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Justifying Dominating Options when Preferential Information is Incomplete

Providing convincing explanations to accompany recommendations is a key issue in decision-aiding. In the context of decisions involving multiple criteria, the problem is made very difficult because the decision model itself may involve a complex process. In this paper, we investigate the following issue: when the preferential information provided by the user is incomplete, is there a principled way to define what is a "simple" explanation for a recommended choice? We argue first that explanations may necessitate different levels of detail. Next, we show that even when a detailed explanation is necessary, it is possible to distinguish explanations of different levels of complexity. Our results rely on an original connection we establish between the "mechanics" required to compute supporting coalitions of criteria and the simplicity of the explanation.

Introduction

From the first expert systems to the recent recommendation systems which flourish on commercial websites, decision-aiding has been a central concern in AI. Very soon, it has become clear that providing recommendations was only part of the challenge. Indeed, explaining the recommended choice(s) to the decision-maker is crucial to improve the acceptance of the recommendation [START_REF] Klein | Decision analytic intelligent systems: automated explanation and knowledge acquisition[END_REF][START_REF] Carenini | Generating and evaluating evaluative arguments[END_REF][START_REF] Mcsherry | Explanation in recommender systems[END_REF], but also sometimes to allow the decision-maker to justify in turn the decision against other stakeholders. What makes an explanation "convincing" is thus highly context dependent.

In a context of movie recommendation, [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF] notoriously reports that a very efficient explanation is that "this recommender system has correctly predicted 80% of the time in the past". In contexts involving more critical decisions or other users, much more detailed explanations would have to be considered [START_REF] Ch | Minimal and complete explanations for critical multi-attribute decisions[END_REF]. Of course the ultimate nature of the explanation will depend on the underlying decision model and/or on the nature of the data provided by the user. Following [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF], a useful distinction to make is among data-based and process-based explanations. To put it simply, in order to explain a recommendation, a data-based approach will focus on some key data, whereas a process-based one would make explicit (part of) the steps that lead to the decision. Both aspects are considered in this paper.

We start with a collection of partial orders over the options, as provided by different weighted criteria (or agents). The decision model we rely on is based on the weighted Condorcet principle: options are compared in a pairwise fashion, and an option a is preferred to another option b when the cumulated support that a is better than b outweighs the opposite conclusion. Our aim in this paper is to provide a principled way to produce explanations to the fact that a given set of options A is dominating with respect to the other options, more specifically in the sense that A constitutes a Smith set [START_REF] Fishburn | Condorcet social choice functions[END_REF].

This decision model is specified from some preferential information (PI) provided during interview, related to the comparison of the options on each criterion and also on the weights of criteria. Most of the time, the PI is not sufficient to uniquely specify the model. In particular, some options may be incomparable on some criteria for the decision-maker. Moreover, the elicitation process will not result in a single value of the weight vector, but rather in a set of vectors that are compatible with the PI [START_REF] Greco | Robust ordinal regression[END_REF]. For instance, in the context of multi-criteria decision aid (MCDA), the decision-maker provides a few learning examples that yield constraints on the weights. In social choice, instead of assigning a weight to each party, one may only know a subset of the winning coalitions (A winning coalition beats its complement). Then an option is said to be necessarily preferred to another one if the first option is preferred to the second for all weight vectors that are compatible with the PI, and for all orderings of the options on the criteria that are compatible with the PI [START_REF] Greco | Robust ordinal regression[END_REF].

Unfortunately, when the PI is incomplete, the explanation may be quite complex, even for problems of small size, because one cannot display the value of the weights to the audience as part of an explanation. Consider the following example.

Example 1. There are 7 options {a, b, c, d, e, f, g} and 4 criteria {1, 2, 3, 4}. The partial orderings (noted 1 , 2 , 3 , 4 ) of options over the 4 criteria are depicted in Figure 1. The PI regarding the importance of the criteria is composed of three items:

• 1 together with 3 are more important than 2 and 4 together; • 2 and 3 together are more important than criterion 1 taken alone; • 4 is more important than criteria 2 and 3.

Actually, option a is the unique dominating option. The "technical" reason is that (i) a dominates e and f on all criteria, (ii) coalition 1, 2, 3 is a winning coalition (preference of a over b), (iii) coalition 1,4 is a winning coalition (preference of a over d), (iv) coalition 1,3,4 is winning (preference of a over g), and (v) coalition 2,3,4 is a winning coalition (preference of a over c). But these reasons vary in terms of the effort required to understand them: (i) is trivial, and (ii), (iii) and (iv) are reinforcement of some statements of the PI. For instance, (ii) easily follows from the fact that 1 and 3 are already more important than 2 and 4. On the other hand, the underlying justification to (v) is more complex. How to deduce indeed from the PI, the statement that coalition 3,4 beats coalition 1,2?

We will focus on MCDA but our approach can be used in social choice in a similar way. This paper advances the state of the art by characterizing minimal complete explanations to justify dominating sets in the presence of incomplete preferential information. We argue that this question calls for a process-based approach whereby comparative statements can be produced. We make precise the intuition that explanations can be of different levels of detail and complexity. Specifically, we classify explanations depending on the "operators" that were used to derive the desired statements. The major ingredient is a characterization of statements on weights that can be deduced (in terms of linear combinations) from the PI. We also show how to compute them. The remainder of this paper is as follows. Sect. 2 first details the available preferential information, the decision model, and the language used to produce explanations. We show how our approach can flexibly cater for the different degrees of accuracy that may occur within the same instance, depending whether the pairwise comparison under analysis is considered tight (Sect. 3) or obvious (Sect. 4). Sect. 5 illustrates the output as produced by our implementation. Sect. 6 discusses related work and concludes.

Background and basic definitions

We consider a finite set O of options and a finite set H = {1, . . . , m} of criteria. To simplify notation, coalition {1, 2, 3} will be noted 123.

Description of the preferential information

The decision-maker needs to provide information regarding the ranking of options O, but also regarding the relative strength of coalitions of criteria (2 H ). Thus, two types of statements are considered. where I, J ⊆ H with I ∩ J = ∅, meaning that the importance of the criteria in I is larger than that of the criteria in J. Let V denote the set of all such statements.

It is important to remark that expressing a c-statement amounts to expressing a constraint on the feasible weight vectors attached to the criteria. Let W (the set of normalized weights) be the set of weights vectors w ∈ [0, 1] H such that i∈H w i = 1.

We now define the operators which will make the link between the c-statements and their semantical counterpart (the weights). Definition 3. For a set V ⊆ V of c-statements, let V ↓ := {w ∈ W s.t. ∀[I J] ∈ V , i∈I w i > i∈J w i } be the set of weights satisfying the comparative statements V . Conversely, the set of cstatements that can be deduced from

W ⊆ W is W ↑ := {[I J] ∈ V s.t. ∀w ∈ W , i∈I w i > i∈J w i }.
Finally, we introduce some notation:

• For V ⊆ V, we set V ↓↑ = (V ↓ ) ↑ and cl(V ) := V ↓↑ . • For W ⊆ W, we set W ↑↓ = (W ↑ ) ↓ . Definition 4. A PI is a pair S, V with S ⊆ S and V ⊆ V.
The information provided by the decision-maker is supposed to be "rational". Specifically, this means that the S part of the PI constitutes a partial order (reflexive, antisymmetric, transitive, but not necessarily complete), and that V is assumed to be consistent 4 , in the sense that V ↓ = ∅. Note finally that the set of all linear extensions that can be obtained from S is denoted S lin (S). for all w ∈ V ↓ . Option b is necessarily preferred to c if whatever the weight vector compatible with V , whatever the completion of S to form total orders on each criterion, the sum of the weights of criteria supporting b is larger than the sum of the weights of criteria supporting c.

Definition 6. For b, c ∈ O, b is necessary preferred to c given S, V (noted b S,V c) if ∀w ∈ V ↓ ∀K ∈ S lin (S) i∈H , [b i c]∈K w i > i∈H , [c i b]∈K w i .
This corresponds to the necessary preference relation [START_REF] Greco | Robust ordinal regression[END_REF]. In qualitative decision models, this concept is similar to the dominance query for the CP nets [START_REF] Boutilier | CPnets: a tool for representing and reasoning with conditional Ceteris Paribus preference statements[END_REF]. An option a ∈ O is called weighted Condorcet winner w.r.t. S, V (noted WCW O (S, V )) if for all b ∈ O \ {a}, a S,V b. When the WCW does not exist, it is usual to consider the Smith set (henceforth denoted by A). It is the smallest set of alternatives such that all elements of A beat all options outside this set. It is well defined and unique [START_REF] Fishburn | Condorcet social choice functions[END_REF]. When a WCW exists, the Smith set is reduced to the WCW. Moreover, we set

O := O \ A.
There is a clear relationship between the size of A and S, V provided: the less informative S, V , the more likely it is that some options cannot be compared. Specifically, the size of A will typically shrink as S, V gets more specified. In Example 1, e and g are incomparable because (as we shall see later) 1 and 23 are not winning coalitions given V , and e and g are incomparable on criterion 4.

This model is widely used in MCDA (note that all weights remain hidden to the user). Models not based on numerical weights also exist, but they allow less deductions to be drawn from the PI.

Description of the language for the explanation

In Example 1, we have A = {a}. When analyzing why a beats all options in O , one notices that there are different situations. For options b, c, d, the preference of a over these options is not so trivial and deserves an adequate explanation. For option g, the case seems more clear, since a beats g on 134, and coalitions 13 and 34 are already winning coalitions. Now regarding options e, f , the dominance of a is clear since a is supported by unanimity of the criteria. Generalizing this example, it appears that dominated options can be partitioned into different classes, capturing the fact that some of them are obviously dominated, some are clearly dominated, while some others are close to a tie with some element of A. Thus, the level of detail expected by the decision maker in the produced explanation will vary.

• unanimous -this case occurs when an alternative b lies behind a on all criteria (technically, the option is Pareto-dominated), i.e. for all i ∈ H, [a i b] ∈ S. This requires no specific explanation. • large majority -this occurs when the minimum guaranteed value of the weight of the criteria supporting a against b is larger than a threshold ρ ∈ ( 1 2 , 1) to be fixed by the designer:

min w∈V ↓ i∈H, [a i b]∈S w i > ρ. (1) 
As the decision is clear-cut, the decision-maker does not need for a precise explanation. • weak majority -these are the remaining cases, i.e. when the decision is not clear and a detailed explanation is required. We will focus our development mainly on this case.

The explanation process is thus as follows. For each element a in the Smith set, we denote by O una [a], O large [a] and O weak [a] the set of options from O in the situations unanimous, large majority and weak majority respectively with a. The first set is easily constructed. The second will be studied at the end of the paper as we focus our analysis on the weak majority situation. In this case, we notice that a is a WCW of the set O weak [a] ∪ {a} of options (denoted by WCW O weak [a]∪{a} (S, V )). We can thus treat each element of A separately and explain why it is a WCW of this subset of options.

Complete explanations for a weak majority

We turn our attention to explanations as to why WCW O weak [a]∪{a} (S, V ) = {a} for some a ∈ A. We shall formally distinguish different levels of complexity required to explain c-statements in this context. This will provide a formal basis for the definition of minimal explanations.

Complete explanations on S and V

Following the data-based approach in [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF], providing an explanation amounts to simplify the PI provided by the decision-maker. Accordingly, a complete explanation is a set of p-statements S together with a set of c-statements V such that, for any weight vector which can be deduced from V , any completion of the set of p-statements from S yields a as a WCW. By complete, we mean that while simplifying the data, one can still prove that a is a WCW.

Definition 7. The set of data-based complete explanations

given S, V is:

Ex Data S,V (a) = S , V ⊆ S × V s.t. WCW O weak [a]∪{a} (S , V ) = {a} .
We need the following definition to show that one can use a condition on the operator cl to prove that a is a WCW.

Definition 8. PS(a, b) := {i ∈ H s.t. [a i b] ∈ S} and V(S) := {[P S (a, b) H \ P S (a, b)] , b ∈ O weak [a]}. Lemma 1. WCW O weak [a]∪{a} (S , V ) = {a} iff V(S ) ⊆ cl(V ). Proof : Let b ∈ O weak [a]. Let L := {[a i b] s.t. [a i b] ∈ S } ∪ {[b i a] s.t. [a i b] ∈ S }. We have a S ,V b iff i∈H , [a i b]∈L w i > i∈H , [a i b] ∈L w i for all w ∈ V ↓ , iff [P S (a, b) H \ P S (a, b)] ∈ V ↓↑ = cl(V ).
From the previous lemma, S , V ⊆ S × V is an element of Ex Data S,V (a) iff V(S ) ⊆ cl(V ). Example 3. Consider 5 criteria and four options a, b, c, d. Assume that

V = {[1 23], [34 15], [2 5]} and S = {[a 1 b], [a 4 b], [a 5 b], [a 2 c], [a 3 c], [a 4 c], [a 1 d], [a 3 d], [a 4 d], [b 3 d]}. Let V = {[1 23], [34 15]} and S = S \ {[b 3 d]}. We note that S , V ∈ Ex Data S,V ( 
a). In the data-based approach, S , V is the minimal complete explanation in the sense of set inclusion. However, for the decision-maker, the sole knowledge of S , V is not sufficient to understand why a is a WCW, i.e. why the sets of criteria P S (a, b), P S (a, c) and P S (a, d) appearing in S form winning coalitions. In other words, the decision maker needs to understand why V(S ) = {[145 23], [234 15], [134 15]} can be deduced from V .

Following this example, one sees that there is a major distinction between the data-based and the process-based approaches. The first one does not allow a complete traceability from the PI to the recommendations. Hence we adopt the second one in this paper regarding the c-statements. In a process-based approach, a complete explanation is a pair composed of S ⊆ S such that V(S ) ⊆ cl(V ) (proving that a is a WCW), and of an explanation noted Ex Proc V (V(S )) of why V(S ) results from V . Ex Proc V is not further described here; it will be done in Section 3.3. Definition 9. The set of process-based complete explanations given

S, V is: Ex Proc S,V (a) = S , Ex Proc V (V(S )) : S ⊆ S and V(S ) ⊆ cl(V ) .
In order to be able to compute S but also to explain V(S ), we need to give some properties of cl and characterize cl(V ).

cl as closure

From Def. 3, cl(V ) is the set of c-statements that can be deduced from V . A natural question is whether applying cl several times adds more c-statements. We show that this is not the case. More precisely, the operator cl : (2)

P(V) → P(V) is a closure, i.e. V ⊆ cl(V ) for all V ⊆ V (extensiveness), V ⊆ V implies that cl(V ) ⊆ cl(V ) for all V, V ⊆ V (increasingness),
V ⊆ V ↓↑ for all V ⊆ V. ( 3 
) ∀V, V ∈ V, V ⊆ V ⇒ V ↓ ⊇ V ↓ . (4) 
We now give a few useful assertions.

Assertion 1. W ↑ = W ↑↓↑ for all W ⊆ W.

Proof : We need only to prove W ↑↓↑ ⊆ W ↑ as the opposite inclusion follows from [START_REF] Boutilier | CPnets: a tool for representing and reasoning with conditional Ceteris Paribus preference statements[END_REF]. Let us consider thus

[I J] ∈ W ↑↓↑ . Hence ∀w ∈ W ↑↓ i∈I w i > i∈J w i . (5) 
Let us fix now w ∈ W . From (2), w ∈ W ↑↓ . By (5), we have

i∈I w i > i∈J w i . This latter relation is satisfied for all w ∈ W . Hence [I J] ∈ W ↑ . Assertion 2. V ↓ = V ↓↑↓ for all V ⊆ V.
Proof : Similar to that of Assertion 1.

Extensiveness: Follows from (3). Increasingness: Let V ⊆ V and [I J] ∈ V ↓↑ . Then for all w ∈ V ↓ , i∈I w i > i∈J w i . As V ↓ ⊆ V ↓ (by ( 4)), then for all

w ∈ V ↓ , i∈I w i > i∈J w i . Hence [I J] ∈ V ↓↑ ,

and thus

V ↓↑ ⊆ V ↓↑ . Idempotency: Follows from Assertions 1 and 2.

Explanations of c-statements

The aim of this section is to construct

Ex Proc V (V ) for V ⊆ cl(V ).
To this end, one shall explain how any element of cl(V ) results from V . We start with a simple example.

Example 4 (2 ctd.). From [4 23] ∈ V , we can deduce a fortiori that [14 23] ∈ cl(V ) and [4 3] ∈ cl(V ). Monotonicity generalizes the previous example in the following way:

[I J] ∈ V =⇒ ∀I ⊇ I ∀J ⊆ J [I J \ I ] ∈ cl(V ) (6) 
Consider a more complex extension.

Example 5 (2 ctd.). V ↓ is composed of the weights w ∈ W satisfying w 1 + w 3 > w 2 + w 4 , w 2 + w 3 > w 1 and w 4 > w 2 + w 3 . New constraints can be derived by linear combinations of these constraints. For instance, the constraint w 3 + w 4 > w 1 + w 2 results from the summation of constraint w 1 +w 3 > w 2 +w 4 with two times the constraints w 2 + w 3 > w 1 and w 4 > w 2 + w 3 .

The next proposition shows that the intuition of Example 5 holds in the general case: all c-statements that can be deduced from V results from linear combinations (with integer coefficients) of the constraints in V and of the constraints on the sign of the weights.

Proposition 1. [I J] ∈ cl(V ) iff the following ILP is feasible: Find non-negative integers {α E,F } [E F ]∈V , {β i } i∈H , γ minimizing [E F ]∈V α E,F + i∈H β i + γ such that [E F ]∈V α E,F ≥ 1 (7) β i [E F ]∈V, E i α E,F - [E F ]∈V, F i α E,F =    γ if i ∈ I -γ if i ∈ J 0 otherwise (8 
) for all i ∈ H.

Proof :

The normalization condition of the weights can be removed since we analyse the completion among comparative statements. Let U

:= {w ∈ R m + : ∀[E F ] ∈ V , i∈E w i > i∈F w i }. Let us consider [I J] ∈ cl(V ). Hence for all w ∈ U , i∈I w i > i∈J w i . This means that U := {w ∈ U , i∈E w i ≤ i∈F w i } = ∅.
Hence the linear constraints in U are inconsistent. From Motzkin's theorem [12, pages 28-29], there exists non-negative integers α E,F , γ and β i with at least one coefficient corresponding to the strict inequalities (i.e. at least one α E,F non-zero -see [START_REF] Herlocker | Explaining collaborative filtering recommendations[END_REF]) such that the coefficients in front of each w i in the following expression are equal to zero

[E F ]∈V α E,F i∈E w i - i∈F w i +γ i∈J w i - i∈I w i + i∈H β i w i .
Hence [START_REF] Junker | Quickxplain: preferred explanations and relaxations for over-constrained problems[END_REF] is fulfilled for all i ∈ H.

The previous proposition is very important. It provides a characterization of cl(V ). It shows precisely how constraint [I

J] is derived from V and the sign of the weights. The values α E,F and β k are the coefficients that are multiplied by the constraints i∈E w i > i∈F w i and w k ≥ 0 respectively. The summation yields the constraint γ × i∈I w i > γ × i∈J w i .

If the coefficients α, β, γ satisfy ( 7) and ( 8), multiplying these coefficients by any positive integer also verify the constraints. The use of the minimization functional in the ILP ensures that we obtain the smallest values of the coefficients and thus the simplest explanation.

Definition 10. The complete explanation Ex

Proc V ([I J]) of the c-statement [I J] ∈ cl(V ) is ({α E,F } [E F ]∈V , {β i } i∈H , γ), [I J] . For V ⊆ cl(V ), Ex Proc V (V ) := ∪ [I J]∈V Ex Proc V ([I J]).
Example 6 (5 ctd. 

Complexity levels in explaining c-statements

In Example 6, let us consider four particular elements of cl(V ),

[23 1], [4 3], [4 1] and [34 12]
. The difficulty of justifying these four statements from V is not the same. Indeed, the first statement [23 1] is directly contained in V so that there is no underlying complexity for the user. The second statement [4 3] is directly obtained from [4 23] ∈ V using a monotonicity argument (see Example 4). The third statement [4 1] results from the summation of the two relations w 2 + w 3 > w 1 and w 4 > w 2 + w 3 of V ↓ . Lastly, as we already noticed in Example 5, the last statement [34 12] is more complex to obtain. The arguments that we use to justify a statement from cl(V ), going from the first statement to the fourth one are of increasing complexity.

It seems thus natural to decompose cl(V ) into four nested sets. The first set cl 0 (V ) := V is the c-statements contained in the PI. The second set cl 1 (V ) is composed of the elements of cl(V ) that can be deduced from V only using monotonicity condition (see [START_REF] Greco | Robust ordinal regression[END_REF]). This corresponds to the case where, in Proposition 1, all α coefficients are equal to 0, except one that is equal to 1. The third set cl 2 (V ) is composed of the elements of cl(V ) that can be deduced from V only using summation and monotonicity conditions. This corresponds to the case when the α coefficients are either equal to 0 or 1. Finally, cl 3 (V ) = cl(V ). The set cl(V ) is partitioned in the following way. The sets ∆0, ∆ 1 , ∆ 2 , ∆ 3 are of increasing complexity. When comparing two sets V , V ⊆ cl(V ), we prefer the set that has the smallest number of elements in ∆ 3 . In case of equality, we prefer the one that has the smallest number of elements in ∆ 2 . And so on. The following ordering V depicts the complexity of understanding why a set of c-statements derives from V .

Definition 11. ∆0 = cl 0 (V ), ∆ j = cl j (V ) \ cl j-1 (V ) for j ∈ {1,
Definition 12. For V , V ⊆ cl(V ), V V V iff (|V ∩ ∆ 3 |, |V ∩ ∆ 2 |, |V ∩ ∆ 1 |, |V ∩ ∆ 0 |) lex (|V ∩ ∆ 3 |, |V ∩ ∆ 2 |, |V ∩ ∆ 1 |, |V ∩ ∆ 0 |),
where lex is the lexicographic ordering. (x 1 , x 2 , x 3 , x 4 ) lex (y 1 , y 2 , y 3 , y 4 ) if there exists i ∈ {1, 2, 3, 4} such that x i > y i and x j = y j for all j ∈ {1, 2, 3, 4} with j < i.

We notice the elements of S and of ∆ 0 are of the same complexity since they are both elements of the PI. The number of elements of pstatements is added to the number of c-statements that belong to ∆ 0 .

Definition 13. Let S , Ex Proc V (V(S )) , S , Ex Proc V (V(S )) ∈ Ex Proc S,V (a). The complexity of S is comp(S ) := (|V(S ) ∩ ∆ 3 |, |V(S ) ∩ ∆ 2 |, |V(S ) ∩ ∆ 1 |, |V(S ) ∩ ∆ 0 | + |S |). We de- fine the order (over Ex Proc S,V (a)) by S , Ex Proc V (V(S )) S , Ex Proc V (V(S )) iff comp(S ) lex comp(S ).

Determination of the minimal explanations

In order to compute the minimal explanations in the sense of , one may proceed in three steps: (S1) determines all elements of cl 1 (V ), cl 2 (V ) and cl 3 (V ); (S2) identifies all elements of Ex Proc Step (S1) requires to compute all elements of cl 1 (V ), cl 2 (V ) and cl 3 (V ), which is not necessary in step (S2) and might be time consuming. Hence, we propose to perform steps (S1) and (S2) at the same time, determining the belonging to the closure only when required.

To this end, the following variables are introduced in the algorithm: Cl 1 , Cl 2 , Cl 3 correspond to the elements of cl 1 (V ), cl 2 (V ), cl 3 (V ) that are useful in the analysis; NCl are c-statements that are not in cl(V ) and Ex Cl contains the explanations of Cl 1 , Cl 2 , Cl 3 . We start by initializing these variables

Cl 0 = V , Cl 1 ← ∅ , Cl 2 ← ∅ , Cl 3 ← ∅ , NCl ← ∅ , Ex Cl ← ∅.
The next algorithm checks whether a c-statements belongs to cl(V ). Algorithm 1. Function isInClosure(I) returns a boolean saying whether [I H \ I] ∈ cl(V ), and updates Cl 1 , Cl 2 , Cl 3 , NCl, Ex Cl:

If [I H \ I] ∈ Cl 0 ∪ Cl 1 ∪ Cl 2 ∪ Cl 3 then return true; If [I H \ I] ∈ NCl then return false; Launch the ILP of Proposition 1 on [I H \ I]; If the ILP is infeasible then NCl ← NCl ∪ {[I H \ I]}; return false; Ex Cl ← Ex Cl∪ { ({α E,F } [E F ]∈V , {β i } i∈H , γ), [I H \ I] }; If [E F ]∈V α E,F = 1 then return true; If α E,F ∈ {0, 1} for all [E F ] ∈ V then Cl 2 ← Cl 2 ∪ {[I H \ I]}; return true; Cl 3 ← Cl 3 ∪ {[I H \ I]}; return true;
The main algorithm is now described. Note that in the first loop in Algorithm 2, when isInClosure(I) returns false, we need not explore any subset of I (they cannot belong to P S (a, b)). This treatment is clearly exponential in the number of criteria in the worst case. In Algo. 2, the number of calls to an ILP is at worse 2 m (where m is the number of criteria) and the total number of calls of isInClosure is at worse |O weak 

Complete explanation for a large majority

We have seen at the beginning of the paper, that the large majority situation applies when condition (1) is satisfied.

Definition 14. V ρ = I ⊆ H s.t. ∀w ∈ V ↓ i∈I w i > ρ .
This section is concerned with the identification of the coalitions in V ρ with the associated explanation. One first notes that if [4 5]}, with m = 5. One can easily show that w 1 + w 2 + w 3 > 3 5 for all w ∈ V ↓ . Hence coalition 123 ∈ V ρ if ρ does not exceed 3 5 . We characterize the elements of V ρ . Proposition 2. I ∈ V ρ iff the following ILP is feasible:

I ∈ V ρ then necessarily [I H \ I] ∈ cl(V ) as ρ > 1 2 . Example 9. Assume that V = {[1 2], [2 3], [3 4],
Find {αE,F } [E F ]∈V ∈ N V + , {β i } i∈H ∈ N H + , δ ∈ N, γ ∈ N + minimizing [E F ]∈V α E,F + i∈H β i + δ + γ such that [E F ]∈V α E,F ≥ 1 (9) 
β i +δ+ [E F ]∈V , E i α E,F - [E F ]∈V , F i α E,F = γ if i ∈ I 0 otherwise (10 
) for all i ∈ H, and

δ ≥ γ ρ (11) 
Proof (Sketch): Similar to that of Proposition 1. The normalization condition must be considered due to the presence of non-zero right hand side in [START_REF] Besnard | Elements of argumentation[END_REF]. The inequality [START_REF] Ch | Minimal and complete explanations for critical multi-attribute decisions[END_REF] follows from this.

The values α E,F , β k and δ are the coefficients that are multiplied by the constraints i∈E w i > i∈F w i , w k ≥ 0 and i∈H w i = 1 respectively.

Example 10 (Example 9 cont.). For The generation of explanation from the coefficients in Prop. 2 can be done as for Prop. 1, based on α, β, δ and γ.

Output of the results

To wrap up, for all

a ∈ A, O una [a] = {b ∈ O , P S (a, b) = H}, O large [a] = {b ∈ O \ O una [a] , P S (a, b) ∈ V ρ } and O weak [a]
are the remaining elements of O . ILP is used to compute the coefficients appearing in Propositions 1 and 2. The minimal explanations for O weak [a] are obtained thanks to Algorithm 2. As for the closure, the elements of V ρ are computed only when required, that is only for coalitions P S (a, b).

We conclude the paper by considering again the Example 1, to illustrate how our approach (implemented in JAVA) outputs the results. We recall that the Smith set is a. The explanation generated is as follows:

• a is better than e and f by unanimity of the criteria; • a is better than g on a large majority.

By default, the system shall not give any further detail, since the case is deemed clear enough not to require any further justification. Upon request (why?) of the decision-maker however, the algorithm may provide the following explanation.

• In fact, the large majority is 134, and 134 ∈ V ρ , with ρ = 0.7 and the coefficients α 13,24 = 1 (for [13 24]), α 4,23 = 2 (for [4 23]), β 3 = 2 (for w 3 ≥ 0), δ = 3 (for w 1 + w 2 + w 3 + w 4 = 1), γ = 4 (for 134 ∈ V ρ ), and all other coefficients are zero.

Concerning the comparison of a with b, c and d, we apply Algorithm 2 described in Section 3.5. In particular, Ex Proc

S (a) = {S 1 , S 2 , S 3 , S 4 }, where S 1 = {[a 1 b], [a 3 b], [a 3 c], [a 4 c], [a 1 d], [a 4 d]}, S 2 = S 1 ∪{[a 2 b]}, S 3 = S 1 ∪{[a 2 c]} and S 4 = S 1 ∪{[a 2 b], [a 2 c]}.
At first sight, S 1 seems the simplest set and S 4 the most complex one. This intuition is defected. By Def. 13 and Ex. 7, comp(S 1 ) = (1, 0, 1, 7) as V(S 1 ) is composed of [13 24] ∈ ∆ 0 (comparison of a and b), [34 12] ∈ ∆ 3 (comparison of a and c) and [14 23] ∈ ∆ 1 (comparison of a and d), and S 1 is composed of 6 statements. Likewise, comp(S 2 ) = (1, 0, 2, 7), comp(S 3 ) = (0, 0, 2, 8), comp(S 4 ) = (0, 0, 3, 8). Comparing S 1 and S 3 , it is apparent that simplifying over the p-statements might result in a much more complex explanation regarding the cstatements. Hence the minimal element of Ex Proc S,V (a) is S 3 , Ex Proc V (V(S 3 )) . The latter takes the following form: • a is better than b on the weak majority 13 ∈ ∆ 0 ; • a is better than c on the weak majority 234 ∈ ∆ 1 such that α 23,1 = 1 (for [23 1]), β 4 = 1 (for w 4 ≥ 0) and γ = 1; • a is better than d on the weak majority 14 ∈ ∆ 1 such that α 4,23 = 1 (for [4 23]), β 1 = 1 (for w 1 ≥ 0) and γ = 1.

The previous explanation is very detailed. For a user who does not require such level of traceability (e.g. a user with a shallower understanding of the decision process), it is possible to hide the coefficients α, β and γ, by just mentioning the set statements that yield another one. We emphasize that we did not explore yet the natural language issues that occur here: the way to present and organize the same (content-wise) explanation may clearly affect the way it is perceived [START_REF] Carenini | Generating and evaluating evaluative arguments[END_REF]. We leave this for further research.

Related work and Conclusion

In the domain of recommender systems, the issue of explanation has motivated a huge amount of studies. In their recent taxonomy proposal, [START_REF] Friedrich | A taxonomy for generating explanations in recommender systems[END_REF] distinguish three distinctive features to classify generated explanations: the reasoning model (whether the explanation disclose, even partially, the decision model), the recommendation paradigm (the type of decision model), and the information categories which are used when the explanation is generated (more specifically, whether they use the user's model, whether they refer to the recommended item and/or to the alternative options). Our approach would be classified as follows: white box, knowledge-based, and using the three categories (in our case: user's rankings, and referring to both the recommended item and the dominated ones). A distinctive feature of our approach lies on the decision model used, taken together with the fact that the PI may be largely incomplete. In this context, the precise weights attached to attributes cannot be exhibited, and the challenge is to provide convincing (complete) explanations despite this constraint.

We also observe that there is at least a syntactic similarity with argumentation theories. For instance, in Definition 10, an explanation is a pair C, [I J] , where C is minimal and is the support of the explanation and [I J] is the conclusion. This may be seen as an argument, a pair H, h where h is the conclusion, H is a minimal consistent subset of the knowledge base that entails h [START_REF] Besnard | Elements of argumentation[END_REF]. However we emphasize again that in our context we are looking for proofs, whereas arguments support non-monotonic inferences. Under this more argumentative perspective, [START_REF] Ch | A general framework for explaining the results of a multi-attribute preference model[END_REF] puts forward the idea of having different levels of explanations for multi-attribute preference models.

A study of complete explanations for the same type of preference model can be found in [START_REF] Ch | Minimal and complete explanations for critical multi-attribute decisions[END_REF]. The main difference is that completeness of the PI (for both weights and rankings) is assumed in [START_REF] Ch | Minimal and complete explanations for critical multi-attribute decisions[END_REF]. In this context, a sentence like "the weight of criterion 2 is 0.3" may stand as a valid justification. Instead, this paper investigates the explanation of the importance of coalitions of criteria.
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 41 Figure 1. Partial preferences 1 , 2 , 3 , 4 over the criteria 1,2,3,4.
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 2 and cl • cl = cl (idempotency), as its notation suggests. The operator cl is a closure. Proof : The following three results are clear. W ⊆ W ↑↓ for all W ⊆ W.

S

  (a) := {S ⊆ S : V(S ) ⊆ cl(V )}; (S3) determines the elements S in Ex Proc S (a) such that S , Ex Proc V (V(S )) is minimal in the sense of . To determine whether [I J] ∈ cl(V ), it suffices to perform an ILP (by Proposition 1).

  Firstly, it computes P S (a, b) := {I ⊆ P S (a, b) s.t. [I H \ I] ∈ cl(V )}. Then steps (S2) and (S3) are performed. Algorithm 2. Function bestExplanations(a) (for a ∈ A) computes the elements of Ex Proc S,V (a) that are minimal w.r.t. : For all b ∈ O weak [a] do P S (a, b) ← ∅; For all I ⊆ P S (a, b) do If isInClosure(I) =true then P S (a, b) ← P S (a, b) ∪ {I}; Ex Proc S (a) ← {[a i b] , i ∈ I b and b ∈ O weak [a]} for all I b ∈ P S (a, b), b ∈ O weak [a] ; E ← S , Ex Proc V (V(S )) , S ∈ Ex Proc S (a) ; (where Ex Proc V is stored in Ex Cl) return the minimal elements of E w.r.t. ;

  [a]| × 2 m . Moreover, the cardinality of Ex Proc S (a) is at worse 2 m×|O weak [a]| . In practice, it might be much less -see Example 8 below. Moreover our approach only computes ILPs when required. Example 8 (1 ctd.). In the comparison of a with b, c, d, the number of ILP that are solved is 10 (instead of 16 in the worse case), and isInClosure is called 15 times (instead of 48 in the worse case). Moreover, |Ex Proc S (a)| = 4 (instead of 4096 in the worse case)see Section 5 for the details.

1 2 <

 2 ρ ≤ 3 5 , 123 ∈ V ρ results from the coefficients α 1,2 = 2,,α 2,3 = 4, α 3,4 = 6, α 4,5 = 3, β 1 = β 2 = β 3 = β 4 = 0, δ = 3 and γ = 5. More generally, V ρ = {123, 124, 1234, 1235, 1245, 12345}.

  ). With α13,24 = 1, α 23,1 = 2, α 4,23 = 1, β i = 0 for all i ∈ H and γ = 1, we obtain [34 12] ∈ cl(V ).

	Moreover, cl(V ) = {[123 24], [13 2], [14 23], [14	4], [124 2], [1	3], [134 2], [13	2], [13 4], [14
	3], [234	1], [23	1], [24	1], [34	12], [34	1], [4
	1], [24 3], [34 2], [3 2], [4 23], [4 2], [4 3]}.

  2, 3}.

	Example 7 (6 ctd.). We have ∆ 0 = {[13 4], [134 2], [13 23]}, ∆ 1 = {[123 1], [124 3], [14 23], [14 2], [14	24], [23 2], [13 3], [24	1], [4 4], [234 3], [34
	2], [4 2], [3 2]} and ∆ 2], [4 3]}, ∆ 2 = {[24	1], [34	1], [4	1], [1

3 = {[34 12]}.

In fact, many work dealing with explanations in AI address the problem of exhibiting subsets of constraints provoking an inconsistency, see e.g.[START_REF] Junker | Quickxplain: preferred explanations and relaxations for over-constrained problems[END_REF].
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