βn2 =
3
√

5

2c2

(
χn −

c2

3

)
βn0 , βn3 =

5
√

21

6c2

(
χn − 2− 3c2

5

)
βn1 .

They are positive, assuming that 2 satisfies the condition (resp. 3 satisfies the condition). For k ≥ 2,
taking upper bounds for the fractions as in [6], Equation (9) implies that

2c2

3
√

5
(βnj+2 + βnj−2) ≥ (χn(c)− j(j + 1)− 11c2

21
)βnj . (20)

The constant 1.13 has been chosen so that 1.13 > 4
3
√

5
+ 11

21 . Let us prove by induction that the

sequence βn2j (resp. βn2j+1) is non decreasing for 2j ≤ k (resp. 2j + 1 ≤ k) when the assumption is
satisfied by k. Without loss of generality we assume now that n is even. We have βn2 ≥ βn0 . Next,
by the induction assumption on j, we know that βnj−2 ≤ βnj . We get a contradiction with inequality
(20) if we assume that βnj+2 < βnj . So βnj+2 ≥ βnj . This implies the positivity.

The following proposition provides us with decay rate of the expansion coefficients βnk that we
had in view.

Proposition 2. Let c > 0, be a fixed positive real number. Then, for all positive integers n, k such
that k(k − 1) + 1.13 c2 ≤ χn(c), we have

|βn0 | ≤
1√
2
|µn(c)| and |βnk | ≤

√
5

4π

(
2
√
q

)k
|µn(c)|. (21)

Proof. The first inequality follows from (12) and (19). To prove the second inequality, we first note
that the moments ajk of the normalized Legendre polynomials P k are non-negative (see [1]). They
vanish except for k ≤ j, with k, j of the same parity. Moreover, for j = k, we have

akk =

∫ 1

−1

xkPk(x)dx =

√
π
√
k + 1/2 k!

2kΓ(k + 3
2 )

. (22)

Since xj =

j∑
k=0

ajkPk(x), the moments of the ψn are related to the PSWFs Legendre expansion

coefficients by ∫ 1

−1

xjψn(x) dx =

j∑
k=0

ajkβ
n
k .

Since by the previous lemma, we have βnk ≥ 0, for any 0 ≤ k ≤ j and since the ajk are non negative,
the previous equality implies that

βnj ≤
1

ajj

∫ 1

−1

xjψn(x) dx ≤ 1

ajj

(
1

q

)j/2
|µn(c)|. (23)
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The last inequality follows from the previous corollary. On the other hand, we have

ajj =

√
π
√
j + 1/2j!

2jΓ(j + 3/2)
=

√
πj!

2j
√
j + 1/2Γ(j + 1/2)

.

Moreover, it is well known that j1−s ≤ Γ(j + 1)

Γ(j + s)
≤ (j + 1)1−s. Hence, we have

1

ajj
≤ 2j√

π

√
1 +

1

2j
≤ 2j

√
5

4π
, ∀ j ≥ 1. (24)

By combining (23) and (24), one gets the second inequality of (21).

Remark 1. The condition k(k−1)+1.13c2 ≤ χn(c) of the previous proposition can be replaced with
the following more explicit condition. Consider real numbers A,B > 1 with A2 + B2 ≥ A2B2. By
using (11), one concludes that if n ≥ cA and k ≤ n/B, then the conditions for (21) are satisfied. In
particular, one may take A = B ≥

√
2.

In order to get from (21), a quantitative decay estimate for the Legendre expansion coefficients
(βnk )k, one needs some precise behaviour as well as the decay rate of the eigenvalues µn(c) or λn(c).
These issues have been the subjects of many theoretical and numerical studies. To cite but a few
[3, 9, 10, 19, 21]. In particular in [3], it has been shown that

λn(c) ≤ A(n, c)

(
ec

2(2n+ 1)

)2n+1

, A(n, c) = δ1n
δ2

(
c

c+ 1

)−δ3
e+π2

4
c2

n . (25)

As a consequence of the previous inequality, we have the following lemma borrowed from [3].

Lemma 2. There exist constants a > 0 and δ ≥ 1 such that, for c ≥ 1 and n > 1.35 c, we have

λn(c) ≤ δe−an. (26)

3 Quality of the spectral approximation by the PSWFs

In this section, we first briefly recall the quality of approximation of band-limited and almost band-
limited functions by the classical PSWFs, ψn that are concentrated on [−b, b], for some b > 0. These
results are mainly due to Landau, Pollack and Slepian, see [11, 18]. For the sake of convenience, we
also give some hints to the proofs of these results. Then, we show how to extend this study to the
case of periodic and non periodic Sobolev space Hs([−1, 1]), s > 0.

3.1 Approximation of almost time and band-limited functions

In this paragraph, ‖ · ‖2 denotes the norm in L2(R). We show that the set {ψn(x), n ≥ 0} is well
adapted for the representation of almost time-limited and almost band-limited functions, which are
defined as follows.

Definition 1. Let T = [−a,+a] and Ω = [−b,+b] be two intervals. A function f , which we assume
to be normalized in such a way that ‖f‖2 = 1, is said to be εT−concentrated in T and εΩ−band
concentrated in Ω if ∫

T c
|f(t)|2 dt ≤ ε2T ,

1

2π

∫
Ωc
|f̂(ω)|2 dω ≤ ε2Ω.
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Up to a re-scaling of the function f , we can always assume that T = [−1, 1] and Ω = [−c,+c],
with c = ab. Indeed, for f that is εT−concentrated in T = [−a,+a] and εΩ−band concentrated in
Ω = [−b,+b], the normalized function g(t) =

√
af(at) is εT−concentrated in [−1,+1] and εΩ−band

concentrated in [−ab,+ab].
Before stating the theorem, let us give some notations. For f ∈ L2(R), we consider its expansion

f =
∑
n≥0 anψn,c in L2([−1,+1]). Due to the normalization of the functions ψn,c given by (3), the

following equality holds, ∫ +1

−1

|f(t)|2dt =
∑
n≥0

|an|2. (27)

We call SN,cf, the N -th partial sum, defined by

SN,cf(t) =
∑
n<N

anψn,c(t). (28)

We write more simply SNf when there is no ambiguity. In the next lemma, we prove that SNf
tends to f rapidly when f belongs to the space of band-limited functions. This statement is both
very simple and classical, see for instance [11, 18].

Lemma 3. Let f ∈ Bc be an L2 normalized function. Then∫ +1

−1

|f − SNf |2dt ≤ λN (c). (29)

Proof. Since the set of functions ψn,c is also an orthogonal basis of Bc, the function f may be written
on R as f =

∑
n≥0 anψn,c, with ∫

R
|f(t)|2dt =

∑
n≥0

|λn(c)|−1|an|2. (30)

The two expansions coincide on [−1,+1], and, from (30) applied to f − SNf , it follows that∫ +1

−1

|f − SNf |2dt ≤ sup
n≥N
|λn(c)|

∑
n≥N

|λn(c)|−1|an|2.

We use the fact that the sequence |λn(c)| decreases and (30) to conclude.

Next we define the time-limiting operator PT and the band-limiting operator ΠΩ by:

PT (f)(x) = χT (x)f(x), ΠΩ(f)(x) =
1

2π

∫
Ω

eixω f̂(ω) dω.

The following proposition provides us with the quality of approximation of almost time- and band-
limited functions by the PSWFs.

Proposition 3. If f is an L2 normalized function that is εT−concentrated in T = [−1,+1] and
εΩ−band concentrated in Ω = [−c,+c], then for any positive integer N, we have(∫ +1

−1

|f − SNf |2dt
)1/2

≤ εΩ +
√
λN (c) (31)

and, as a consequence,
‖f − PTSNf‖2 ≤ εT + εΩ +

√
λN (c). (32)
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More generally, if f is an L2 normalized function that is εT−concentrated in T = [−a,+a] and
εΩ−band concentrated in Ω = [−b,+b] then, for c = ab and for any positive integer N, we have

‖f − PTSN,c,af‖2 ≤ εT + εΩ +
√
λN (c) (33)

where SN,c,a gives the N -th partial sum for the orthonormal basis 1√
a
ψn,c(t/a) on [−a,+a].

Proof: We first prove (31) by writing f as the sum of ΠΩf and g. Remark first that
∫ +1

−1
|g −

SNg|2dt ≤ ‖g‖2 ≤ εΩ. We then use Lemma 3 for the band-limited function ΠΩf to conclude. The
rest of the proof follows at once.

Remark 2. Let f be a normalized L2 function that vanishes outside I and we assume that f ∈
Hs(R). Then f gives an example of 0-concentrated in I and εc-band concentrated in [−c,+c], with

εc ≤Mf/c
s and M2

f =
1

2π

∫
|f̂(ξ)|2|ξ|2sdξ.

3.2 Approximation by the PSWFs in Sobolev spaces

In this paragraph, we study the quality of approximation by the PSWFs in the Sobolev space
Hs([−1, 1]).We provide an L2([−1, 1])-error bound of the approximation of a function f ∈ Hs([−1, 1])
by the N−th partial sum of its expansion in the PSWFs basis. To simplify notation we will write
I = [−1, 1].

We should mention that different spectral approximation results by the PSWFs in Hs(I) have
been already given in [4, 6, 20]. It is important to mention that the error bounds of the spectral
approximations given by the previous references do not indicate how to choose a “good” value of
the bandwidth c to approximate a given f ∈ Hs(I). By a simultaneous use of the properties of the
PSWFs as eigenfunctions of the differential operator Lc and the integral operator Fc, we give a first
answer to this question. This is the subject of the following theorem.

Theorem 1. Let c > 0 be a positive real number. Assume that f ∈ Hs(I), for some positive real
number s > 0. Then for any integer N ≥ 1, we have

‖f − SNf‖L2(I) ≤ K(1 + c2)−s/2‖f‖Hs(I) +K
√
λN (c)‖f‖L2(I). (34)

Here, the constant K depends only on s and on the extension operator from Hs(I) to Hs(R). More-
over it can be taken equal to 1 when f belongs to the space Hs

0(I).

Proof. To prove (34), we first use the fact that for any real number s ≥ 0, there exists a linear and
continuous extension operator E : Hs(I)→ Hs(R). Moreover, if f ∈ Hs(I) and F = E(f) ∈ Hs(R),
then there exists a constant K > 0 such that

‖F‖L2(R) ≤ K‖f‖L2(I), ‖F‖Hs(R) ≤ K‖f‖Hs(I). (35)

We recall that the Sobolev norm of a function F on R is given by

‖F‖2Hs(R) =
1

2π

∫
R

(1 + |ξ|2)s|f̂(ξ)|2 dξ.

In particular, for a c−bandlimited function F , one has

‖F‖2L2(R) ≤ (1 + c2)−s‖F‖2Hs(R).

Next, if F denotes the Fourier transform operator and if

G = F−1(F̂ · 1[−c,c]), H = F−1(F̂ · (1− 1[−c,c])),

8



then G is c−bandlimited and F = G + H. Moreover, since ‖Ĝ‖L2(R) ≤ ‖F̂‖L2(R) and ‖H‖L2(R) ≤
c−s‖F‖Hs(R), then by using (35), one gets

‖G‖L2(R) ≤ K‖f‖L2(I), ‖H‖L2(I) ≤ K(1 + c2)−s/2‖f‖Hs(I). (36)

Finally, by using the previous inequalities and the fact that G is c−bandlimited, one concludes that

‖f − SNf‖L2(I) ≤ ‖G − SNG‖L2(I) + ‖H − SNH‖L2(I)

≤
√
λN (c)‖G‖L2(R) + ‖H‖L2(I)

≤
√
λN (c)K‖f‖L2(I) +K(1 + c2)−s‖f‖Hs(I).

This concludes the proof for general f . When f is in the subspace Hs
0(I), one can take as

extension operator the extension by 0 outside I, so that the constant K can be replaced by 1.

In [20], the author has used a different approach for the study of the spectral approximation by

the PSWFs. More precisely, by considering the weighted Sobolev space H̃r(I), associated with the
differential operator Lc defined by

H̃r(I) =

f ∈ L2(I), ‖f‖2
H̃r(I)

= ‖Lr/2c f‖2 =
∑
k≥0

(χk)r|fk|2 < +∞

 ,

where f =
∑
fkψk is the expansion in the basis of PSWFs. Then for any f ∈ H̃r(I), with r ≥ 0,

we have
‖f − SNf‖L2(I) ≤ (χN (c))−r/2‖f‖H̃r(I) ≤ N

−r‖f‖H̃r(I).

For more details, the reader is referred to [20].

Remark 3. Compared the result of Theorem 1 with Wang’s result, this latter has the advantage to
give an error term for all values of c, while the first term in (34) is only small for c large enough.
On the other hand, Wang compares his specific Sobolev space with the classical one and finds that

‖f‖
H̃s(I)

≤ C(1 + c2)s/2‖f‖Hs(I).

For large values of N we clearly have
(1 + c2)

χN
� (1 + c2)−1, but it goes the other way around when

χN and 1 + c2 are comparable. So it may be useful to have both kinds of estimates in mind for
numerical purpose and for the choice of the value of c.

Remark 4. The error bound given by Theorem 1 has the advantage to be explicitly given in terms
of c and λn(c). Nonetheless, it has a drawback that it does not imply a rate of convergence, nor even
the convergence of SN (f) to f in the usual L2(I)−norm. To overcome this problem, we devote the
remaining of this section to a more elaborated convergence analysis in the 2-periodic Sobolev space
Hs
per, then we extend this analysis to the usual Hs(I)−space.

Next, we consider the subspace Hs
per of functions in Hs(I) that extend into 2−periodic functions

of the same regularity. For such functions, one can also use the norm

‖f‖Hsper =
∑
k∈Z

(1 + (kπ)2)s|bk(f))|2.

Here,

bk(f) =
1√
2

∫ +1

−1

f(x)e−iπkxdx =
1√
2
f̂(kπ)

is the coefficient of the Fourier series expansion of f. We then have the following theorem.
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Theorem 2. Let c ≥ 1, then there exist constants M ≥
√

2 and M ′, a > 0 such that, when
N ≥ max(cM, 3) and f ∈ Hs

per, s > 0, we have the inequality

‖f − SN (f)‖L2(I) ≤M ′(1 + (πN)2)−s/2‖f‖Hsper +M ′e−aN‖f‖L2 . (37)

Proof. We start with reductions of the problem, which are analogous to the ones that we have
detailed above. It is sufficient to prove this separately with the constant M ′/2 for periodic functions
g and h = f − g, where g is the projection of f onto the subspace of Hs

per whose Fourier coefficients
bk(f) are zero for |k| > N/M. Moreover, we have directly the inequality without a second term,
since the L2 norm of h may be bounded by the first term multiplied by some constant. So, let us
prove the inequality for g. This time we will prove that the inequality holds without the first term,
that is,

‖g − SN (g)‖L2(I) ≤
M ′

2
e−aN‖g‖L2(I).

The next reduction consists of restricting to exponentials eikπx, with |k| ≤ N/M . Indeed, assume
that we prove the previous inequality for all of them, with a uniform bound by M ′′e−a

′N . Then, by
linearity we will have

‖g − SN (g)‖L2(I) ≤M ′′e−a
′N
∑
|bk(g)| ≤M ′′e−a

′N
√

2[N/M ] + 1 e−aN‖g‖L2(I).

This in turn gives up to a constant, the required form by choosing a < a′.
So we content ourselves to consider f(x) = eikπx, with |k| ≤ N/M . Finally, since

‖f − SNf‖2L2(I) =
∑
|〈f, ψn〉|2,

then it is sufficient to have such an estimate for each n > N , and conclude by taking the sum∑
n>N e

−an. So the proof is a consequence of the following lemma.

The following well known identity will be needed in the sequel.∫ 1

−1

eiλxPn(x) dx = in
√

2π

λ

√
n+ 1/2Jn+1/2(λ), (38)

where Jn+1/2(·) is the Bessel function of the first type and order n+ 1/2.

Lemma 4. Let c ≥ 1, then there exist constants M ≥
√

2 and M ′, a > 0 such that, when n ≥
max (cM, 3) and f(x) = eikπx with |k| ≤ n/M, we have

|〈f, ψn〉| ≤M ′e−an. (39)

Proof. This scalar product can be written by using (38)

< eikπx, ψn > =

∫ 1

−1

eikπx ψn(x) dx =
∑
m≥0

βnm < eikπx, Pm >=
∑
m≥0

βnm

√
2

k

√
m+ 1/2Jm+1/2(kπ)

=

[n/M ]∑
m=0

βnm

√
2

k

√
m+ 1/2Jm+1/2(kπ) +

∑
m≥[n/M ]+1

βnm

√
2

k

√
m+ 1/2Jm+1/2(kπ)

= In1 + In2 .

To bound In1 , we first remark that the Fourier transform of Pnχ[−1,1] is bounded by 1 and then we
use remark 1 to check that (21) is satisfied whenever n ≥ cM with M ≥ 1.40. Hence, we have

|In1 | ≤
[n/M ]∑
m=0

|βnm| ≤
√

5

4π
|µn(c)|

[n/M ]∑
m=0

(
2
√
χn

c

)m
≤ K

(
2
√
χn

c

)[n/M ]+1

|µn(c)|.
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Moreover, taking into account the decay of the µn(c) given by (26) and using the upper bound of
χn, given by (11), we conclude that

|In1 | ≤ K ′
(
π(n+ 1)

c

) n
M +1

e−δn ≤ K ′′e−an (40)

for some sufficiently small positive real number a, as soon as M ≥
√

2. To bound In2 , it suffices to
use the fact that |βnk | ≤ 1 and the bound of the Bessel function given by [1],

|Jα(x)| ≤ |x|α

2αΓ(α+ 1)
, ∀α > −1/2, ∀x ∈ R. (41)

One concludes that

|In2 | ≤
∑

m≥n/M

√
2/k
√
m+ 1/2|Jm+1/2(kπ)| ≤

∑
m≥[n/M ]+1

√
2/k
√
m+ 1/2

(kπ)m+1/2

2m+1/2Γ(m+ 3/2)

≤
√
π

∑
m≥[n/M ]+1

(kπ)m

2m
√
m+ 1/2Γ(m+ 1/2)

.

Moreover, since Γ(m+ 1/2) ≥ m!/
√
m+ 1 and m! ≥ (m/e)m

√
2πm, each term is bounded by an

exponential e−an and we find the required estimate for |In2 |.

In [6], the authors have given a different L2(I)−convergence rate of SN (f) to f in terms of the

decay of the expansion coefficients ak(f) =
∫ 1

−1
f(x)ψk(x) dx. More precisely, it has been shown in

[6] that

|aN (f)| ≤ C

N−2/3s‖f‖Hs(I) +

(√
c2

χN (c)

)δN
‖f‖L2(I)

 ,

where C, δ are independent of f,N and c.

Remark 5. The previous theorem gives the rate of convergence of the truncated PSWFs series
expansion of a function f from Hs

per. This rate of convergence will be generalized in the sequel to
the usual Hs(I)−space. Note that this rate of convergence drastically improves the one given by [6].
Moreover, unlike the error bound given in [20], the decay of the error bound given by the previous
theorem is still valid even when N is comparable to c. Nonetheless, in practice, Theorem 1 is useful
in the sense that it provides us with a criteria for the choice of the bandwidth c > 0, that depends on
the magnitude of the Sobolev exponent s > 0. The smaller s, the larger c should be and vice versa.

Remark 6. We also have a bound of the error for ordinary polynomials. Indeed, if we consider the
monomial f(x) := xj, then

an(f) =

∫ 1

−1

yjψn,c(y) dy = (−i)jc−jµn(c)ψ(j)
n,c(0), with i2 = −1.

For fixed j, we can then use Corollary 1 to conclude that if c ≥ 1 and c2/χN < 1, then we have

‖f − SNf‖22 ≤M
∑
k≥N

(
χk(c)

c2

)j
|µk(c)|2 ≤M ′c−2N

∑
k≥N

k2je−ak, (42)

which also leads to an exponential decay.

As a corollary of the previous theorem and remark, we obtain the following corollary that extends
the result of the previous theorem to the case of the usual Sobolev space Hs([−1, 1]).
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Corollary 2. Let c ≥ 1, and let s > 0. There exist constants M ≥
√

2 and M ′,M ′s > 0 such that,
when f ∈ Hs(I) and N ≥ max (cM, 3), we have the inequality

‖f − SN (f)‖L2(I) ≤M ′s(1 +N2)−s/2‖f‖Hs([−1,1]) +M ′e−aN‖f‖L2([−1,1]). (43)

Proof. We first assume that [s] = m, and s 6∈ 1
2 + N, then there exists a polynomial P , of degree at

mostm, such that f+P ∈ Hs
per. Consequently, by using the previous theorem and the inequality (42),

one concludes for (43). More generally, a function f ∈ Hs(I) can be considered as the restriction to
I of a function of Hs(R) which may be taken to have support in [−2, 2]. So it is also the restriction

to I of a periodic function of period 4. Since Lemma 4 is also valid for the exponentials ei
kπ
2 x, k ∈ Z,

then we conclude as before.

4 Numerical results

In this section, we illustrate the results of the previous sections by various numerical examples.
For this purpose, we first describe a numerical method for the computation of the PSWFs series
expansion coefficients of a function from the Sobolev space Hs(I). Note that if f ∈ Hs

per, s > 0, then
its different PSWFs series expansion coefficients (an(f))n can be easily approximated as follows. For
a positive integer K, an approximation aKn (f) to an(f) is given by the following formula

aKn (f) =
µn(c)√

2

K∑
k=−K

bk(f)ψn,c

(
kπ

c

)
= an(f) + εK , (44)

where the bk(f) are the Fourier coefficients of f and where εK =
1√
2

∑
|k|≥K+1

µn(c)bk(f)ψn,c

(
kπ

c

)
.

Moreover, from the well known asymptotic behavior of the ψn,c(x), for large values of x, see for

example [8], one can easily check that εK = o

(
1

((K + 1)π)1+s

)
. This computational method of the

an(f) has the advantage to work for small as well as large values of the smoothness coefficient s > 0.

Also, note that if f ∈ Hs([−1, 1]), where s > 1/2 + 2m,m ≥ 1, is an integer, then f ∈
C2m([−1, 1]). Moreover since ψn,c ∈ C∞(R), then the classical Gaussian quadrature method, see
for example [1] gives us the following approximate value ãn(f) of the (n + 1)−th expansion coeffi-
cient an(f) =< f,ψn,c >,

ãn(f) =

m∑
l=1

ωlf(xl)ψn,c(xl) = an(f) + εn, (45)

with |εn| ≤ sup
η∈[−1,1]

1

b2m

(f · ψn,c)(2m)(η)

(2m)!
. Here, bm is the highest coefficient of Pm, and the different

weights ωl and nodes xl, are easily computed by the special method given in [1].
The following examples illustrate the quality of approximation in Hs(I) by the PSWFs.

Example 1: In this example, we show that the PSWFs outperforms the Legendre polynomials
in the approximation of a class of functions from the Sobolev space Hs([−1, 1]), having significant
large coefficients at some high frequency components. To fix the idea, let λ > 0, be a relatively large
positive real number and let fλ(x) = eiλx, x ∈ [−1, 1]. The Legendre series expansion coefficients of
fλ are given by

αn(0) =

∫ 1

−1

eiλxPn(x) dx = in
√

2π

λ

√
n+ 1/2Jn+1/2(λ).
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In this case, we have

‖fλ −
N∑
n=0

αn(0)Pn‖22 =
2π

λ

∑
n≥N+1

(n+ 1/2)(Jn+1/2(λ))2. (46)

If c > 0 is a positive real number, then the corresponding PSWFs series expansion coefficients of fλ
are simply given as follows,

αn(c) =

∫ 1

−1

eiλxψn,c(x) dx = µn(c)ψn,c(λ/c).

Note that the analytic extension of ψn,c outside the interval [−1, 1] has been given in [18] as follows

ψn(x) =

√
2π

|µn(c)|
∑
k≥0

(−1)kβnk
√
k + 1/2

Jk+1/2(cx)
√
cx

, (47)

with

µn(c) = in
√

2π

c

[∑
k≥0(−1)k

√
k + 1/2 βnk Jk+1/2(c)∑

k≥0β
n
k

√
k + 1/2

]
, (48)

is the exact value of the n−th eigenvalue of the finite Fourier transform operator Fc.
On the other hand, the L2(I)−approximation error by the PSWFs is given by

EN (c) = ‖f −
N∑
n=0

αn(c)ψn,c‖22 =
∑

n≥N+1

|µn(c)|2
(
ψn,c

(
λ

c

))2

. (49)

In the special case where c = λ, the previous error bound becomes EN (λ) =
∑

n≥N+1

|µn(c)|2 (ψn,c(1))
2
.

Since from [2], we have |ψn,c(1)| ≤ 2χ
1/4
n , then by using (11), one gets |ψn,c(1)| ≤

√
2π(n+ 1). More-

over, since the super-exponential decay of the sequence (|µn(c)|2)n≥0 starts around Nc = [ec/4], then
from (46) and (49), one concludes that the PSWFs are better adapted for the approximation of the
fλ by its N−th order truncated PSWFs series expansion with c = λ and N = [λ]. More generally,
if 0 ≤ c < λ, then λ

c > 1 and the well known blow-up of the ψn,c
(
λ
c

)
with λ

c > 1, implies that
αn(c) = µn(c)ψn,c(λ/c) has a lower decay than αn(λ) = µn(λ)ψn,c(1). Moreover, if c > λ, then the
decay of the |µn(c)|2 and consequently, the fast decay of the αn(c) is possible only if n lies beyond a
neighbourhood of ec

4 > eλ
4 . This means that c = λ is the appropriate value of the bandwidth to be

used to approximate the function fλ(x) = eiλx by its first N−th truncated PSWFs series expansion,
with N = [λ]. This explains the numerical results given in [20] concerning the approximation of
the test function u(x) = sin(20πx), where the author has checked numerically that c = 20π is the
appropriate value of the bandwidth for approximating u(x) by the PSWFs ψn,c with a given high
precision and minimal number of the truncation order N. As another example, we consider the value
of λ = 50, then we find that

‖fλ −
50∑
n=0

αn(0)Pn‖2 ≈ 3.087858E − 01, ‖fλ −
50∑
n=0

αn(50)ψn,50‖2 ≈ 1.356604E − 08.

Example 2: In this example, we consider the Weierstrass function

Ws(x) =
∑
k≥0

cos(2kx)

2ks
, −1 ≤ x ≤ 1. (50)
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Table 1: Values of EN (s) for various values of N and s.

s = 0.75 s = 1 s = 1.25 s = 1.5 s = 1.75 s = 2.0
N EN (s) EN (s) EN (s) EN (s) EN (s) EN (s)
20 4.57329E-01 4.66173E-01 4.85990E-01 5.05973E-01 5.23232E-01 5.37227E-01
30 3.15869E-01 3.11677E-01 3.28241E-01 3.48562E-01 3.67260E-01 3.82963E-01
40 1.06843E-01 1.52009E-01 1.91237E-01 2.20969E-01 2.43432E-01 2.60523E-01
50 4.09844E-02 6.88472E-02 1.01827E-01 1.26518E-01 1.44809E-01 1.58520E-01
60 3.30178E-02 2.09084E-02 3.25551E-02 4.28999E-02 5.06959E-02 5.65531E-02
70 3.15097E-02 8.82446E-03 2.51157E-03 7.35725E-04 2.33066E-04 1.04137E-04
80 3.01566E-02 8.55598E-03 2.40312E-03 6.87458E-04 1.98993E-04 5.80481E-05
90 2.67972E-02 7.64167E-03 2.14661E-03 6.15062E-04 1.78461E-04 5.22848E-05
100 2.39141E-02 6.72825E-03 1.82818E-03 5.10057E-04 1.45036E-04 4.19238E-05

The choice of this function allows us to see how the approximation process works on functions
that are either nowhere smooth or having small Sobolev smoothness exponent. Note that Ws ∈
Hs−ε([−1, 1]), ∀ε < s, s > 0. We have considered the value of c = 100, and computed Ws,N ,

the N−th terms truncated PSWFs series expansion of Ws with different values of
3

4
≤ s ≤ 2 and

different values of 20 ≤ N ≤ 100. Also, for each pair (s,N), we have computed the corresponding

approximate L2− error bound EN (s) =

[
1

50

50∑
k=−50

(Ws,N (k/50)−Ws(k/50))2

]1/2

. Table 1 lists the

obtained values of EN (s). Note that the numerical results given by Table 1, follow what has been
predicted by the theoretical results of the previous section. In fact, the L2−errors ‖Ws − ΠNWs‖2
is of order O(N−s), whenever N ≥ Nc ∼

[
2c

π

]
+ 4. The graphs of W3/4(x) and W3/4,N (x), N = 90

are given by Figure 1.

Figure 1: (a) graph of W3/4(x), (b) graph of W3/4,N (x), N = 90.

Example 3: In this example, we let s > 0 be any positive real number and we consider the random
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function Bs(x) is given as follows.

Bs(x) =
∑
k≥1

Xk

ks
cos(kπx), −1 ≤ x ≤ 1.

Here, Xk is a sequence of independent standard Gaussian random variables. The random process
Bs behaves like a fractional Brownian motion, with Hurst parameter H = s−1/2. It is almost surely
in Hs′ for s′ < s− 1/2. For the special case s = 1, we consider the band-width c = 100, a truncation
order N = 80 and compute B1,N the approximation of B1 by its N−th terms truncated PSWFs
series expansion. The graphs of B1 and B1,N are given by Figure 2.

Figure 2: (a) graph of B1(x), (b) graph of B1,N (x), N = 80.

Remark 7. From the quality of approximation in the Sobolev spaces Hs([−1, 1]) given in this paper
and in [4, 6, 20], one concludes that for any value of the bandwidth c ≥ 0, the approximation error
‖f − SNf‖2 has the asymptotic order O(N−s). Nonetheless, for a given f ∈ Hs([−1, 1]), s > 0
which we may assume to have a unit L2−norm and for a given error tolerance ε, the appropriate
value of the bandwidth c ≥ 0, corresponding to the minimum truncation order N, ensuring that
‖f − SNf‖2 ≤ ε, depends on whether or not, f has some significant Fourier expansion coefficients,
corresponding to large frequency components. In other words, the faster decay to zero of the Fourier
coefficients of f, the smaller the value of the bandwidth should be and vice versa.
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of the second author go to Laboratory MAPMO of the University of Orléans where part of this work
has been done while he was a visitor there.

References

[1] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 2000.

[2] A. Bonami and A. Karoui, Uniform bounds of prolate spheroidal wave functions and eigen-
values decay, C. R. Math. Acad. Sci. Paris. Ser. I, 352 (2014), 229–234.

[3] A. Bonami and A. Karoui, Spectral decay of time and frequency limiting operator, Appl.
Comput. Harmon. Anal., (2015), http://dx.doi.org/10.1016/j.acha.2015.05.003.

15



[4] J. P. Boyd, Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre
polynomials for spectral element and pseudo-spectral algorithms, J. Comput. Phys. 199,
(2004), 688–716.

[5] J. P. Boyd, Approximation of an analytic function on a finite real interval by a bandlim-
ited function and conjectures on properties of prolate spheroidal functions, Appl. Comput.
Harmon. Anal. 25, No.2, (2003), 168–176.

[6] Q. Chen, D. Gottlieb and J. S. Hesthaven, Spectral methods based on prolate spheroidal wave
functions for hyperbolic PDEs, SIAM J. Numer. Anal., 43, No. 5, (2005), pp. 1912–1933.

[7] C. Flammer, Spheroidal Wave Functions, Stanford Univ. Press, CA, 1957.

[8] A. Karoui and T. Moumni, New efficient methods of computing the prolate spheroidal wave
functions and their corresponding eigenvalues, Appl. Comput. Harmon. Anal. 24, No.3,
(2008), 269–289.

[9] H. J. Landau, The eigenvalue behavior of certain convolution equations, Trans. Amer. Math.
Soc., 115, (1965), 242–256.

[10] H. J. Landau and H. Widom, Eigenvalue distribution of time and frequency limiting, J. Math.
Anal. Appl., 77, (1980), 469–481.

[11] H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and
uncertainty-III. The dimension of space of essentially time-and band-limited signals, Bell
System Tech. J. 41, (1962), 1295–1336.

[12] W. Lin, N. Kovvali and L. Carin, Pseudospectral method based on prolate spheroidal wave
functions for semiconductor nanodevice simulation, Computer Physics Communications, 175
(2006), pp. 78–85.

[13] J. A. Hogan and J. D. Lakey, Duration and Bandwidth Limiting: Prolate Functions, Sampling,
and Applications, Applied and Numerical Harmonic Analysis Series, Birkhäser, Springer, New
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