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Justifying Dominating Options when Preferential
Information is Incomplete

Christophe Labreuche1 and Nicolas Maudet2 and Wassila Ouerdane3

Abstract. Providing convincing explanations to accompany recom-
mendations is a key issue in decision-aiding. In the context of deci-
sions involving multiple criteria, the problem is made very difficult
because the decision model itself may involve a complex process. In
this paper, we investigate the following issue: when the preferential
information provided by the user is incomplete, is there a principled
way to define what is a “simple” explanation for a recommended
choice? We argue first that explanations may necessitate different
levels of detail. Next, we show that even when a detailed explana-
tion is necessary, it is possible to distinguish explanations of different
levels of complexity. Our results rely on an original connection we
establish between the “mechanics” required to compute supporting
coalitions of criteria and the simplicity of the explanation.

1 Introduction
From the first expert systems to the recent recommendation systems
which flourish on commercial websites, decision-aiding has been a
central concern in AI. Very soon, it has become clear that providing
recommendations was only part of the challenge. Indeed, explain-
ing the recommended choice(s) to the decision-maker is crucial to
improve the acceptance of the recommendation [9, 3, 13], but also
sometimes to allow the decision-maker to justify in turn the decision
against other stakeholders. What makes an explanation “convincing”
is thus highly context dependent.

In a context of movie recommendation, [7] notoriously reports that
a very efficient explanation is that “this recommender system has cor-
rectly predicted 80% of the time in the past”. In contexts involving
more critical decisions or other users, much more detailed explana-
tions would have to be considered [11]. Of course the ultimate na-
ture of the explanation will depend on the underlying decision model
and/or on the nature of the data provided by the user. Following [7],
a useful distinction to make is among data-based and process-based
explanations. To put it simply, in order to explain a recommenda-
tion, a data-based approach will focus on some key data, whereas a
process-based one would make explicit (part of) the steps that lead
to the decision. Both aspects are considered in this paper.

We start with a collection of partial orders over the options, as pro-
vided by different weighted criteria (or agents). The decision model
we rely on is based on the weighted Condorcet principle: options
are compared in a pairwise fashion, and an option a is preferred to
another option b when the cumulated support that a is better than b
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outweighs the opposite conclusion. Our aim in this paper is to pro-
vide a principled way to produce explanations to the fact that a given
set of options A is dominating with respect to the other options, more
specifically in the sense that A constitutes a Smith set [4].

This decision model is specified from some preferential informa-
tion (PI) provided during interview, related to the comparison of the
options on each criterion and also on the weights of criteria. Most
of the time, the PI is not sufficient to uniquely specify the model. In
particular, some options may be incomparable on some criteria for
the decision-maker. Moreover, the elicitation process will not result
in a single value of the weight vector, but rather in a set of vectors
that are compatible with the PI [6]. For instance, in the context of
multi-criteria decision aid (MCDA), the decision-maker provides a
few learning examples that yield constraints on the weights. In social
choice, instead of assigning a weight to each party, one may only
know a subset of the winning coalitions (A winning coalition beats
its complement). Then an option is said to be necessarily preferred to
another one if the first option is preferred to the second for all weight
vectors that are compatible with the PI, and for all orderings of the
options on the criteria that are compatible with the PI [6].

Unfortunately, when the PI is incomplete, the explanation may be
quite complex, even for problems of small size, because one cannot
display the value of the weights to the audience as part of an expla-
nation. Consider the following example.

Example 1. There are 7 options {a, b, c, d, e, f, g} and 4 criteria
{1, 2, 3, 4}. The partial orderings (noted !1,!2,!3,!4) of options
over the 4 criteria are depicted in Figure 1. The PI regarding the
importance of the criteria is composed of three items:

• 1 together with 3 are more important than 2 and 4 together;
• 2 and 3 together are more important than criterion 1 taken alone;
• 4 is more important than criteria 2 and 3.

Actually, option a is the unique dominating option. The “techni-
cal” reason is that (i) a dominates e and f on all criteria, (ii) coali-
tion 1, 2, 3 is a winning coalition (preference of a over b), (iii) coali-
tion 1,4 is a winning coalition (preference of a over d), (iv) coalition
1,3,4 is winning (preference of a over g), and (v) coalition 2,3,4 is a
winning coalition (preference of a over c). But these reasons vary in
terms of the effort required to understand them: (i) is trivial, and (ii),
(iii) and (iv) are reinforcement of some statements of the PI. For in-
stance, (ii) easily follows from the fact that 1 and 3 are already more
important than 2 and 4. On the other hand, the underlying justifica-
tion to (v) is more complex. How to deduce indeed from the PI, the
statement that coalition 3,4 beats coalition 1,2?

We will focus on MCDA but our approach can be used in social
choice in a similar way. This paper advances the state of the art by
characterizing minimal complete explanations to justify dominating
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Figure 1. Partial preferences !1,!2,!3,!4 over the criteria 1,2,3,4.

sets in the presence of incomplete preferential information. We argue
that this question calls for a process-based approach whereby com-
parative statements can be produced. We make precise the intuition
that explanations can be of different levels of detail and complexity.
Specifically, we classify explanations depending on the “operators”
that were used to derive the desired statements. The major ingredient
is a characterization of statements on weights that can be deduced
(in terms of linear combinations) from the PI. We also show how to
compute them. The remainder of this paper is as follows. Sect. 2 first
details the available preferential information, the decision model, and
the language used to produce explanations. We show how our ap-
proach can flexibly cater for the different degrees of accuracy that
may occur within the same instance, depending whether the pairwise
comparison under analysis is considered tight (Sect. 3) or obvious
(Sect. 4). Sect. 5 illustrates the output as produced by our implemen-
tation. Sect. 6 discusses related work and concludes.

2 Background and basic definitions
We consider a finite set O of options and a finite set H = {1, . . . ,m}
of criteria. To simplify notation, coalition {1, 2, 3} will be noted 123.

2.1 Description of the preferential information
The decision-maker needs to provide information regarding the rank-
ing of options O, but also regarding the relative strength of coalitions
of criteria (2H ). Thus, two types of statements are considered.

Definition 1. A preferential statement (p-statement) is of the form
[b !i c] where b, c ∈ O and i ∈ H , meaning that b is preferred over
c on criterion i. Let S denote the set of all such statements.

Definition 2. A comparative statement (c-statement) is of the form
[I ! J ] where I, J ⊆ H with I ∩ J = ∅, meaning that the impor-
tance of the criteria in I is larger than that of the criteria in J . Let V
denote the set of all such statements.

It is important to remark that expressing a c-statement amounts to
expressing a constraint on the feasible weight vectors attached to the
criteria. Let W (the set of normalized weights) be the set of weights
vectors w ∈ [0, 1]H such that

∑
i∈H wi = 1.

We now define the operators which will make the link between the
c-statements and their semantical counterpart (the weights).

Definition 3. For a set V ⊆ V of c-statements, let V ↓ := {w ∈
W s.t. ∀[I ! J ] ∈ V ,

∑
i∈I wi >

∑
i∈J wi} be the set of weights

satisfying the comparative statements V . Conversely, the set of c-
statements that can be deduced from W ⊆ W is W ↑ := {[I ! J ] ∈
V s.t. ∀w ∈ W ,

∑
i∈I wi >

∑
i∈J wi}. Finally, we introduce some

notation:

• For V ⊆ V , we set V ↓↑ = (V ↓)↑ and cl(V ) := V ↓↑.
• For W ⊆ W , we set W ↑↓ = (W ↑)↓.

Definition 4. A PI is a pair 〈S, V 〉 with S ⊆ S and V ⊆ V .

The information provided by the decision-maker is supposed to
be “rational”. Specifically, this means that the S part of the PI con-
stitutes a partial order (reflexive, antisymmetric, transitive, but not
necessarily complete), and that V is assumed to be consistent4, in
the sense that V ↓ )= ∅. Note finally that the set of all linear exten-
sions that can be obtained from S is denoted Slin(S).

Example 2 (1 ctd.). Given the PI of Ex. 1, V = {[13 ! 24], [23 !
1], [4 ! 23]}. We have e.g. [c !1 d] ∈ S, [b !2 a] /∈ S, and
〈0.2, 0.1, 0.15, 0.55〉 /∈ V ↓ (violation of the first constraint).

2.2 Description of the choice problem
Definition 5. A set I ⊆ H is called a winning coalition (w.r.t. the PI
〈S,W 〉) if

∑
i∈I wi > 1

2 for all w ∈ V ↓.
Option b is necessarily preferred to c if whatever the weight vector

compatible with V , whatever the completion of S to form total orders
on each criterion, the sum of the weights of criteria supporting b is
larger than the sum of the weights of criteria supporting c.

Definition 6. For b, c ∈ O, b is necessary preferred to c given 〈S, V 〉
(noted b !S,V c) if

∀w ∈ V ↓ ∀K ∈ Slin(S)
∑

i∈H , [b$ic]∈K

wi >
∑

i∈H , [c$ib]∈K

wi.

This corresponds to the necessary preference relation [6]. In quali-
tative decision models, this concept is similar to the dominance query
for the CP nets [2]. An option a ∈ O is called weighted Condorcet
winner w.r.t. 〈S, V 〉 (noted WCWO(S, V )) if for all b ∈ O \ {a},
a !S,V b. When the WCW does not exist, it is usual to consider the
Smith set (henceforth denoted by A). It is the smallest set of alterna-
tives such that all elements of A beat all options outside this set. It
is well defined and unique [4]. When a WCW exists, the Smith set is
reduced to the WCW. Moreover, we set O! := O \A.

There is a clear relationship between the size of A and 〈S, V 〉 pro-
vided: the less informative 〈S, V 〉, the more likely it is that some
options cannot be compared. Specifically, the size of A will typically
shrink as 〈S, V 〉 gets more specified. In Example 1, e and g are in-
comparable because (as we shall see later) 1 and 23 are not winning
coalitions given V , and e and g are incomparable on criterion 4.

This model is widely used in MCDA (note that all weights remain
hidden to the user). Models not based on numerical weights also ex-
ist, but they allow less deductions to be drawn from the PI.

2.3 Description of the language for the explanation
In Example 1, we have A = {a}. When analyzing why a beats all
options in O!, one notices that there are different situations. For op-
tions b, c, d, the preference of a over these options is not so trivial and
deserves an adequate explanation. For option g, the case seems more
clear, since a beats g on 134, and coalitions 13 and 34 are already
winning coalitions. Now regarding options e, f , the dominance of a
is clear since a is supported by unanimity of the criteria. Generaliz-
ing this example, it appears that dominated options can be partitioned

4 In fact, many work dealing with explanations in AI address the problem of
exhibiting subsets of constraints provoking an inconsistency, see e.g. [8].
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into different classes, capturing the fact that some of them are obvi-
ously dominated, some are clearly dominated, while some others are
close to a tie with some element of A. Thus, the level of detail ex-
pected by the decision maker in the produced explanation will vary.

• unanimous – this case occurs when an alternative b lies behind a
on all criteria (technically, the option is Pareto-dominated), i.e. for
all i ∈ H , [a !i b] ∈ S. This requires no specific explanation.

• large majority – this occurs when the minimum guaranteed value
of the weight of the criteria supporting a against b is larger than a
threshold ρ ∈ ( 12 , 1) to be fixed by the designer:

min
w∈V ↓

∑

i∈H, [a$ib]∈S

wi > ρ. (1)

As the decision is clear-cut, the decision-maker does not need for
a precise explanation.

• weak majority – these are the remaining cases, i.e. when the de-
cision is not clear and a detailed explanation is required. We will
focus our development mainly on this case.

The explanation process is thus as follows. For each element a
in the Smith set, we denote by O!

una [a], O!
large [a] and O!

weak [a] the
set of options from O! in the situations unanimous, large majority
and weak majority respectively with a. The first set is easily con-
structed. The second will be studied at the end of the paper as we
focus our analysis on the weak majority situation. In this case, we
notice that a is a WCW of the set O!

weak [a]∪{a} of options (denoted
by WCWO!

weak [a]∪{a}(S, V )). We can thus treat each element of A
separately and explain why it is a WCW of this subset of options.

3 Complete explanations for a weak majority
We turn our attention to explanations as to why
WCWO!

weak [a]∪{a}(S, V ) = {a} for some a ∈ A. We shall
formally distinguish different levels of complexity required to
explain c-statements in this context. This will provide a formal basis
for the definition of minimal explanations.

3.1 Complete explanations on S and V

Following the data-based approach in [7], providing an explanation
amounts to simplify the PI provided by the decision-maker. Accord-
ingly, a complete explanation is a set of p-statements S′ together with
a set of c-statements V ′ such that, for any weight vector which can
be deduced from V ′, any completion of the set of p-statements from
S′ yields a as a WCW. By complete, we mean that while simplifying
the data, one can still prove that a is a WCW.

Definition 7. The set of data-based complete explanations
given 〈S, V 〉 is: ExData

S,V (a) =
{
〈S′, V ′〉 ⊆ S × V s.t.

WCWO!
weak [a]∪{a}(S

′, V ′) = {a}
}

.

We need the following definition to show that one can use a con-
dition on the operator cl to prove that a is a WCW.

Definition 8. PS(a, b) := {i ∈ H s.t. [a !i b] ∈ S} and V(S) :=
{[PS(a, b) ! H \ PS(a, b)] , b ∈ O!

weak [a]}.

Lemma 1. WCWO!
weak [a]∪{a}(S

′, V ′) = {a} iff V(S′) ⊆ cl(V ′).

Proof : Let b ∈ O!
weak [a]. Let L := {[a !i b] s.t. [a !i b] ∈

S′} ∪ {[b !i a] s.t. [a !i b] )∈ S′}. We have a !S′,V ′ b iff

∑
i∈H , [a$ib]∈L wi >

∑
i∈H , [a$ib] '∈L wi for all w ∈ V ′↓, iff

[PS′(a, b) ! H \ PS′(a, b)] ∈ V ′↓↑ = cl(V ′).

From the previous lemma, 〈S′, V ′〉 ⊆ S × V is an element of
ExData

S,V (a) iff V(S′) ⊆ cl(V ′).

Example 3. Consider 5 criteria and four options a, b, c, d. Assume
that V = {[1 ! 23], [34 ! 15], [2 ! 5]} and S = {[a !1 b], [a !4

b], [a !5 b], [a !2 c], [a !3 c], [a !4 c], [a !1 d], [a !3 d], [a !4

d], [b !3 d]}. Let V ′ = {[1 ! 23], [34 ! 15]} and S′ = S \
{[b !3 d]}. We note that 〈S′, V ′〉 ∈ ExData

S,V (a). In the data-based
approach, 〈S′, V ′〉 is the minimal complete explanation in the sense
of set inclusion. However, for the decision-maker, the sole knowledge
of 〈S′, V ′〉 is not sufficient to understand why a is a WCW, i.e. why
the sets of criteria PS′(a, b), PS′(a, c) and PS′(a, d) appearing in
S′ form winning coalitions. In other words, the decision maker needs
to understand why V(S′) = {[145 ! 23], [234 ! 15], [134 ! 15]}
can be deduced from V .

Following this example, one sees that there is a major distinction
between the data-based and the process-based approaches. The first
one does not allow a complete traceability from the PI to the recom-
mendations. Hence we adopt the second one in this paper regarding
the c-statements. In a process-based approach, a complete explana-
tion is a pair composed of S′ ⊆ S such that V(S′) ⊆ cl(V ) (proving
that a is a WCW), and of an explanation noted ExProc

V (V(S′)) of
why V(S′) results from V . ExProc

V is not further described here; it
will be done in Section 3.3.

Definition 9. The set of process-based complete explanations given
〈S, V 〉 is: ExProc

S,V (a) =
{
〈S′,ExProc

V (V(S′))〉 : S′ ⊆ S and

V(S′) ⊆ cl(V )
}

.
In order to be able to compute S′ but also to explain V(S′), we

need to give some properties of cl and characterize cl(V ).

3.2 cl as closure
From Def. 3, cl(V ) is the set of c-statements that can be deduced
from V . A natural question is whether applying cl several times adds
more c-statements. We show that this is not the case. More precisely,
the operator cl : P(V) → P(V) is a closure, i.e. V ⊆ cl(V ) for all
V ⊆ V (extensiveness), V ⊆ V ′ implies that cl(V ) ⊆ cl(V ′) for all
V, V ′ ⊆ V (increasingness), and cl ◦ cl = cl (idempotency), as its
notation suggests.

Lemma 2. The operator cl is a closure.

Proof : The following three results are clear.

W ⊆ W ↑↓ for all W ⊆ W. (2)
V ⊆ V ↓↑ for all V ⊆ V. (3)

∀V, V ′ ∈ V, V ⊆ V ′ ⇒ V ↓ ⊇ V ′↓. (4)
We now give a few useful assertions.

Assertion 1. W ↑ = W ↑↓↑ for all W ⊆ W .

Proof : We need only to prove W ↑↓↑ ⊆ W ↑ as the opposite inclusion
follows from (2). Let us consider thus [I ! J ] ∈ W ↑↓↑. Hence

∀w ∈ W ↑↓
∑

i∈I

wi >
∑

i∈J

wi. (5)

Let us fix now w ∈ W . From (2), w ∈ W ↑↓. By (5), we have∑
i∈I wi >

∑
i∈J wi. This latter relation is satisfied for all w ∈ W .

Hence [I ! J ] ∈ W ↑.
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Assertion 2. V ↓ = V ↓↑↓ for all V ⊆ V .

Proof : Similar to that of Assertion 1.

Extensiveness: Follows from (3).
Increasingness: Let V ⊆ V ′ and [I ! J ] ∈ V ↓↑. Then for all

w ∈ V ↓,
∑

i∈I wi >
∑

i∈J wi. As V ′↓ ⊆ V ↓ (by (4)), then for all
w ∈ V ′↓,

∑
i∈I wi >

∑
i∈J wi. Hence [I ! J ] ∈ V ′↓↑, and thus

V ↓↑ ⊆ V ′↓↑.
Idempotency: Follows from Assertions 1 and 2.

3.3 Explanations of c-statements
The aim of this section is to construct ExProc

V (V ′) for V ′ ⊆ cl(V ).
To this end, one shall explain how any element of cl(V ) results from
V . We start with a simple example.

Example 4 (2 ctd.). From [4 ! 23] ∈ V , we can deduce a fortiori
that [14 ! 23] ∈ cl(V ) and [4 ! 3] ∈ cl(V ).

Monotonicity generalizes the previous example in the following way:

[I ! J ] ∈ V =⇒ ∀I ′ ⊇ I ∀J ′ ⊆ J [I ′ ! J ′ \ I ′] ∈ cl(V ) (6)

Consider a more complex extension.

Example 5 (2 ctd.). V ↓ is composed of the weights w ∈ W satisfy-
ing w1 + w3 > w2 + w4, w2 + w3 > w1 and w4 > w2 + w3.

New constraints can be derived by linear combinations of these
constraints. For instance, the constraint w3 +w4 > w1 +w2 results
from the summation of constraint w1+w3 > w2+w4 with two times
the constraints w2 + w3 > w1 and w4 > w2 + w3.

The next proposition shows that the intuition of Example 5 holds
in the general case: all c-statements that can be deduced from V re-
sults from linear combinations (with integer coefficients) of the con-
straints in V and of the constraints on the sign of the weights.

Proposition 1. [I ! J ] ∈ cl(V ) iff the following ILP is feasible:

Find non-negative integers {αE,F }[E$F ]∈V , {βi}i∈H , γ

minimizing
∑

[E$F ]∈V αE,F +
∑

i∈H βi + γ such that
∑

[E$F ]∈V

αE,F ≥ 1 (7)

βi +
∑

[E$F ]∈V,E(i

αE,F −
∑

[E$F ]∈V, F(i

αE,F =






γ if i ∈ I
−γ if i ∈ J
0 otherwise

(8)for all i ∈ H .

Proof : The normalization condition of the weights can be re-
moved since we analyse the completion among comparative state-
ments. Let U := {w ∈ Rm

+ : ∀[E ! F ] ∈ V ,
∑

i∈E wi >∑
i∈F wi}. Let us consider [I ! J ] ∈ cl(V ). Hence for all

w ∈ U ,
∑

i∈I wi >
∑

i∈J wi. This means that U ′ := {w ∈
U ,

∑
i∈E wi ≤

∑
i∈F wi} = ∅. Hence the linear constraints in U ′

are inconsistent. From Motzkin’s theorem [12, pages 28-29], there
exists non-negative integers αE,F , γ and βi with at least one coef-
ficient corresponding to the strict inequalities (i.e. at least one αE,F

non-zero – see (7)) such that the coefficients in front of each wi in
the following expression are equal to zero

∑

[E$F ]∈V

αE,F

(∑

i∈E

wi −
∑

i∈F

wi

)
+γ

(∑

i∈J

wi−
∑

i∈I

wi

)
+
∑

i∈H

βi wi.

Hence (8) is fulfilled for all i ∈ H .

The previous proposition is very important. It provides a char-
acterization of cl(V ). It shows precisely how constraint [I ! J ]
is derived from V and the sign of the weights. The values αE,F

and βk are the coefficients that are multiplied by the constraints∑
i∈E wi >

∑
i∈F wi and wk ≥ 0 respectively. The summation

yields the constraint γ ×
∑

i∈I wi > γ ×
∑

i∈J wi.
If the coefficients α,β, γ satisfy (7) and (8), multiplying these co-

efficients by any positive integer also verify the constraints. The use
of the minimization functional in the ILP ensures that we obtain the
smallest values of the coefficients and thus the simplest explanation.

Definition 10. The complete explanation ExProc
V ([I !

J ]) of the c-statement [I ! J ] ∈ cl(V ) is〈
({αE,F }[E$F ]∈V , {βi}i∈H , γ), [I ! J ]

〉
.

For V ′ ⊆ cl(V ), ExProc
V (V ′) := ∪[I$J]∈V ′ExProc

V ([I ! J ]).

Example 6 (5 ctd.). With α13,24 = 1, α23,1 = 2, α4,23 = 1, βi = 0
for all i ∈ H and γ = 1, we obtain [34 ! 12] ∈ cl(V ).

Moreover, cl(V ) = {[123 ! 4], [124 ! 3], [134 ! 2], [13 !
24], [13 ! 2], [14 ! 23], [14 ! 2], [1 ! 2], [13 ! 4], [14 !
3], [234 ! 1], [23 ! 1], [24 ! 1], [34 ! 12], [34 ! 1], [4 !
1], [24 ! 3], [34 ! 2], [3 ! 2], [4 ! 23], [4 ! 2], [4 ! 3]}.

3.4 Complexity levels in explaining c-statements
In Example 6, let us consider four particular elements of cl(V ),
[23 ! 1], [4 ! 3], [4 ! 1] and [34 ! 12]. The difficulty of jus-
tifying these four statements from V is not the same. Indeed, the first
statement [23 ! 1] is directly contained in V so that there is no un-
derlying complexity for the user. The second statement [4 ! 3] is
directly obtained from [4 ! 23] ∈ V using a monotonicity argument
(see Example 4). The third statement [4 ! 1] results from the sum-
mation of the two relations w2 + w3 > w1 and w4 > w2 + w3 of
V ↓. Lastly, as we already noticed in Example 5, the last statement
[34 ! 12] is more complex to obtain. The arguments that we use to
justify a statement from cl(V ), going from the first statement to the
fourth one are of increasing complexity.

It seems thus natural to decompose cl(V ) into four nested sets.
The first set cl0(V ) := V is the c-statements contained in the PI. The
second set cl1(V ) is composed of the elements of cl(V ) that can be
deduced from V only using monotonicity condition (see (6)). This
corresponds to the case where, in Proposition 1, all α coefficients
are equal to 0, except one that is equal to 1. The third set cl2(V ) is
composed of the elements of cl(V ) that can be deduced from V only
using summation and monotonicity conditions. This corresponds to
the case when the α coefficients are either equal to 0 or 1. Finally,
cl3(V ) = cl(V ). The set cl(V ) is partitioned in the following way.

Definition 11. ∆0 = cl0(V ), ∆j = clj(V ) \ clj−1(V ) for j ∈
{1, 2, 3}.

Example 7 (6 ctd.). We have ∆0 = {[13 ! 24], [23 ! 1], [4 !
23]}, ∆1 = {[123 ! 4], [134 ! 2], [13 ! 2], [13 ! 4], [234 !
1], [124 ! 3], [14 ! 23], [14 ! 2], [14 ! 3], [24 ! 3], [34 !
2], [4 ! 2], [4 ! 3]}, ∆2 = {[24 ! 1], [34 ! 1], [4 ! 1], [1 !
2], [3 ! 2]} and ∆3 = {[34 ! 12]}.

The sets ∆0,∆1,∆2,∆3 are of increasing complexity. When
comparing two sets V ′, V ′′ ⊆ cl(V ), we prefer the set that has the
smallest number of elements in ∆3. In case of equality, we prefer the
one that has the smallest number of elements in ∆2. And so on. The
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following ordering !V depicts the complexity of understanding why
a set of c-statements derives from V .

Definition 12. For V ′, V ′′ ⊆ cl(V ), V ′ !V V ′′ iff (|V ′ ∩
∆3|, |V ′ ∩ ∆2|, |V ′ ∩ ∆1|, |V ′ ∩ ∆0|) !lex (|V ′′ ∩ ∆3|, |V ′′ ∩
∆2|, |V ′′ ∩ ∆1|, |V ′′ ∩ ∆0|), where !lex is the lexicographic or-
dering. (x1, x2, x3, x4) !lex (y1, y2, y3, y4) if there exists i ∈
{1, 2, 3, 4} such that xi > yi and xj = yj for all j ∈ {1, 2, 3, 4}
with j < i.

We notice the elements of S and of ∆0 are of the same complexity
since they are both elements of the PI. The number of elements of p-
statements is added to the number of c-statements that belong to ∆0.

Definition 13. Let 〈S′,ExProc
V (V(S′))〉, 〈S′′,ExProc

V (V(S′′))〉 ∈
ExProc

S,V (a). The complexity of S′ is comp(S′) := (|V(S′) ∩
∆3|, |V(S′) ∩ ∆2|, |V(S′) ∩ ∆1|, |V(S′) ∩ ∆0| + |S′|). We de-
fine the order ! (over ExProc

S,V (a)) by 〈S′,ExProc
V (V(S′))〉 !

〈S′′,ExProc
V (V(S′′))〉 iff comp(S′) !lex comp(S′′).

3.5 Determination of the minimal explanations
In order to compute the minimal explanations in the sense of !, one
may proceed in three steps: (S1) determines all elements of cl1(V ),
cl2(V ) and cl3(V ); (S2) identifies all elements of ExProc

S (a) :=
{S′ ⊆ S : V(S′) ⊆ cl(V )}; (S3) determines the elements S′ in
ExProc

S (a) such that 〈S′,ExProc
V (V(S′))〉 is minimal in the sense of

!. To determine whether [I ! J ] ∈ cl(V ), it suffices to perform an
ILP (by Proposition 1). Step (S1) requires to compute all elements of
cl1(V ), cl2(V ) and cl3(V ), which is not necessary in step (S2) and
might be time consuming. Hence, we propose to perform steps (S1)
and (S2) at the same time, determining the belonging to the closure
only when required.

To this end, the following variables are introduced in the algo-
rithm: Cl1, Cl2, Cl3 correspond to the elements of cl1(V ), cl2(V ),
cl3(V ) that are useful in the analysis; NCl are c-statements that are
not in cl(V ) and ExCl contains the explanations of Cl1, Cl2, Cl3. We
start by initializing these variables

Cl0 = V , Cl1 ← ∅ , Cl2 ← ∅ , Cl3 ← ∅ , NCl ← ∅ , ExCl ← ∅.
The next algorithm checks whether a c-statements belongs to cl(V ).

Algorithm 1. Function isInClosure(I) returns a boolean saying
whether [I ! H \ I] ∈ cl(V ), and updates Cl1, Cl2, Cl3, NCl, ExCl:

If [I ! H \ I] ∈ Cl0 ∪ Cl1 ∪ Cl2 ∪ Cl3 then return true;
If [I ! H \ I] ∈ NCl then return false;
Launch the ILP of Proposition 1 on [I ! H \ I];
If the ILP is infeasible then

NCl ← NCl ∪ {[I ! H \ I]}; return false;
ExCl ← ExCl∪ {

〈
({αE,F }[E#F ]∈V , {βi}i∈H , γ), [I ! H \ I]

〉
};

If
∑

[E$F ]∈V αE,F = 1 then return true;
If αE,F ∈ {0, 1} for all [E ! F ] ∈ V then

Cl2 ← Cl2 ∪ {[I ! H \ I]}; return true;
Cl3 ← Cl3 ∪ {[I ! H \ I]}; return true;

The main algorithm is now described. Firstly, it computes
PS(a, b) := {I ⊆ PS(a, b) s.t. [I ! H \ I] ∈ cl(V )}. Then steps
(S2) and (S3) are performed.

Algorithm 2. Function bestExplanations(a) (for a ∈ A) com-
putes the elements of ExProc

S,V (a) that are minimal w.r.t. !:
For all b ∈ O!

weak [a] do
PS(a, b) ← ∅;
For all I ⊆ PS(a, b) do

If isInClosure(I) =true then PS(a, b) ← PS(a, b) ∪ {I};

ExProc
S (a) ←

{
{[a !i b] , i ∈ Ib and b ∈ O!

weak [a]}

for all Ib ∈ PS(a, b), b ∈ O!
weak [a]

}
;

E ←
{
〈S′,ExProc

V (V(S′))〉 , S′ ∈ ExProc
S (a)

}
;

(where ExProc
V is stored in ExCl)

return the minimal elements of E w.r.t. !;

Note that in the first loop in Algorithm 2, when isInClosure(I) re-
turns false, we need not explore any subset of I (they cannot belong
to PS(a, b)). This treatment is clearly exponential in the number of
criteria in the worst case. In Algo. 2, the number of calls to an ILP is
at worse 2m (where m is the number of criteria) and the total num-
ber of calls of isInClosure is at worse |O!

weak [a]| × 2m. Moreover,
the cardinality of ExProc

S (a) is at worse 2m×|O!
weak [a]|. In practice, it

might be much less – see Example 8 below. Moreover our approach
only computes ILPs when required.

Example 8 (1 ctd.). In the comparison of a with b, c, d, the number
of ILP that are solved is 10 (instead of 16 in the worse case), and
isInClosure is called 15 times (instead of 48 in the worse case).
Moreover, |ExProc

S (a)| = 4 (instead of 4096 in the worse case) –
see Section 5 for the details.

4 Complete explanation for a large majority
We have seen at the beginning of the paper, that the large majority
situation applies when condition (1) is satisfied.

Definition 14. V +
ρ =

{
I ⊆ H s.t. ∀w ∈ V ↓

∑

i∈I

wi > ρ
}
.

This section is concerned with the identification of the coalitions
in V +

ρ with the associated explanation. One first notes that if I ∈ V +
ρ

then necessarily [I ! H \ I] ∈ cl(V ) as ρ > 1
2 .

Example 9. Assume that V = {[1 ! 2], [2 ! 3], [3 ! 4], [4 ! 5]},
with m = 5. One can easily show that w1 + w2 + w3 > 3

5 for all
w ∈ V ↓. Hence coalition 123 ∈ V +

ρ if ρ does not exceed 3
5 .

We characterize the elements of V +
ρ .

Proposition 2. I ∈ V +
ρ iff the following ILP is feasible:

Find {αE,F }[E$F ]∈V ∈ NV
+ , {βi}i∈H ∈ NH

+ , δ ∈ N, γ ∈ N+

minimizing
∑

[E$F ]∈V αE,F +
∑

i∈H βi + δ + γ such that
∑

[E$F ]∈V

αE,F ≥ 1 (9)

βi+δ+
∑

[E$F ]∈V , E(i

αE,F−
∑

[E$F ]∈V , F(i

αE,F =

{
γ if i ∈ I
0 otherwise

(10)for all i ∈ H , and
δ ≥ γ ρ (11)

Proof (Sketch): Similar to that of Proposition 1. The normalization
condition must be considered due to the presence of non-zero right
hand side in (1). The inequality (11) follows from this.

The values αE,F , βk and δ are the coefficients that are multiplied
by the constraints

∑
i∈E wi >

∑
i∈F wi, wk ≥ 0 and

∑
i∈H wi =

1 respectively.

Example 10 (Example 9 cont.). For 1
2 < ρ ≤ 3

5 , 123 ∈ V +
ρ results

from the coefficients α1,2 = 2,,α2,3 = 4, α3,4 = 6, α4,5 = 3,
β1 = β2 = β3 = β4 = 0, δ = 3 and γ = 5. More generally,
V +
ρ = {123, 124, 1234, 1235, 1245, 12345}.
The generation of explanation from the coefficients in Prop. 2 can

be done as for Prop. 1, based on α, β, δ and γ.
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5 Output of the results
To wrap up, for all a ∈ A, O!

una [a] = {b ∈ O! , PS(a, b) = H},
O!

large [a] = {b ∈ O! \ O!
una [a] , PS(a, b) ∈ V +

ρ } and O!
weak [a]

are the remaining elements of O!. ILP is used to compute the coef-
ficients appearing in Propositions 1 and 2. The minimal explanations
for O!

weak [a] are obtained thanks to Algorithm 2. As for the closure,
the elements of V +

ρ are computed only when required, that is only
for coalitions PS(a, b).

We conclude the paper by considering again the Example 1, to
illustrate how our approach (implemented in JAVA) outputs the re-
sults. We recall that the Smith set is a. The explanation generated is
as follows:

• a is better than e and f by unanimity of the criteria;
• a is better than g on a large majority.

By default, the system shall not give any further detail, since the
case is deemed clear enough not to require any further justification.
Upon request (why?) of the decision-maker however, the algorithm
may provide the following explanation.

• In fact, the large majority is 134, and 134 ∈ V +
ρ , with ρ = 0.7

and the coefficients α13,24 = 1 (for [13 ! 24]), α4,23 = 2 (for
[4 ! 23]), β3 = 2 (for w3 ≥ 0), δ = 3 (for w1+w2+w3+w4 =

1), γ = 4 (for 134 ∈ V +
ρ ), and all other coefficients are zero.

Concerning the comparison of a with b, c and d, we apply Al-
gorithm 2 described in Section 3.5. In particular, ExProc

S (a) =
{S1, S2, S3, S4}, where S1 = {[a !1 b], [a !3 b], [a !3 c], [a !4

c], [a !1 d], [a !4 d]}, S2 = S1∪{[a !2 b]}, S3 = S1∪{[a !2 c]}
and S4 = S1∪{[a !2 b], [a !2 c]}. At first sight, S1 seems the sim-
plest set and S4 the most complex one. This intuition is defected. By
Def. 13 and Ex. 7, comp(S1) = (1, 0, 1, 7) as V(S1) is composed of
[13 ! 24] ∈ ∆0 (comparison of a and b), [34 ! 12] ∈ ∆3 (compar-
ison of a and c) and [14 ! 23] ∈ ∆1 (comparison of a and d), and
S1 is composed of 6 statements. Likewise, comp(S2) = (1, 0, 2, 7),
comp(S3) = (0, 0, 2, 8), comp(S4) = (0, 0, 3, 8). Comparing
S1 and S3, it is apparent that simplifying over the p-statements
might result in a much more complex explanation regarding the c-
statements. Hence the minimal element of ExProc

S,V (a) w.r.t. ! is
〈S3,Ex

Proc
V (V(S3))〉. The latter takes the following form:

• a is better than b on the weak majority 13 ∈ ∆0;
• a is better than c on the weak majority 234 ∈ ∆1 such that

α23,1 = 1 (for [23 ! 1]), β4 = 1 (for w4 ≥ 0) and γ = 1;
• a is better than d on the weak majority 14 ∈ ∆1 such that α4,23 =

1 (for [4 ! 23]), β1 = 1 (for w1 ≥ 0) and γ = 1.

The previous explanation is very detailed. For a user who does
not require such level of traceability (e.g. a user with a shallower
understanding of the decision process), it is possible to hide the co-
efficients α, β and γ, by just mentioning the set statements that yield
another one. We emphasize that we did not explore yet the natural
language issues that occur here: the way to present and organize the
same (content-wise) explanation may clearly affect the way it is per-
ceived [3]. We leave this for further research.

6 Related work and Conclusion
In the domain of recommender systems, the issue of explanation
has motivated a huge amount of studies. In their recent taxonomy
proposal, [5] distinguish three distinctive features to classify gen-
erated explanations: the reasoning model (whether the explanation

disclose, even partially, the decision model), the recommendation
paradigm (the type of decision model), and the information cat-
egories which are used when the explanation is generated (more
specifically, whether they use the user’s model, whether they refer
to the recommended item and/or to the alternative options). Our ap-
proach would be classified as follows: white box, knowledge-based,
and using the three categories (in our case: user’s rankings, and re-
ferring to both the recommended item and the dominated ones). A
distinctive feature of our approach lies on the decision model used,
taken together with the fact that the PI may be largely incomplete.
In this context, the precise weights attached to attributes cannot be
exhibited, and the challenge is to provide convincing (complete) ex-
planations despite this constraint.

We also observe that there is at least a syntactic similarity with ar-
gumentation theories. For instance, in Definition 10, an explanation
is a pair 〈C, [I ! J ]〉, where C is minimal and is the support of the
explanation and [I ! J ] is the conclusion. This may be seen as an
argument, a pair 〈H,h〉 where h is the conclusion, H is a minimal
consistent subset of the knowledge base that entails h [1]. However
we emphasize again that in our context we are looking for proofs,
whereas arguments support non-monotonic inferences. Under this
more argumentative perspective, [10] puts forward the idea of having
different levels of explanations for multi-attribute preference models.

A study of complete explanations for the same type of preference
model can be found in [11]. The main difference is that completeness
of the PI (for both weights and rankings) is assumed in [11]. In this
context, a sentence like “the weight of criterion 2 is 0.3” may stand
as a valid justification. Instead, this paper investigates the explanation
of the importance of coalitions of criteria.
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