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Abstract— For fixed c, the Prolate Spheroidal Wave Functions (PSWFs) ψn,c form a basis with
remarkable properties for the space of band-limited functions with bandwidth c. They have been
largely studied and used after the seminal work of D. Slepian, H. Landau and H. Pollack. Many of
the PSWFs applications rely heavily of the behavior and the decay rate of the eigenvalues (λn(c))n≥0

of the time and frequency limiting operator, which we denote by Qc. Hence, the issue of the ac-
curate estimation of the spectrum of this operator has attracted a considerable interest, both in
numerical and theoretical studies. In this work, we give an explicit integral approximation formula
for these eigenvalues. This approximation holds true starting from the plunge region where the
spectrum of Qc starts to have a fast decay. As a consequence of our explicit approximation formula,
we give a precise description of the super-exponential decay rate of the λn(c). Also, we mention
that the described approximation scheme provides us with fairly accurate approximations of the
λn(c) with low computational load, even for very large values of the parameters c and n. Finally,
we provide the reader with some numerical examples that illustrate the different results of this work.

2010 Mathematics Subject Classification. Primary 42C10, 65L70. Secondary 41A60, 65L15.
Key words and phrases. Prolate spheroidal wave functions, eigenvalues and eigenfunctions approxi-
mations, asymptotic estimates.

1 Introduction

For a given value c > 0, called the bandwidth, PSWFs (ψn,c(·))n≥0 constitute an orthonormal basis
of L2([−1,+1]), an orthogonal system of L2(R) and an orthogonal basis of the Paley-Wiener space

Bc, given by Bc =
{
f ∈ L2(R), Support f̂ ⊂ [−c, c]

}
. Here, f̂ denotes the Fourier transform of

f . They are eigenfunctions of the compact integral operators Fc and Qc = c
2πF

∗
cFc, defined on

L2([−1, 1]) by

Fc(f)(x) =

∫ 1

−1

ei c x yf(y) dy, Qc(f)(x) =

∫ 1

−1

sin c(x− y)

π(x− y)
f(y) dy. (1)

Since the operator Fc commutes with the Sturm-Liouville operator Lc,

Lc(ψ) = − d

d x

[
(1− x2)

dψ

dx

]
+ c2x2ψ, (2)
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PSWFs (ψn,c(·))n≥0 are also eigenfunctions of Lc. They are ordered in such a way that the cor-
responding eigenvalues of Lc, called χn(c), are strictly increasing. Functions ψn,c are restrictions
to the interval [−1,+1] of real analytic functions on the whole real line and eigenvalues χn(c) are
values of λ such that the equation Lcψ = λψ has a non zero bounded solution on the whole interval.

PSWFs have been introduced by D. Slepian, H. Landau and H. Pollak [10, 16, 17, 18] in relation
with signal processing. For a detailed review on properties, numerical computations, asymptotic
results and first applications of the PSWFs, the reader is referred to recent books on the subject,
[6], [13].

By Plancherel identity, PSWFs are normalized so that∫ 1

−1

|ψn,c(x)|2 dx = 1,

∫
R
|ψn,c(x)|2 dx =

1

λn(c)
, n ≥ 0. (3)

Here, (λn(c))n is the infinite sequence of the eigenvalues of Qc, also arranged in the decreasing order
1 > λ0(c) > λ1(c) > · · · > λn(c) > · · · . We call µn(c) the eigenvalues of Fc. They are given by

µn(c) = in
√

2π

c
λn(c).

Also, we adopt the sign normalization of the PSWFs,

ψn,c(0) > 0 for even n, ψ′n,c(0) > 0, for odd n. (4)

One of the main issues that we discuss here is the decay rate of the eigenvalues λn(c). This decay
rate plays a crucial role in most of the various concrete applications of the PSWFs. In this direction,
one knows their asymptotic behaviour for c fixed, which has been given in 1964 by Widom, see [19].

λn(c) ∼
(

ec

4(n+ 1
2 )

)2n+1

= λWn (c). (5)

This gives the exact decay for n large enough, but one would like to have a more precise information
in terms of uniformity of this behaviour, both in n and c. On the other hand, Landau has considered
the value of the smallest integer n such that λn(c) ≤ 1/2 in [9]. More precisely, if we note c∗n the
unique value of c such that λn(c) = 1/2, then he proves that

π

2
(n− 1) ≤ c∗n ≤

π

2
(n+ 1) λn(c∗n) =

1

2
. (6)

So, for c fixed, we almost know when λn(c) passes through the value 1/2. Landau and Widom have
also described the asymptotic behaviour, when c tends to ∞, of the distribution of the eigenvalues
λn(c).

The search for more precise estimates of the λn(c) has attracted a considerable interest, both in
numerical and theoretical studies. We try here to give approximate values for λn(c) for c ≤ c∗n, with
some uniformity in the quality of approximation. We rely on the exact formula for the eigenvalues
λn(c), given by integrating the following differential equation, see [5],

∂τ lnλn(τ) =
2|ψn,τ (1)|2

τ
. (7)

over the interval (c, c∗n). This is different from the classical way to estimate the λn(c), via equa-
tion (39), where the integration is rather done on the interval (0, c), see for example [15, 17, 20].
Consequently, we are mainly interested in the behavior, as well as in accurate and fast schemes of
approximation, of the λn(c), given by the formula

λn(c) =
1

2
exp

(
−2

∫ c∗n

c

(ψn,τ (1))2

τ
dτ

)
. (8)
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We use our recent works [1, 2] to estimate the value ψn,τ (1). In the first paper it is proved
that |ψn,τ (1)| ≤ 2χn(τ)1/4, which is not sufficient to find a sharp estimate for all values c. The
approximation given in the second paper leads to a second estimate of ψn,τ (1), valid for πn

2 − c

larger than some multiple of lnn. Based on this second estimate, we define λ̃n(c) as

λ̃n(c) =
1

2
exp

−π2(n+ 1
2 )

2

∫ 1

Φ

(
2c

π(n+1
2
)

) 1

t(E(t))2
dt

 . (9)

Here E is the elliptic integral of the second kind given by (13) and the function Φ is the inverse of

the function t 7→ t
E(t) . We prove that λ̃n(c) is comparable with λn(c) up to some power of n. This

is stated in the following theorem, which is the main result of this paper.

Theorem 1. There exist three constants δ1 ≥ 1, δ2, δ3,≥ 0 such that, for n ≥ 3 and c ≤ πn
2 ,

δ−1
1 n−δ2

(
c

c+ 1

)δ3
≤ λ̃n(c)

λn(c)
≤ δ1nδ2

(
c

c+ 1

)−δ3
. (10)

Let us explain, roughly speaking, why Legendre elliptic integrals are involved here. The Sturm-
Liouville equation Lcψ = χn(c)ψ can be rewritten as

ψ′′ − 2x

1− x2
ψ′ + χn(c)

1− qx2

1− x2
ψ = 0,

with q = c2/χn(c). Under the assumptions on n and c, the value q may be seen as a parameter. We
assume that q < 1 and proceed to a WKB approximation of the solution ψn,c, but not directly: the
equation is transformed into its normal form U ′′+(χn+θ)U = 0 through the Liouville transformation
given by the change of functions ψ = [(1 − x2)(1 − qx2)]−1/4U and the change of variable x 7→∫ x

0

√
1−qt2
1−t2 dt. We recognize in this change of variable the incomplete Legendre elliptic integral of

the second kind, while the L2−norm of the factor [(1− x2)(1− qx2)]−1/4 can be written in terms of
the complete Legendre elliptic integral of the first kind. This has been exploited by many authors
(for instance [4], [20], [11]). We refer to our recent work [2] for the approximation of |ψn,c(1)|2 in
terms of Legendre elliptic integrals, which is central here and leads to the formula (9).

Let us come back to the present paper. When n tends to ∞ with c fixed, we recover the
asymptotic behavior given by Widom and, as a corollary, we have the following, which may be seen
as a kind of quantitative Widom’s Theorem.

Corollary 1. Let m > 0 be a positive real number and let M > m, ε > 0 be given. Then there
exists a constant A(ε,m,M) such that, for all m ≤ c ≤M

√
n and all n, we have the inequality

λn(c) ≤ A(ε,m,M)eεn
(

ec

4(n+ 1
2 )

)2n+1

. (11)

We can give an explicit constant A(ε,m,M). Also, we will show that asymptotically, λ̂n(c) =

2λ̃n(c) is equivalent to Widom’s asymptotic formula (5).

The fact that we recover Widom’s asymptotic behavior is already a good test of validity but we
can go further numerically. In fact we recover the exact equivalent given by Widom up to the factor

1/2, which justifies the approximation of λn(c) by λ̂n(c) = 2λ̃n(c) instead of λ̃n(c), at least for large
values of n.

Remark 1. Numerical experiments show that the approximation of λn(c) by λ̂n(c) = 2λ̃n(c) is

surprisingly accurate. It is striking that the values of |µ̂n(c)| =
√

2π

c
λ̂n(c) coincide with the values
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of |µn(c)| that have been computed in[14], with relative errors that are less than 3%. Numerical tests
indicate that this relative error bound holds true as soon as |µn(c)| ≤ 0.15. Moreover, the smaller
the value of |µn(c)|, the smaller is the corresponding relative error. For example, for c = 10π and

n = 90, we have found that |µn(c)| ≈ 8.64288E − 57 and
|µ̂n(c)− µn(c)|
|µn(c)|

≈ 7.71E − 05.

We try to explain the factor 2 in the expression of λ̂n(c), which is of course very small compared
to the accumulated errors in the theoretical approach. Let us mention that another method to
approximate the values λn(c) has been used by Osipov in [12]. The estimates given in his paper
are of different nature and do not propose such a simple and accurate formula. In addition, he
mainly considers values of n such that πn

2 − c is smaller than some multiple of ln c. At this moment
both works may be seen complementary. But we underline the fact that numerical tests validate
the accuracy of the approximant (9) even when c is close to the critical value, while our theoretical
approach is not sufficient to do it.

This work is organized as follows. In Section 2, we list some estimates of the PSWFs and
their associated eigenvalues χn(c). In Section 3, we prove a sharp exponential decay rate of the
eigenvalues λn(c) associated with the integral operator Qc. In Section 4, we provide the reader with
some numerical examples that illustrate the different results of this work.

We will systematically skip the parameter c in χn(c) and ψn,c, when there is no doubt on the
value of the bandwidth. We then note q = c2/χn and skip both parameters n and c when their
values are obvious from the context.

2 Estimates of PSWFs and eigenvalues χn(c).

Here we first list some classical as well as some recent results on PSWFs and their eigenvalues χn,
then we push forward the methods and adapt them to our study. We systematically use the same
notations as in [2]. It is well known that the eigenvalues χn satisfy the classical inequalities

n(n+ 1) ≤ χn ≤ n(n+ 1) + c2. (12)

Next, we recall the Legendre elliptic integral of the first and second kind, that are given respectively,
by

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

, E(k) =

∫ 1

0

√
1− k2t2

1− t2
dt, 0 ≤ k ≤ 1. (13)

Osipov has proved in [11] that the condition q = c2

χn
< 1 is fulfilled when c < πn

2 , while it is not when

c > π(n+1)
2 . This is part of the following statement, which gives precise lower and upper bounds of

the quantity
√
q =

c
√
χn

, see [2].

Lemma 1. For all c > 0 and n ≥ 2 we have

Φ

(
2c

π(n+ 1)

)
<

c
√
χn

< Φ

(
2c

πn

)
, (14)

where Φ is the inverse of the function k 7→ k
E(k) = Ψ(k), 0 ≤ k ≤ 1.

We refer to [2] for the proof of the previous lemma, but we add some comments. The inequalities
(14) are equivalent to the fact that

πn

2E(
√
q)
<
√
χn <

π(n+ 1)

2E(
√
q)
. (15)
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The left hand side is due to Osipov [11]. Note that Φ(0) = 0 and Φ(1) = 1. Also, we should mention
that

0 ≤ Ψ′(x) =
E(x)− xE′(x)

(E(x))2
=

K(x)

(E(x))2
, 0 ≤ x < 1, (16)

0 ≤ Φ′(x) =
(E(Φ(x)))2

K(Φ(x))
≤ (E(0))2

K(0)
=
π

2
, 0 ≤ x < 1. (17)

Hence, Φ is an increasing function on [0, 1]. Moreover, since
2

π
≤ 1

E(x)
≤ 1, then we have

2x

π
≤ Ψ(x) ≤ x.

Applying the function Φ to the previous inequalities, one gets

x ≤ Φ(x) ≤ πx

2
, 0 ≤ x ≤ 1. (18)

We will use bounds for ψn,c given in [2], which have been established under the condition that
(1− q)√χn > κ ≥ 4. We leave some flexibility for the choice of the constant κ and do not restrict to
the choice κ = 4 as in [2]. We will only need estimates at 1, which we give in the following lemma
with a slightly different form compared to [2].

Lemma 2. Let n ≥ 3. We assume that the condition

(1− q)
√
χn(c) > κ (19)

is satisfied for some κ ≥ 4. Then, there exists a constant δ(κ) (independent of c and n) such that
one has the following bounds for (ψn,c(1))2.

π
√
χn

2K(
√
q)

(1− δ(κ) εn) ≤ (ψn(1))2 ≤
π
√
χn

2K(
√
q)

(1 + δ(κ) εn) , εn = ((1− q)√χn)
−1
. (20)

We refer to [2], Theorem 2, for the proof. Explicit values for the constant δ(κ) can also be
deduced from [2]. We can choose

δ(κ) = η
(

2 +
η

κ

)
, η = C(κ)

(
β

1 + (1− κ−1β)1/2
+
√

2α(1 + ακ−1)

)
(21)

with C(κ)−1 = (1− κ−1β)1/2 −
√

2ακ−1(1 + ακ−1), α = 1.5, β = 0.35.

In any case, we see that the theoretical values of δ(κ) are larger than 4.73. We find approxi-
matively δ(4) ≈ 77.2, δ(12) ≈ 7.6. Numerical tests (see Example 1 in Section 4) indicate that the
numerical quantities δ(κ), for which one has equality in (21), are much smaller.

In [1], we have proved that

|A| = |ψn,c(1)|χn(c)−1/4 ≤ 2 for c ≤ π(n+ 1)

2
. (22)

So in particular the right hand side bound of (20) is not accurate when κ is small. Lemma 2 expresses
the fact that, under some condition depending on a parameter κ, we have

(ψn,τ (1))2 ≈
π
√
χn(τ)

2K(
√
q(τ))

=
πτ

2
√
q(τ)K(

√
q(τ))

. (23)
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The previous formula for the approximation of the quantity ψn,c(1) still requires the approximation

of
√
q(τ). For this last quantity, we already have the double inequalities (14). We may write

√
q(τ) ≈

√
q̃(τ) = Φ

(
2τ

π(n+ 1/2)

)
. (24)

An error bound of the previous approximation formula is given in [2] by

|
√
q(c)−

√
q̃(c)| ≤ c

2
√
χn
√
χ̃n
. (25)

Also, in [2], we have given an explicit formula for the approximation of
√
χn(c) together with its

associated error, √
χn(c) ≈

√
χ̃n(c) =

c

Φ
(

2c
π(n+1/2)

) , n ≥ 2c

π
, (26)

∣∣∣√χn(c)−
√
χ̃n(c)

∣∣∣ ≤ 1

2
. (27)

We should mention that in [2], we have further improved the error bounds (25) and (27) in the case
of large values of n. The improved asymptotic error bounds are given as follows,

|
√
q(c)−

√
q̃(c)| ≤ cκ

(1− q)χn
√
χ̃n
, |

√
χ̃n(c)−

√
χn(c)| ≤ κ

(1− q)√χn
, (28)

for some constant κ. Numerical evidence indicates that in practice, the actual error of the approxi-
mation scheme (24) is much smaller than the previous theoretical error bound, see example 2 of the
numerical results section.

We need to translate Condition (19) in terms of the parameters n, c, which can be done by using
[Proposition 4, [2]], where the following inequality has been given. For n ≥ 2 and q < 1,

(1− q)√χn ≥
(n− 2c

π )− e−1

log n+ 5
, (29)

A further improvement of the previous inequality is given by the following lemma.

Lemma 3. Let n ≥ 3, q < 1 and κ ≥ 4. Then one of the following conditions,

c ≤ n− κ, (30)

πn

2
− c > κ

4
(ln(n) + 9), (31)

implies the inequality (19), that is,

(1− q)
√
χn(c) > κ.

Moreover, if we assume that c > n+1
2 , then the condition πn

2 − c >
κ
4 (ln(n) + 6) is sufficient.

Proof. Let γ = 2c
πn . It follows from (15) that

1− γ < 1−√q +
E(
√
q)− 1

E(
√
q)

. (32)

We claim that

E(x)− 1 ≤ (1− x2)

(
1

4
ln

(
1

1− x2

)
+ ln 2

)
. (33)

6



Let us assume this and go on with the proof. It follows that

1− γ < 1− q
E(
√
q)

(
1

4
ln

(
1

1− q

)
+

E(
√
q)

1 +
√
q

+ ln 2

)
. (34)

We then use the elementary inequality, valid for 0 < s < 1,

s ln(1/s) ≤ 1/n+ s ln(n/e).

It implies that

1− γ − 1

4nE(
√
q)
<

1− q
E(
√
q)

(
1

4
ln(n/e) +

E(
√
q)

1 +
√
q

+ ln 2

)
.

We use also (15) to conclude that

(1− q)√χn ≥
πn

2E(
√
q)

(1− q) > κ, (35)

whenever
πn

2
− c > κ

(
1

4
ln(n/e) +

E(
√
q)

1 +
√
q

+ ln 2

)
+

1

4n
.

This is the case, in particular, when πn
2 − c >

κ
4 (ln(n) + 9), using the fact that

E(
√
q)

1+
√
q ≤

π
2 .

The condition c ≥ n+1
2 implies that q > 1

π . Then, by using the value of E(
√
π−1), the constant

9 in (31) can be replaced by 6. It remains to prove (33). We write

E(x)− 1 ≤ (1− x2)

∫ 1

0

1

(
√

1− x2t2 +
√

1− t2)

t dt√
1− t2

(36)

=

∫ 1

0

ds

(1− x2 + s2x2)
1
2 + s

. (37)

We cut the last integral into two parts. For the first one, from
√

1− x2 to 1, we replace the
denominator by 2s and find the logarithmic term. For the second one, we replace the denominator
by
√

1− x2 + s and find ln 2.

We will need another inequality of the same type:

1− 2c

πn
≤ 2(1− q)K(

√
q). (38)

This is a consequence of (32), using the fact that E(x) − 1 ≤ (1 − x2)K(x), which comes directly
from (36).

3 Sharp decay estimates of eigenvalues λn(c).

In this section, we use some of the estimates we have given in the previous section and we prove a
sharp super-exponential decay rate of the eigenvalues (λn(c))n. We first recall that these λn(c) are
governed by the following differential equation, see [5] or the more recent reference [20],

∂c lnλn(c) =
2|ψn,c(1)|2

c
. (39)

As a consequence, for fixed n there exists a unique value of c for which λn(c) = 1/2. We denote this
value of c by c∗n. We know from [9] that it can be bounded below and above, namely

π

2
(n− 1) ≤ c∗n ≤

π

2
(n+ 1) with λn(c∗n) =

1

2
. (40)
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By combining (39) and (40), one gets

λn(c) =
1

2
exp

(
−2

∫ c∗n

c

(ψn,τ (1))2

τ
dτ

)
. (41)

Let us recall the following definition.

λ̃n(c) =
1

2
exp

−π2(n+ 1
2 )

2

∫ 1

Φ

(
2c

π(n+1
2
)

) 1

t(E(t))2
dt

 . (42)

Our main result is the following theorem.

Theorem 2. There exist three constants δ1 ≥ 1, δ2, δ3,≥ 0 such that, for n ≥ 3 and c ≤ πn
2 ,

δ−1
1 n−δ2

(
c

c+ 1

)δ3
≤ λ̃n(c)

λn(c)
≤ δ1nδ2

(
c

c+ 1

)−δ3
, (43)

The factor c
c+1 can be replaced by 1 when c > 1 and replaced by c when c < 1. We have written

the formula this way to avoid to have to distinguish between the two cases, c ≥ 1 and 0 < c < 1. It
is simpler to write equivalent inequalities for logarithms, which is done in the following proposition.
We keep the same notations for constants, which are of course not the same. We note ln+(x) the
positive part of the Logarithm, that is, ln+(x) = max(0, ln(x)). The following theorem is required
in the proof of the main Theorem 2.

Theorem 3. There exist three non negative constants δ1, δ2, δ3 such that, for n ≥ 3 and c ≤ πn
2 , we

have ∫ c∗n

c

(ψn,τ (1))2

τ
dτ =

π2(n+ 1
2 )

4

∫ 1

Φ

(
2c

π(n+1
2
)

) 1

t(E(t))2
dt+ E , (44)

with
|E| ≤ δ1 + δ2 ln(n) + δ3 ln+(1/c). (45)

Let us make some comments before starting the proof. At this moment the three constants are
not sufficiently small and cannot be used reasonably to obtain numerical values. But they can be
computed and are not that enormous. There is no hope, of course, to have found an exact formula
for λn(c) and (42) gives only an approximation. But these theoretical approximation errors may be
seen as a kind of theoretical validation of the quality of approximation of the λn(c), which we test
numerically in Section 4.

It has been observed by many authors, and predicted by the work of Landau and Widom [10],
that for fixed c the eigenvalues λn(c) decrease first exponentially in some interval starting at [ 2c

π ] + 1
with length a multiple of ln(c), then super-exponentially as in the asymptotic behavior given by
Widom. This is what one observes in Formula (42), but the error terms do not allow to observe the
decay rate at the plunge region. In fact the tools that we use, that is, the lower and upper bounds
for ψn,τ (1)2, are only valid for c∗n − τ sufficiently large in terms of ln(n).

We try to have small constants at each step but are certainly far from the best possible. We give
an explicit bound for E in (66). The following notations will be used frequently in the sequel. We
define

I(a, b) =

∫ b

a

(ψn,τ (1))2

τ
dτ. (46)

J (y) =
π2

4

∫ 1

Φ( 2y
π )

1

t(E(t))2
dt (47)
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We should mention that the proofs of Theorems 2 and Theorem 3, require many steps, so we
start by giving a sketch of these proofs.

Sketch of the proof of Theorem 3. We want to prove that

I(c, c∗n) ≈ (n+
1

2
)J
(

c

n+ 1
2

)
.

For this purpose, we use the approximation of ψn,τ (1), given by Formula (23). This is valid under
a condition involving the parameter κ, and may be rewritten as c < cκn for some cκn that is close to
c∗n by Lemma 3. We deduce from Formula (23) that

I(c, cκn) ≈
∫ cκn

c

πdτ

2
√
q(τ)K(

√
q(τ))

.

Then Lemma 1 will be interpreted as the fact that√
q(τ)K(

√
q(τ)) ≈ Φ

(
2τ

π(n+ 1
2 )

)
K ◦ Φ

(
2τ

π(n+ 1
2 )

)
.

It is then elementary to relate the new integral with the function J and finally find that

I(c, cκn) ≈ (n+
1

2
)J
(

c

n+ 1
2

)
.

It remains to bound the tails of the integrals I(cκn, c
∗
n), which we can do because the two values are

sufficiently close.

Let us start the proof itself. We need a set of intermediate results that can be classified into
three main steps. The first step will concern the properties of the function J . In the second step, we
give bounds of the tails of the integrals. Finally, in the third step, we use the results of the previous
two steps and complete the proofs of Theorems 2 and 3.

First step: Properties of J .
For an integer l ≥ 1, we define

Jl(c) =
π

2

∫ πl
2

c

dτ

Φ
(

2τ
πl

)
K ◦ Φ

(
2τ
πl

) . (48)

As it has been seen in the sketch, these integrals are clearly involved in the proof. We first see that
they are related with J .

Lemma 4. We have the identity
Jl(c) = lJ (c/l). (49)

Proof. We consider the substitution

s = Φ

(
2τ

πl

)
, τ =

πl

2
Ψ(s). (50)

We have already seen in (16) that Ψ′(x) = K(x)
(E(x))2 . Hence, we have

Jl(c) = l

∫ 1

Φ( 2c
πl )

ds

s(E(s))2
= lJ (c/l).

9



The following proposition gives us upper and lower bounds, as well as the asymptotic behavior
of J .

Proposition 1. For x ∈ (0, π/2), one has the upper and lower bounds

ln+

(
1

x

)
≤ J (x) ≤ π2

4
ln
( π

2x

)
. (51)

Moreover, one can write

J (x) =
π2

4

∫ 1

Φ(2x/π)

dt

t(E(t))2
= ln

(
4

ex

)
+ E ′, (52)

with |E ′| ≤ π2x2

8 .

Proof. The first inequalities are an easy consequence of the bounds below and above of Φ, given by
(18). Let us prove (52). We first write, for 0 < y < 1,

π2

4

∫ 1

y

dt

t(E(t))2
+ ln(y) = ∆−

∫ y

0

π2

4 −E(t)2

t(E(t))2
dt = ∆− I1(y). (53)

Here

∆ =

∫ 1

0

π2

4 −E(t)2

t(E(t))2
dt.

It is probably well-known that

∆ = ln

(
4

e

)
(54)

but we did not find any reference. We will see it as a corollary of Widom’s Theorem. The integral

I1(y) is bounded by π2y2

8 . This is a consequence of the elementary inequalities

1 ≤ E(s) ≤ π

2
,

π

2
−E(s) ≤ s2

∫ 1

0

t2 dt√
1− t2

=
πs2

4
.

Let us now fix y = Φ(2x/π). At this point we have proved that

0 ≤ ln

(
x

y

)
− E ′ = I1(y) ≤ π2y2

8
.

From the inequalities

2y

π
≤ 2x

π
=

y

E(y)
≤ 2y

π
(1− y2

2
)−1 ≤ 2y

π
(1 + y2),

it follows that 0 ≤ ln
(
x
y

)
+ y2. This concludes the proof of the proposition.

This proposition leads to the following corollary, where we recognize the equivalent given by
Widom.

Corollary 2. We have the double inequality

1

2

(
ec

4(n+ 1
2 )

)2n+1

e
−π2

4
c2

n+1
2 ≤ λ̃n(c) ≤ 1

2

(
ec

4(n+ 1
2 )

)2n+1

e
+π2

4
c2

n+1
2 . (55)

10



Proof. Just note that λ̃n(c) =
1

2
exp (−(2n+ 1)J (c/(n+ 1/2))) and use (52) with x = c

n+1/2 .

Let us go back to quantities Jl. It is a straightforward consequence of (49) that the quantity
Jl(c) increases with l. The next lemma gives reverse inequalities.

Lemma 5. We have the inequalities

Jn+1(c)− π2

8
ln

(
π(n+ 1)

2c

)
− π3

16
≤ Jn+ 1

2
(c) ≤ Jn(c)− π2

8
ln

(
π(n+ 1

2 )

2c

)
+
π3

16
. (56)

Proof. We will only prove one of the inequalities, the other one being identical. Elementary compu-
tations give

Jn+1(c)− Jn+ 1
2
(c) ≤ 1

2
J
(

c

n+ 1

)
+
π2

4
(n+

1

2
) ln

Φ
(

2c
π(n+ 1

2 )

)
Φ
(

2c
π(n+1)

)
 .

We use (51) for the first term. The second one is bounded by

π2

4
(n+

1

2
)
Φ
(

2c
π(n+ 1

2 )

)
− Φ

(
2c

π(n+1)

)
Φ
(

2c
π(n+1)

) ≤ π3

16
.

Indeed, this is a consequence of the fact that Φ′(x) ≤ π/2 and
x

Φ(x)
≤ 1, for 0 < x ≤ 1.

Second step: tails of the integrals.

We fix some constant κ ≥ 4 (for instance κ = 12) and we assume that n ≥ 2κ + 1. Then, we
know from Lemma 3, that the condition (19), that is,

(1− q)√χn > κ,

is satisfied for c < n+1
2 . Next, if we define

cκn = max

(
πn

2
− κ

4
(ln(n) + 6),

n+ 1

2

)
(57)

then, we have the following lemma.

Lemma 6. For n ≥ 2κ+ 1, we have the inequality

I(cκn, c
∗
n) ≤ πκ ln(n) + 6πκ+ 2π2. (58)

Proof. Recall that |ψn,c(1)| ≤ 2χ1/4
n and

√
χn(c) ≤ π

2
(n+ 1), see [11]. Hence, we have

|ψn,τ (1)|2 ≤ 4
√
χn(τ) ≤ 2π(n+ 1).

Consequently, one gets∫ c∗n

cκn

(ψn,τ (1))2

τ
dτ ≤ 2π(n+ 1) ln

(
1 +

π
2 + κ

4 (ln(n) + 6)

cκn

)
.

We conclude by using the fact that cκn ≥ n+1
2 .

11



We conclude directly the proof of Theorem 3 in the case where n ≥ 2κ+ 1 and c < cκn. It suffices
to combine the results of Proposition 1 and the previous lemma, and get the desired inequalities

−π
2

16
(κ ln(n) + 6πκ+ π) ≤ I(c, c∗n)− (n+

1

2
)J
(

c

n+ 1
2

)
≤ πκ ln(n) + 6πκ+ 2π2 (59)

We also conclude that Theorem 3 and Theorem 2 still hold for the finite number of missing values
of n, that is, n ≤ 2κ+ 1. There is no problem to have upper bounds and lower bounds that do not

depend on c for c < 1. From Corollary 2, we have a precise estimate in terms of c2n+1 for λ̃n(c).
The same is given for λn(c) by the following lemma.

Lemma 7. Assume that n ≥ 1 is fixed and let 0 < c < 1. Then, there exist two constants δ(n), δ′(n)
such that

δ(n) c2n+1 ≤ λn(c) ≤ δ′(n) c2n+1. (60)

Proof. We first note that I(1, c∗n) ≤ I(1, π(n+1)
2 ). We recall that on this interval, we have the

inequality |ψn,τ (1)|2 ≤ 4π(n+1)
2 . So I(1, c∗n) ≤ 2π(n + 1) ln(π(n+1)

2 ). Inside the integral defining
I(c, 1), we use the following inequality, that may be found in [2],∣∣∣∣∣|ψn,τ (1)| −

√
n+

1

2

∣∣∣∣∣ ≤ τ2√
3(n+ 1/2)

≤ τ2

2
. (61)

So
∣∣I(c, 1)− (n+ 1

2 ) ln
(

1
c

)∣∣ ≤ 1, from which we conclude.

It remains to prove Theorem 2 and Theorem 3 when c > cκn and n ≥ 2κ+ 1.
Third step: Proofs of Theorems 2 and 3.

We fix κ > 4. Because of the previous steps, we will only need to study the cases

n ≥ 2κ+ 1 c < cκn = max

(
πn

2
− κ

4
(ln(n) + 6),

n+ 1

2

)
.

In view of (44), we want to bound the quantity

E = I(c, c∗n)−
(
n+

1

2

)
J
(

c

n+ 1
2

)
.

We have already given a bound to a first error term

E1 = I(c, c∗n)− I(c, cκn).

Because of (58), we know that

0 ≤ E1 ≤ πκ ln(n) + 6πκ+ 2π2. (62)

Next, the conditions on κ allow us to use the double inequalities (20). Namely,

(ψn,τ (1))
2

=
π

2K(
√
q)

√
χn(τ) +R(τ), |R(τ)| ≤ δ(κ)

(1− q(τ))K(
√
q(τ))

, 0 ≤ τ ≤ cκn. (63)

This leads to a second error,

E2 = I(c, cκn)− π

2

∫ cκn

c

dτ√
q(τ)K(

√
q(τ))

,

which is bounded as follows,

|E2| ≤ δ(κ)

∫ cκn

c

1

(1− q(τ))K(
√
q(τ))

dτ

τ
.

We then use the following lemma.

12



Lemma 8. We have the inequality

|E2| ≤ 2δ(κ)

(
(1 +

πκ

4
) ln(n) + ln+

(
1

c

)
+

3πκ

2

)
. (64)

Proof. By (38), we know that

2(1− q(τ))K(
√
q(τ)) ≥ 1− 2τ

πn
.

So we have the inequality

|E2| ≤ 2δ(κ)

∫ 2cκn
πn

2c
πn

ds

(1− s)s
≤ 2δ(κ)

(
ln
(n
c

)
+ ln

(
1

1− 2cκn
πn

))
,

and we conclude at once.

It remains to consider the main term, that is,

Imain(c, cκn) =
π

2

∫ cκn

c

√
χn(τ)

K(
√
q(τ))

dτ

τ
=
π

2

∫ cκn

c

dτ√
q(τ)K(

√
q(τ))

. (65)

We use the monotonicity properties of
√
q(τ)K(

√
q(τ)) , namely

Φ

(
2τ

π(n+ 1)

)
K ◦ Φ

(
2τ

π(n+ 1)

)
≤
√
q(τ)K(

√
q(τ)) ≤ Φ

(
2τ

πn

)
K ◦ Φ

(
2τ

πn

)
.

It follows that
Jn(c)− Jn(cκn) ≤ Imain(c, cκn) ≤ Jn+1(c).

So the last error,

E3 = Imain(c, cκn)− Jn+ 1
2
(c) = Imain(c, cκn)−

(
n+

1

2

)
J
(

c

n+ 1
2

)
,

satisfies the inequalities

Jn(c)− Jn+ 1
2
(c)− Jn(cκn) ≤ E3 ≤ Jn+1(c)− Jn+ 1

2
(c).

It remains to use (51) and (56) to conclude. We finally find that

|E| ≤ πκ ln(n) + 6πκ+ 2π2 + 2δ(κ)

(
(1 +

πκ

4
) ln(n) + ln+

(
1

c

)
+

3πκ

2

)
+
π2

8
ln

(
π(n+ 1

2 )

2c

)
+
π3

16
.

(66)
So we can take the following values for δ1, δ2, δ3, that have been given in Theorem 3.

δ1 = 22 + 3πκ(2 + δ(κ))

δ2 =
π2

8
+ πκ+ 2δ(κ)(1 +

πκ

4
)

δ3 =
π2

8
+ 2δ(κ)(1 +

πκ

4
).

This concludes the proofs of Theorem 3 and Theorem 2.
Note that when κ = 12 we find δ2 ≈ 200. We could have improved the sizes of the previous

constants at each step, but not significantly. Numerical experiments indicate that in practice, these
constants are much smaller.

From Theorem 3 and Corollary 2 we get the following corollary:

13



Corollary 3. There exist three constants δ1 ≥ 1, δ2, δ3,≥ 0 such that, for n ≥ 3 and c ≤ πn
2 ,

A(n, c)−1

(
ec

2(2n+ 1)

)2n+1

≤ λn(c) ≤ A(n, c)

(
ec

2(2n+ 1)

)2n+1

. (67)

with

A(n, c) = δ1n
δ2

(
c

c+ 1

)−δ3
e+π2

4
c2

n .

Widom’s Theorem says that A(n, c) can be replaced by a quantity that tends to 1 for n tending
to ∞. We cannot give such an asymptotic behavior at this moment, but we can estimate errors for
fixed c and n, which he does not. Remark that we have used the fact that ∆ = ln(4/e), see (54),
without proving it or giving a reference. This is a consequence of the asymptotic behavior found by
Widom, which cannot be valid at the same time as (67) if e/4 is replaced by another constant. This
implies in particular Theorem 1. It may be useful to give also the following corollaries.

Corollary 4. There exist constants a > 0 and δ ≥ 1 such that, for c ≥ 1 and n > 1.35 c, we have

λn(c) ≤ δe−an. (68)

Proof. The constant 1.35 has been chosen so that 2 ln( 4n
ec ) > π2c2

4n2 , which is the case when n >
1.35 c.

One has as well a critical super-exponential decay rate given by the following lemma.

Corollary 5. For any 0 ≤ a < 4
e , there exists a constant Ma such that for any c ≥ 1, we have

λn(c) ≤ e−2n log( anc ), ∀ n ≥ cMa.

Moreover, for any b > 4
e , there exists a constant Mb such that for any c ≥ 1, we have

λn(c) > e−2n log( bnc ), ∀ n ≥ cMb.

The above corollary is a precise answer to Boyd’s question on the super-exponential decay rate
of the λn(c), see [3].

Final discussion and comments:

We should mention that one of the problems of our method of approximation of the eigenvalues
λn(c) is the fact that it cannot be good for (1− q)√χn too close to 0, while our technique of proof
starts from the writing of ln(λn(c) as an integral from c to c∗n. We have seen that asymptotically,
for c fixed and n tending to ∞, we recover up to a factor of 1/2, the asymptotic behavior given by
Widom, see Corollary 2. The asymptotics for n fixed and c tending to 0 is also well-known, see for
example [20]. It may be written as

λn(c) ∼
(

ec

4(n+ 1
2 )

)2n+1

Wn

with Wn that does not depend on c and tends to 1 when n tends to ∞. Because of this, we propose
also the approximation of λn(c) given by

λ̂n(c) = 2λ̃n(c) = exp

(
−π

2

2
(n+

1

2
)

∫ 1

Φ( 2c
π(n+1/2)

dt

tE(t)2

)
. (69)
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Note that either one of λ̃n(c) or λ̂n(c) can be used to get the precise super-exponential decay rate of
the λn(c). Moreover, both formulae can be tested for the approximation of the λn(c). Nonetheless,

numerical experiments show that the approximation by λ̂n(c) is surprisingly good for c, n large. For

smaller values (and in particular for small values of (1 − q)√χn), the approximation by λ̃n(c) is
better.

At this moment, we do not have a theoretical justification of this, apart from the asymptotic
behavior of λn(c). A tentative proof may start by writing λn(c) with an integral from 0 to c, instead
of an integral from c to c∗n. Unfortunately, the singularity at 0 of the integral makes estimates
difficult and the idea of starting at c∗n instead of 0 has been central here in order to benefit from the
estimates on ψn(1).

We do not give a formal proof but rather some heuristic arguments. Heuristically , for c′ < c,
we have

ln

(
λn(c)

λn(c′)

)
≈ π2

2
(n+ 1/2)

∫ Φ( 2c
π(n+1/2)

)

Φ( 2c′
π(n+1/2)

)

dt

tE(t)2
.

Also, because of the asymptotic behavior of λn(c′) for c′ very close to 0 and n large enough, we have
that

ln

(
1

λn(c′)

)
≈ π2

2
(n+ 1/2)

∫ 1

Φ( 2c′
π(n+1/2)

)

dt

tE(t)2
.

As a consequence of these two approximations, we have

ln

(
1

λn(c)

)
≈ π2

2
(n+ 1/2)

∫ 1

Φ( 2c
π(n+1/2)

)

dt

tE(t)2

as long as the approximation of the values of |ψn(1)| are valid. That is, as long as (1 − q)
√
χn(c)

is not too small. The approximation λn(c) by λ̂n(c) has been tested for different values of n and

c in the examples 3 and 4, below. From these simulations, we can think that the quantity
λn(c)

λ̃n(c)
increases from 1 to 2 when n goes from the beginning of the plunge region to infinity.

4 Numerical results

In this section, we illustrate the results of the previous sections by various numerical examples.

Example 1: In this first example, we illustrate the fact that the actual values of the constants κ
and δ(κ), given by (19) and (20), respectively, are much smaller than the theoretical values given
in the proof of Lemma 2. We are interested in these values for n ≥ 2c/π. For this purpose, we
have considered the values of c = mπ,m = 10, 20, 30, 40. We have used Flammer’s method and
computed highly accurate values of χn(c) and ψn,c(1). Then, we have computed the smallest value
of κ, denoted by κc and ensuring the bounds (20). Also, we have computed the corresponding values
δ(κc) so that (ψn,c(1))2 is equal to its upper bound given in (20). It turns out that κc, the critical
value of κ, is obtained for n−th eigenvalues χn(c) with n = nc = [2c/π]. Also, by considering various
consecutive values of nc ≤ n ≤ nc + 40 and by computing the corresponding values of κ and δ(κ),
we found that the max δ(κ) is of the same size as κc. Table 1 shows the values of the critical values
κc and δ(κc) for the different values of the bandwidth c. Also, we give the values of max δ(κ).

Example 2: In this example, we illustrate our approximations of the quantity
√
q by

√
q̃, given by

formula (24). The accuracy of this approximation is critical for proving the exact super-exponential
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c nc κc δ(κc) max δ(κ).
10π 20 0.447 0.058 0.091
20π 40 0.413 0.051 0.084
30π 60 0.394 0.047 0.080
40π 80 0.335 0.025 0.048

Table 1: Critical values of κ, δ(κ) and max δ(κ) for different values of c.

decay rate of the λn(c) by our formula (42). For this purpose we have considered different values of
the bandwidth c and computed the previous approximations for different values of n. These approx-
imations are then compared with highly accurate counterparts obtained by the use of Flammer’s
method. The obtained numerical results are given by Table 2.

c n
√
q̃

√
q

10 6 0.995012670 0.99486271
10 0.782942846 0.78302833
15 0.585651991 0.58583492

25 16 0.99062205 0.98924622
20 0.90491661 0.90471915
25 0.79783057 0.79783979

50 33 0.99501269 0.99430098
40 0.91050626 0.91045325
50 0.80287160 0.80287326

100 64 0.99705417 0.99669712
80 0.91330250 0.91328853
100 0.80540660 0.80540692

Table 2: Illustrations of the approximation formula (24).

Example 3: In this example, we compare the explicit formula given by (69) to compute highly
accurate values of λn(c). For this purpose, we have considered the values of c = 10π, 20π, 30π and
computed λn(c) by using the method given in [7]. Then, we have implemented formula (69) in
a Maple computing software code. Figure 1 (a), (b), (c) show the graph of ln(λn(c)) versus the

graph of ln(λ̂n(c)), and ln(λWn (c)), for the different values of c and n. Here, λWn (c) is the Widom’s
asymptotic approximation of λn(c), given by (5). Also, we have plotted in Figure 2, the graphs of the

corresponding values of ln

(
λ̂n(c)

λn(c)

)
. These figures illustrate the surprising precision of the explicit

formula (69) for computing approximate values of the λn(c) which is numerically valid whenever
q < 1. In particular, the numerical results illustrated by Figure 2, indicate that at least for moderate

values of c, and q < 1, the approximations of λn(c), by either λ̃n(c) or λ̂n(c) are equal to λn(c) up
to a small multiplicative constant.
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Figure 1: Graphs of ln(λ̂n(c)) (boxes), ln(λWn (c)) (circles) and ln(λn(c)) (red line) with c = 10π for
(a), c = 20π for (b) and c = 30π for (c).

Figure 2: Graphs of ln
(
λ̂n(c)
λn(c)

)
with c = 10π for (a), c = 20π for (b) and c = 30π for (c).

Example 4: In this example, we illustrate the accuracy of the approximation scheme (69) in the
cases where the bandwidth c has relatively large or very large values. For this purpose, we have

borrowed some data given in Table 3 of [14], concerning the computation of |µn(c)| =
√

2π
c λn(c).

Note that in [14] and in the present work, the roles of λn and µn have been reversed. The data
provided by Osipov and Rokhlin are obtained by the highly accurate numerical method for the
computation of the λn(c) developed by the authors and described in [14]. These data are considered
as references values and are used for comparison purpose. Table 3 gives the values of |µ̂n(c)| =√

2π
c λ̂n(c), versus the corresponding references values. The numerical results of Table 3 indicate

that the accuracy of formula (69) is not affected by the large values of c. Also, to check the validity
condition of our explicit approximation formula of the λn(c), for each couple (c, n), we have provided
the corresponding approximations of q and (1 − q)√χn, given by q̃ and (1 − q̃)

√
χ̃n. Note that for

moderate and large values of the quantity (1− q)√χn, a satisfactory approximation of this latter is
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given by the approximation (1− q̃)
√
χ̃n. In fact, from (25) and (27), we have∣∣∣(1− q)√χn − (1− q̃)

√
χ̃n

∣∣∣ ≤ (1− q)
∣∣∣√χ̃n −√χn∣∣∣+ |q − q̃|

√
χ̃n

≤ 1

2
(1− q̃) +

∣∣∣√q −√q̃∣∣∣ c

2
√
χn
≤ 3

2
− q̃

2
.

c n q̃ (1− q̃)
√
χ̃n |µ̂n| |µn|

250 179 0.924218 19.707014 0.18948E-07 0.18854E − 07
184 0.903501 25.380432 0.16196E-09 0.16130E − 09
188 0.886848 30.038563 0.30609E-11 0.30500E − 11

1000 659 0.981782 18.386116 0.38402E-07 0.38241E − 07
665 0.976303 23.983045 0.44139E-09 0.43991E − 09
671 0.970675 29.764638 0.42935E-11 0.42815E − 11

16000 10213 0.998985 16.244476 0.56758E-07 0.56568E − 07
10222 0.998614 22.190912 0.52955E-09 0.52821E − 09
10231 0.998232 28.312611 0.42989E-11 0.42902E − 11

128000 81518 0.999881 15.293549 0.42532E-07 0.42408E − 07
81529 0.999834 21.234778 0.39992E-09 0.39906E − 09
81539 0.999791 26.766672 0.51858E-11 0.51768E − 11

106 636652 0.999986 13.738235 0.51646E-07 0.51504E − 07
636665 0.999980 19.666621 0.49076E-09 0.48980E − 09
636677 0.999975 25.260364 0.60652E-11 0.60558E − 11

Table 3: Illustrations of the approximation formula (69) for large values of c, n.
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