



### Feature extraction for human activity recognition on streaming data

*Nawel Yala* (PhD Student), *Belkacem Fergani* (Professor), LISIC Laboratory, USTHB, Faculty of Electronics and Computer Sciences Algiers

Anthony Fleury (Ass. Professor), Mines Douai, France





# **Outline**

## Introduction

• Human Activity Recognition using simple binary sensors

## > Methods

- Offline and Online Human Activity recognition
- Data segmentation
- Feature extraction

## Results

# Conclusions







Objective: Using sensors placed on daily objects to identify high level human activities such as take medicine, sleeping, etc.



#### ✓ Applications

- ✓ Health/Elderly care
- ✓ Emergency
- ✓ Security
- ✓ Smart Environment
- ✓ Surveillance
- ✓ Context-aware-systems

#### ✓ Sensor types

- ✓ Contact switch sensors, pressure sensors, object identification sensors, etc.
- Camera
- ✓ Binary sensors are simple, cheap , easy to installed, and NOT as INTRUSIVE as camera.



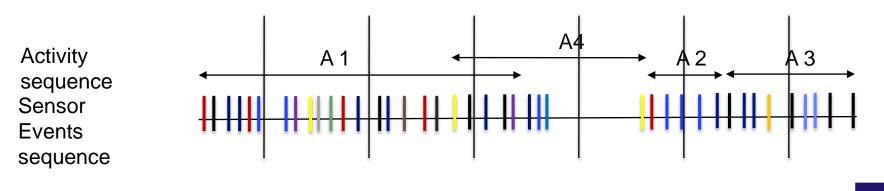


## **Data Segmentation**

Sensor Events, sequence 
Segmentation 
Feature extraction 
Classification 
Activity
Label

# Segmentation

- ✓ Divide the data into windows most suitable for activity recognition
- ✓ On each window a feature vector is computed to use it as an instance for learning or testing phase.
- ✓ A difficult task:
  - ✓ Human activities can be performed consecutively or concurrently → The exact boundaries of an activity are difficult to define.



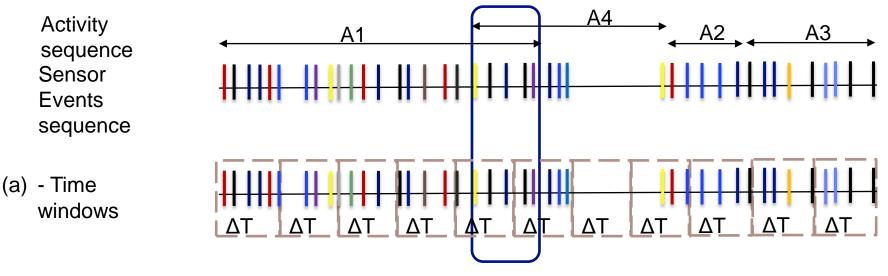


# **Offline vs. Online methods (1)**



# ✓ Offline method

- ✓ Segment data into time slices
- ✓ Each time slice labeled with activity that dominates it.
- ✓ Wait for future data to identify which activity is being executed (duration of the window)
- ✓ Suitable for sequential activities, it is not effective in the case of interleaved or concurrent activities.



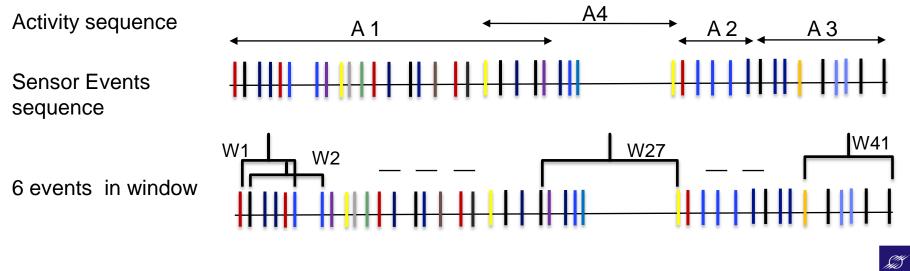


# **Offline vs. online methods (2)**



# ✓ Online method

- $\checkmark$  The method classify each event when recorded.
- ✓ Data is segmented into windows of K sensor events.
- $\checkmark$  Each window contains events that precede the last one and describe it .
- ✓ Each window is labeled with the one of the last event.
- ✓ Suitable for non sequential activities and multi-residents smart-home.
- ✓ Better for health-care or assistance in living applications that require prompt intervention/reaction.

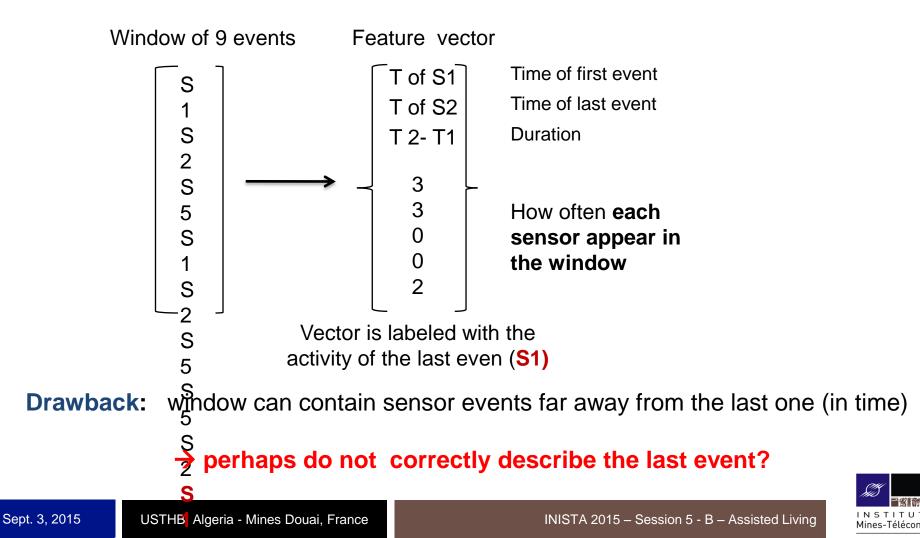


Mines-Télécon

### Feature extraction (1)



1. BaseLine feature extraction method (with 5 sensors in the smart-home)





## Feature Extraction (2)

2. Sensor-Dependency extraction

Computation of a mutual information matrix **MI** between sensors on the whole stream. For N sensors, NxN matrix (example still with 5 sensors).

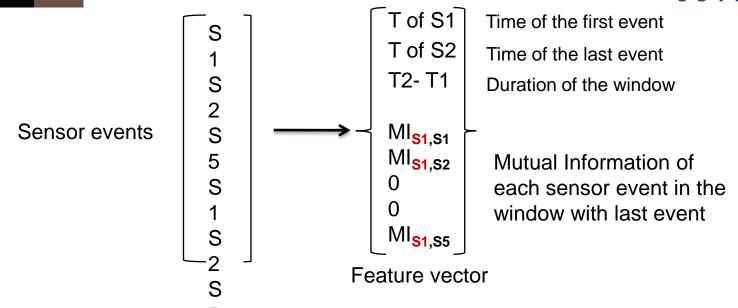
$$\mathbf{MI} = \begin{bmatrix} MI_{s1,s1} & MI_{s2,s1} & MI_{s3,s1} & MI_{s4,s1} & MI_{s5,s1} \\ MI_{s2,s1} & MI_{s2,s2} & MI_{s3,s2} & MI_{s4,s2} & MI_{s5,s2} \\ MI_{s3,s1} & MI_{s2,s3} & MI_{s3,s3} & MI_{s4,s3} & MI_{s5,s3} \\ MI_{s4,s1} & MI_{s2,s4} & MI_{s3,s4} & MI_{s4,s4} & MI_{s5,s4} \\ MI_{s5,s1} & MI_{s2,s5} & MI_{s3,s5} & MI_{s4,s5} & MI_{s5,s5} \end{bmatrix} & MI_{s5,s5}$$

Higher MI  $_{s1,s2}$  is, stronger is the relationship between  $s_1$  and  $s_2 \Rightarrow$  a strong influence between them for an activity.



# **Feature extraction (3)**





- 3. Sensor Dependency feature extraction EXTENTED method 5
  - In the previous method, Mutual information is computed on the consecutive apparition of two sensor eventors.
  - In this extension, computation is done in a window of K sensors instead
     1

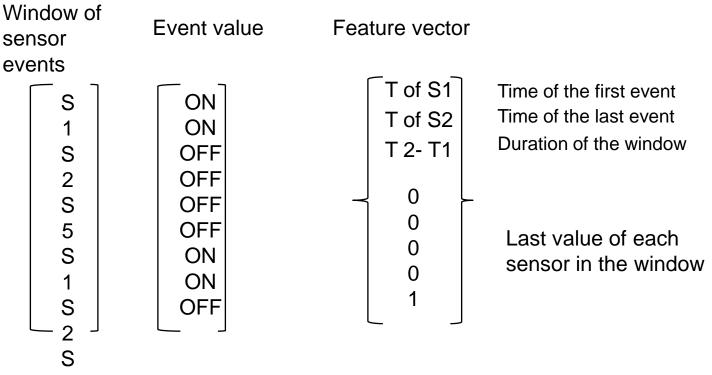
### $\rightarrow$ with this modification allow more than one path of execution for each activity.







### 4. Last State Sensor feature extraction method



- ✓ It is efficient for instance with IR sensors of different kind (large and smal pcone).
- ✓ The last value of the sensor in the windows became more descriptive for the last event.





# **Experiments**

### Datasets from WSU CASAS smart-home project

| Dataset | Gender & age        | Number of Sensors | Time Interval |
|---------|---------------------|-------------------|---------------|
| Aruba   | Elderly / female    | 34                | 7 months      |
| Tulum   | 2 married residents | 16                | 4 months      |

### Classification stage

One vs. one SVM (LibSVM library)

### **Experiment:**

Two series of experiments:

- Learning on data excluding the "other" activity
- Learning on data containing "other" activity

(« Other » activity: data with missing labels, transitions, etc.)







| Learning excluding 'other events' |               |         |               |         |  |  |  |
|-----------------------------------|---------------|---------|---------------|---------|--|--|--|
| Feature extraction                | Aruba dataset |         | Tulum dataset |         |  |  |  |
| Method                            | Acc           | F-score | Acc           | F-score |  |  |  |
| Baseline                          | 87.23         | 63.29   | 63.46         | 35.60   |  |  |  |
| Sensor Dependency                 | 87.71         | 65.56   | 64.18         | 39.30   |  |  |  |
| Sensor Dependency extension       | 87.71         | 68.68   | 65.57         | 41.29   |  |  |  |
| Last Stat Sensor                  | 87.55         | 69.24   | 63.95         | 36.91   |  |  |  |

| Learning data containing 'other events' |               |         |               |         |  |  |  |
|-----------------------------------------|---------------|---------|---------------|---------|--|--|--|
| Feature extraction                      | Aruba dataset |         | Tulum dataset |         |  |  |  |
| Method                                  | Acc           | F-score | Acc           | F-score |  |  |  |
| Baseline                                | 67.82         | 49.52   | 63.32         | 35.75   |  |  |  |
| Sensor Dependency                       | 64.18         | 47.54   | 63.48         | 36.71   |  |  |  |
| Sensor Dependency<br>extension          | 67.38         | 50.39   | 65.26         | 39.01   |  |  |  |
| Last Stat Sensor                        | 69.09         | 47.38   | 63.90         | 34.81   |  |  |  |







- ✓ We achieved a classification rate of over 69% on data containing "Other" activity.
- ✓ Last Stat Sensor feature extraction method gives the best performance in that case.
- Performance of recognition system is sensitive to the problem of missing labels data.
- Improving the performance of the system using data containing "other" activity .
- ✓ Finding a way to improve the computational complexity.







### Feature extraction for human activity recognition on streaming data

*Nawel Yala* (PhD Student), *Belkacem Fergani* (Professor), LISIC Laboratory, USTHB, Faculty of Electronics and Computer Sciences Algiers

Anthony Fleury (Ass. Professor), Mines Douai, France

