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Introduction

Objective: Using sensors placed on daily objects to identify high level human 
activities such as take medicine, sleeping, etc.

 Applications
 Health/Elderly care
 Emergency
 Security
 Smart Environment
 Surveillance
 Context-aware-systems

 Sensor types
 Contact switch sensors, pressure sensors, object identification sensors, etc.
 Camera

 Binary sensors are simple, cheap , easy to installed, and NOT as INTRUSIVE as camera.
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Data Segmentation

Segmentation Feature extraction Classification
Sensor Events 

sequence
Activity

Label

 Segmentation
 Divide the data into windows most suitable for activity recognition

 On each window a feature vector is computed to use it as an instance for learning or
testing phase.

 A difficult task:

 Human activities can be performed consecutively or concurrently  The exact
boundaries of an activity are difficult to define.
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Offline vs. Online methods (1)

 Offline method
 Segment data into time slices

 Each time slice labeled with activity that dominates it.

 Wait for future data to identify which activity is being executed (duration of the
window)

 Suitable for sequential activities, it is not effective in the case of interleaved or
concurrent activities.
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Offline vs. online methods (2)

 Online method
 The method classify each event when recorded.

 Data is segmented into windows of K sensor events.

 Each window contains events that precede the last one and describe it .

 Each window is labeled with the one of the last event.

 Suitable for non sequential activities and multi-residents smart-home.

 Better for health-care or assistance in living applications that require prompt
intervention/reaction.
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Feature extraction (1)

1. BaseLine feature extraction method (with 5 sensors in the smart-home)
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Drawback: window can contain sensor events far away from the last one (in time) 

 perhaps do not  correctly describe the last event?
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Feature Extraction (2)

2. Sensor-Dependency extraction

Computation of a mutual information matrix MI between sensors on the whole stream. 

For N sensors, NxN matrix (example still with 5 sensors). 

Higher MI s1,s2 is, stronger is the relationship between s1 and s2 ⇒ a strong influence 

between them for an activity.
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Feature extraction (3)

3.  Sensor Dependency feature extraction EXTENTED method

 In the previous method, Mutual information is computed on the consecutive apparition 

of two sensor events. 

 In this extension, computation is done in a window of K sensors instead

 with this modification allow more than one path of execution for each activity.
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Feature extraction (4)

4. Last State Sensor feature extraction method

Event value Feature vector

 It is efficient for instance with IR sensors of different kind (large and 

small cone).

 The last value of the sensor in the windows became more descriptive 

for the last event.
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Experiments

 Datasets from WSU CASAS smart-home project

 Classification stage

One vs. one SVM (LibSVM library)

 Experiment:

 
Two series of experiments:

 Learning on data excluding the “other” activity 
 Learning on data containing “other” activity

(« Other » activity: data with missing labels, transitions, etc.)

Dataset Gender & age Number of Sensors Time Interval 

Aruba Elderly / female 34 7  months 

Tulum 2 married residents 16 4 months 
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Results

Learning excluding „other events‟

Feature extraction

Method
Aruba dataset Tulum dataset

Acc F-score Acc F-score

Baseline 87.23 63.29 63.46 35.60

Sensor Dependency 87.71 65.56 64.18 39.30

Sensor Dependency
extension

87.71 68.68 65.57 41.29

Last Stat Sensor 87.55 69.24 63.95 36.91

Learning data containing „other events‟

Feature extraction

Method
Aruba dataset Tulum dataset

Acc F-score Acc F-score

Baseline 67.82 49.52 63.32 35.75

Sensor Dependency 64.18 47.54 63.48 36.71

Sensor Dependency
extension

67.38 50.39 65.26 39.01

Last Stat Sensor 69.09 47.38 63.90 34.81
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Conclusions & future works

 We achieved a classification rate of over 69 % on data 

containing “Other” activity.

 Last Stat Sensor feature extraction method gives the best 

performance in that case.

 Performance of recognition system is sensitive to the  

problem of missing labels data.

 Improving the performance of the system using data 

containing “other” activity .

 Finding a way to improve the computational complexity.
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