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A Metaheuristic Approach for Preference Learning in
Multi-Criteria Ranking based on Reference Points

Jinyan Liu, Wassila Ouerdane, Vincent Mousseau 1

Abstract. In this paper, we are interested in a family of multi-
criteria ranking methods called Ranking with Multiple reference
Points (RMP). This method is based on pairwise comparisons, but
instead of directly comparing any pair of alternatives, it compares
rather the alternatives to a set of predefined reference points. We
actually focus on a Simplified RMP model (S-RMP) in which the
preference parameters include the criteria weights and the set of ref-
erence points ordered by importance. Elicitation of the parameters
(from the data provided by the decision makers) leads us to the pref-
erence learning algorithms that cannot only be applied on relatively
small dataset. Therefore, we propose in this work a preference learn-
ing methodology for learning S-RMP models from a large set of pair-
wise comparisons of alternatives. The newly proposed algorithm is
a combination of an Evolutionary Algorithm and a Linear Program-
ming approach. Empirical results and analysis are also presented.

1 Introduction

Decision makers (DMs) often face decision situations in which dif-
ferent conflicting viewpoints are to be considered. When modeling
a real world decision problem using Multiple Criteria Decision Aid
(MCDA) theories, several problematics can be considered: choice,
sorting or ranking problem [18]. In this paper, we are interested in
multi-criteria ranking problem, where the aim is to establish a pref-
erence order (or ranking) on the set of alternatives.

The field of MCDA offers a selection of methods and operational
tools i.e. aggregation models that explicitly account for the diversity
of the viewpoints considered. Each method constructs first a model
of DM’s preferences and then exploits this model in order to work out
a recommendation. During the aggregation phase, different parame-
ters are needed, such as weights, marginal value functions, thresh-
olds, etc. depending on the method. Such parameters allow to elabo-
rate models taking into account the DMs preferences. Therefore, it is
clear that such preferences play a key role in the construction of the
recommendations. In fact, they are meaningful and acceptable only
if the DMs values are taken into account.

The process by which the DMs values or the parameters of an ag-
gregation model are captured is called preference elicitation or dis-
aggregation [18]. Preference elicitation aims at helping the analyst
to appropriately elicit the DM’s preferences to be represented in a
decision model. The process consists of a dialogue with the DM,
where the aim is to infer the values of the parameters from the holis-
tic information given by the DM. We note that this is not an easy
task, especially when the information provided contains inconsisten-
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cies. Moreover, the DM has in general a limited knowledge on the
aggregation models and can only express his preferences in a rather
intuitive and ambiguous manner.

Generally speaking, there are two paradigms of preference elic-
itation approaches, namely direct and indirect paradigms [13]. In
the direct aggregation paradigm, the parameter values are directly
provided by the DM through an interactive communication with the
analyst. The aggregation model is firstly constructed with these pa-
rameters and then applied to the alternative set to obtain the DM’s
preferences. Within such a paradigm, the DM should make enough
effort to understand the meaning and the roles of these parameters
and to associate appropriate values to them, which may be beyond
his cognitive limitation. In the indirect disaggregation paradigm, the
DM provides holistic preference information such as pairwise com-
parisons, assignment examples etc., from which a preference model
is derived and then applied to contextual recommendation. In con-
trast with the direct elicitation, the parameter values are regressed
from the DM [10].

Nowadays, we are facing with decision problems involving large
datasets. It requires adapting and improving the algorithms and tech-
nics to construct acceptable recommendations. Some of related chal-
lenges have been addressed in the scientific community of Preference
Learning, which focus on the computational complexity rather than
the decision problem itself [9]. In the perspective of preference elic-
itation, the emergence of applications in MCDA with the intention
of dealing with large datasets provokes our research interests. In this
perspective, we intend to provide an efficient algorithms to infer the
parameter values of an aggregation model called S-RMP such that
the DM has provided as input a large set of pairwise comparisons.

The paper is organized as follows: Section 2 introduces the RMP
method and its simplified version S-RMP. We present our meta-
heuristic approach for S-RMP disaggregation in Section 3. The nu-
merical analysis and the benefits of the proposed approach are pro-
vided in Section 4. At the end, we conclude the paper.

2 Ranking with Multiple reference Points

Recently, a ranking method called Ranking with Multiple reference
Points (RMP) has been proposed in [16, 17]. The idea is to construct
the global preference relation between two alternatives on the basis
of their relative comparisons with specified reference points. This
paper is concerned with learning the parameters of this method. We
give in the next sections an overview of such a method as well as
its simplified version named S-RMP, introduced in [23, 22]. Further
work has also been presented in [2].



2.1 General RMP method
We consider a multiple criteria ranking problem with n alternatives
in the set A indexed by N = {1, 2, ..., i, ..., n} and m monotone cri-
teria in the set F , indexed by means of a set M = {1, 2, ..., j, ...,m}.
The evaluations of alternatives on a criterion j take their value in the
associated evaluation scale Xj . The X denotes the evaluation space,
X =

∏
j∈M Xj i.e. the Cartesian product of evalution scales. Obvi-

ously, the evaluation of any alternative a ∈ A is a vector denoted by
a = (a1, a2, ..., am) ∈ X .

The RMP method is a three-step multi-criteria paradigm for rank-
ing alternatives. It involves k reference points such that P =
{1, 2, ..., h, ..., k}. The evaluation of each reference point ph, h ∈ P
on a criterion j is denoted by phj ∈ Xj . To establish a global prefer-
ence relation between two alternatives, a and b, the method specifies
the following three steps:

1. Compare each alternative a ∈ A (respectively, b ∈ A) to every
reference points ph, h ∈ P on every criterion j, j ∈ M .

2. Aggregate the results of the step 1 considering the m criteria and
deduce the preference relation between two different alternatives
(a, b) which is depending on the reference point ph, also called
the relative preference with respect to the reference point ph;

3. For each pair of alternatives (a, b), aggregate the k preference re-
lations into global preference relation.

The first step establishes the preference relation between each al-
ternative and each reference point on each criterion j. In the sec-
ond, we only consider the criteria for which a (respectively, b) is at
least as good as ph. This set of criteria is denoted by C(a, ph) (re-
spectively, C(b, ph)) and defined as C(a, ph) ∈ P(M) such that
C(a, ph) = {j ∈ M | aj ⩾ phj }.

We define then the importance relation among criteria with re-
spect to the reference point, denoted by ▶ph , which means that a set
of criteria is at least as important as another set of criteria as follows;

Definition 1. (Importance relation among criteria w.r.t. reference
point)

The importance relation ▶ph is defined on M ×M such that:

1. ∀M1 ⊂ M,M1 ̸= ∅ ⇒ M1▶ph∅,∀h ∈ P
2. ∀M1 ⊂ M ⇒ M▶phM1, ∀h ∈ P
3. ∀M1,M2 ⊂ M,M1 ⊂ M2 ⇒ M2▶phM1, ∀h ∈ P

Thus, the (relative) preference relation ≿ph defined in Definition
2 expresses how a pair of alternatives compare with each other with
respect to the reference point ph.

Definition 2. (Relative preference w.r.t. reference point)
The relative preference with respect to the reference point ≿ph on

A×A is defined by:

a ≿ph b ⇔ C(a, ph)▶phC(b, ph)

In the third step, we define firstly the importance relation ⊵ as
below.

Definition 3. (Importance relation among reference points)
The importance relation ⊵ is defined on P × P such that:

1. ∀P1 ⊂ P, P1 ̸= ∅ ⇒ P1 ⊵ ∅
2. ∀P1 ⊂ P ⇒ P ⊵ P1

3. ∀P1, P2 ⊂ P, P1 ⊂ P2 ⇒ P2 ⊵ P1

We deduce then the (global) preference relation ≿ as described in
the definition 4. It means that a is at least as good as b if the coalition
of reference points P (a, b) which affirms that a is at least as good
as b is more important than the coalition of reference points P (b, a)
which affirms that b is at least as good as a.

Definition 4. (Global preference relation)
The global preference relation on A×A on the basis of the relative

preferences is:
a ≿ b ⇔ P (a, b) ⊵ P (b, a)

We note that there is no lack of generality to impose a dominance
relation among reference points, as it was shows in [17]. There ex-
ists always an equivalent RMP model for any RMP model with k
reference points such that:

∀j ∈ M, ∀h, h′ ∈ P, h > h′ ⇒ phj ⩾ ph
′

j (1)

It means also that:

∀a ∈ A,∀h, h′ ∈ P, h > h′ ⇒ C(a, ph) ⊆ C(a, ph
′
) (2)

The two importance relations mentioned respectively in Definition
1 and Definition 3 can be rather general and built on the basis of dif-
ferent rules. Particularly, we present in the next section a simplified
version of RMP method, namely S-RMP in which the importance re-
lation ▶ph is defined by a concordance rule for all reference points
while a lexicography of dictatorial reference points is used as the
importance relation ⊵.

2.2 Simplified RMP model
In this work, we focus on a simplified version of RMP, named S-RMP
model, as considered in [23, 22].

Firstly, the importance relation ▶ph on the criteria set is re-defined
based on a concordance rule by using an additive decomposition as
follow:

C(a, ph)▶phC(b, ph) ⇔
∑

j∈C(a,ph)

ωj ⩾
∑

j∈C(b,ph)

ωj (3)

where ωj represents the weight of the criterion j. Formally, the cri-
teria weights are normalized to 1.

Secondly, as shown in [17], an important result derived from so-
cial choice theory indicates that the only importance relation, which
aggregates the k relative preference relations (with respect to refer-
ence points) and leads to transitive relation on each possible set of
alternatives, is obtained by a lexicographical order on the reference
points. Therefore, a permutation σ on P is used lexicographically to
determine the importance relations among the reference points so as
to deduce globally the preference relations between alternatives. This
is represented by (4).

a ≿ b ⇔ ∃h∗ ∈ P s.t. a ≿pσ(h∗) b

and ∀h ∈ {1, ..., h∗ − 1}, a ∼pσ(h) b

a ∼ b ⇔ ∀h ∈ P, a ∼ph b

(4)

In details, the first reference point is denoted by pσ(1), the second
one by pσ(2) and so on. To compare a and b, we look at first the ref-
erence point pσ(1). If a is strictly preferred to b with respect to pσ(1),



then we affirm globally that a is preferred to b without even consid-
ering the other reference points and similarly vice versa. However,
if a and b are considered to be indifferent with respect to pσ(1), we
shall proceed with the second reference point pσ(2), etc. Once the
strict relative preference between a and b is confirmed, the global
preference between a and b is affirmed. If we still cannot differenti-
ate these two alternatives until the last reference point pσ(k) has been
processed then they are considered globally as tied for conclusion.

The additive decomposition of importance relation for subsets of
criteria shows that the preference relation between two alternatives
(a, b) can be computed by:

a ≿ b ⇔ ∃h∗ ∈ P s.t.∑
j∈C(a,pσ(h∗))

ωj >
∑

j∈C(b,pσ(h∗))

ωj

and ∀h ∈ {1, . . . , h∗ − 1},∑
j∈C(a,pσ(h))

ωj =
∑

j∈C(b,pσ(h))

ωj

a ∼ b ⇔ ∀h ∈ P,∑
j∈C(a,ph)

ωj =
∑

j∈C(b,ph)

ωj

(5)

2.3 Learning an S-RMP model
2.3.1 Problem context

We are interested in learning S-RMP models in an indirect way. To
account for that, we assume that the information provided by the DM
takes form of pairwise comparisons of alternatives. Learning such
a model amounts to setting values for the criteria weights and the
reference points which are detailed as follow:

• The normalized weights of criteria, ωj , j ∈ M .
• The number of reference points, denoted by k.
• The reference points, ph, h ∈ P where ph = (ph1 , p

h
2 , ..., p

h
m) is a

vector in the evaluation space ph ∈ X .
• The lexicographic order of the reference points, defined as a per-

mutation σ on the index set of the reference points P . For in-
stance, pσ(1) is the first reference point to which alternatives are
compared, ∃h ∈ P, σ(1) = h, etc.

To better understand the problem, we provide a brief review on the
latest related researches.

2.3.2 Literature review

A first attempt to elicit indirectly the preference model from the
holistic information given by the DM was presented in [14] for the
ELECTRE TRI method. They considered the pessimistic assignment
rule, and developed a non-linear optimization formulation to infer
all the parameters from a set of assignment examples. A similar
approach was presented in [11] for a simplified version of ELEC-
TRE TRI named Majority Rule Sorting Model (MR-Sort). In [11],
only a few number of categories was considered and there was no
veto threshold characterizing the discordance effect. Later, in [4],
an extension of the previous work for ELECTRE TRI method has
been presented in the group decision problems. The parameters were
inferred from assignment examples, provided by multiple decision
makers, based on a Mixed Integer Programming (MIP).

For the S-RMP method, [23] was the first work that proposed an
MIP to infer the parameters of this models from a given set of pair-
wise comparisons. They assumed the existence of an S-RMP model
that is able to correctly restore all the pairwise comparisons given by
the DM, and provided a linearized set of constraints with binary vari-
ables. However, the algorithm proposed in [23] suffers from a limita-
tion in the case where the pairwise comparisons provided by the DM
contains inconsistent information. It cannot find any solution.

To overcome this problem, [12] proposed a new algorithm deal-
ing with inconsistencies in the elicitation process. The proposal is
also based on an MIP with binary variables. However, the algorithm
searches for an optimal solution that is compatible with as many as
possible pairwise comparisons provided by the DM. Besides, it is
able to identify the inconsistent information.

We remark a common issue for the two algorithms developed for
S-RMP models that is the high computation time due to the introduc-
tion of the binary variables. Actually, when dealing with a very lim-
ited number of pairwise comparisons, the previous two algorithms
are proved to be quite efficient. Nevertheless, the computation time
increases exponentially when a large quantity of pairwise compar-
isons are provided.

Recently, [19] presented a well-adapted algorithm for learning the
parameters of MR-Sort models from large datasets. It takes the ad-
vantages of a heuristic approach combined with a Linear Program-
ming (LP). More details are provided in [20]. We highlight the gen-
eral idea of this work for sorting problems which in our work are
ranking ones instead.

Preference elicitation for RMP models was also encouraged in [2].
Besides, other works are generally interested in preference disaggre-
gation. For interested readers, please refer to [8, 6, 7].

3 A metaheuristic approach
The different approaches presented in section 2.3.2 for learning S-
RMP models have formulated the learning task as a Mixed Integer
linear programming (MIP) optimization problem. However, a com-
mon observation is the considerable high computation time due to
the introduction of binary variables [12, 22, 23].

In the case where the decision problem implies a large dataset,
suchlike MIP consumes even more computation time and usually
leads to the insolvability of the problem within the limited time. This
type of problems is considered as hard optimization problems, which
is defined as optimization problems that cannot be solved to optimal-
ity ([1]).

Thus, our proposal turns to a metaheuristic algorithm with the in-
tention of dealing efficiently with large datasets. In contrast to the
MIPs, the metaheuristic will approximate as accurately as possible
the parameters of the S-RMP model. We remark that multiple S-
RMP models may exist. Our objective is to infer a satisfactory S-
RMP model that is compatible with most (if not all of them) of the
input information. An interactive model calibration process in the
form of supplementary constraints on the parameters should be in-
voked in real decision cases.

3.1 Overview of the algorithm
The proposed metaheuristic follows the general idea of Evolution-
ary Algorithms (EA) and makes use of a local optimization. It starts
with an initialized population of Nmodel S-RMP models rather than
a single solution. Evaluation, Selection, Mutation and Substitution
operations are iterated to adjust the parameters of each individual



in the operating population. The iteration will repeats until either at
least one of the individuals in the population is able to restore all the
input pairwise comparisons or after a certain number of times. Ac-
tually, due to the limited computation time in practice, we interrupt
the algorithm before it reach the optimality more often. In our con-
text, the limited number of iterations is set to 100. It is summarized
in Algorithm 1

Algorithm 1: OVERVIEW OF THE ALGORITHM

1 Initialize a population of Nmodel S-RMP models
2 Evaluate each individual in the population
3 repeat
4 Select the best individuals from the population with a probability ξ
5 Adjust the reference points for selected individuals and yield

mutants with a probability µ
6 Adjust the criteria weights for mutated individuals
7 Evaluate the newly adjusted individuals
8 Substitute the population with a probability ζ under the constraint

of the initial population size
9 until at least one of the stopping criteria is met;

Actually, on the one side, the reference points are adjusted while
yielding mutants. On the other side, the criteria weights are adjusted
by solving an LP. The rest of this section is structured as below:
Section 3.2 begins with the initialization of the reference points and
the criteria weights. Section 3.3 presents how to learn the reference
points. The LP for learning the criteria weights is provided in Section
3.4.

3.2 Initialization
The first step of the algorithm consists in initializing a population
of Nmodel S-RMP models (in our context, Nmodel = 10). In meta-
heuristic algorithms, it is important that the initial population spans
adequately the solution space as shown in [5]. To do this, we provide
a primitive method.

3.2.1 Reference points

First, we assume that the number of reference points k is fixed
beforehand. From a practical perspective, the number of reference
points in S-RMP models never exceeds 3, since such an S-RMP
model has already a considerable capacity while restoring preference
information as shown in [22].

Second, for a criterion j, k random numbers are generated from
the uniform distribution in the evaluation scale Xj . Depending on
the preference direction of the criterion j, they are then ranked ei-
ther in ascending order such that p1j ⩽ p2j ⩽ ... ⩽ pkj or in de-
scending order such that pkj ⩽ pk−1

j ⩽ ... ⩽ p1j . Thus, the gener-
ated reference points guarantee that ph ≻ ph−1 ≻ ... ≻ p1, where
ph = (ph1 , p

h
2 , ..., p

h
j , ..., p

h
m)

Finally, for k reference points, there are k! possible lexicographic
orders. We randomly choose one of them and it is fixed once initial-
ized.

3.2.2 Criteria weights

Concerning the weights, we use the approach of Butler [3]. Firstly,
m − 1 random integer numbers di where i ∈ {1, ...,m − 1} are
generated uniformly between 0 and 100. Then, they are ranked such
that d0 = 0 < d1 < d2 < ... < dm−1 < 100 = dm. The weight

of a criterion j is defined as wj = (dj − dj−1)/100. It is accurate to
0.01 and 0 ⩽ wj ⩽ 1. This ensure that the weights sum up to 1 and
are uniformly distributed.

3.3 Learning the reference points

3.3.1 Evolutionary algorithm

Our algorithm starts with an initial population of a certain number
of random solutions, and evolves it while yielding a new genera-
tion of population at each iteration. Conventionally, the (t + 1)-th
generation of solutions, denoted by Gt+1, is obtained from the n-th
generation, denoted by Gt, through a procedure composed by sev-
eral well-defined operations as described in [21]. [15] also proposed
a review about Evolutionary Algorithms used in the context of local
search.

In Algorithm 1, a proportion of the best S-RMP models in the
population are selected at the beginning of each iteration. Then, they
are submitted to the mutation operation. Mutations are performed on
each selected model and yield mutants with a probability. The cri-
teria weights of the mutants are adjusted (Section 3.4). After being
re-evaluated, the mutants are considered as the ”children”, while the
initial models are considered as the ”parents”. Finally, the substitu-
tion amounts to selecting the best models among both the parents
and the children based on their evaluation. Otherwise, it also allows
us to introduce newly initialized individuals to the next generation
of population if necessary. The details are provided in the following
sections.

3.3.2 Evaluation operation

The evaluation of the ”best” individuals is done according to their
fitness to the problem. In the context of learning an appropriate pref-
erence model from a set of information provided by the DM, several
objective functions are applicable. In the case of learning S-RMP
model, the fitness function corresponds to the Ranking Accuracy
(RA) of the model, which is simply defined as the ratio of the number
of pairwise comparisons restored correctly by the model to the total
number of pairwise comparisons provided by the DM at the begin-
ning of the process ((6)). Actually, this is the most straightforward
measure of ranking performance.

RA =
Number of pairwise comparisons restored

Total number of pairwise comparisons provided
(6)

3.3.3 Selection operation

The S-RMP model that gives the highest RA in the current population
Gt will be selected randomly with replacement, with a probability ξ
which increases with their fitness. Thereby, we define the probability
ξ(fs) associated to a given S-RMP model fs that consists of a set of
parameters s by:

ξ(fs) =
RA(fs)−RAmin

RAmax −RAmin
(7)

where
RAmin = min {RA(fs) | ∀fs ∈ Gt} (8)

RAmax = max {RA(fs) | ∀fs ∈ Gt} (9)



3.3.4 Mutation operation

Mutation operation, which amounts to adjust the reference points, is
only applied to the selected models. For each selected S-RMP model,
the operation is defined in the Algorithm 2. The mutations of the
reference points proceed one by one based on their lexicographic
order σ and then on each criterion from j = 1 to m.

Algorithm 2: MUTATION OPERATION

1 Create an empty list for keeping ignorable pairwise comparisons
2 for each reference point pσ(h) do
3 for each criterion j do
4 Generate a random variation ±θ

σ(h)
j

5 Count possible impacts caused by this change
6 Apply the change to the current model with a probability µ

7 Append newly ignorable pairwise comparisons to the list

8 Yield a mutated model

Firstly, both the sign and the value of the variation, denoted by
±θ

σ(h)
j , are uniformly randomized. However, it should be bounded

to prevent re-degrading the quality of the models after some itera-
tions and the boundary should depend on the current number of iter-
ations Nit. For example, we take herein:

θ
σ(h)
j ≤

⌈
50√
Nit

⌉
(10)

As ±θ
σ(h)
j will be later applied to the current model with a probabil-

ity µ, we denote the changed evaluation of the reference point pσ(h)

on the criterion j by p′
σ(h)
j where

p′
σ(h)
j = p

σ(h)
j ± θ

σ(h)
j (11)

Then, we should define the probability µ that indicates if the vari-
ation ±θ

σ(h)
j should be applied. To do so, we identify at first the

impacts provoked by ±θ
σ(h)
j on the judgment of preference between

alternatives, which eventually improve (or worsen) the RA, through
the calculations below.

For any pairwise comparison of alternatives a ≿ b provided by the
DM, we define the slack quantity as follows:

s
σ(h)

(a,b) =

m∑
j=1

(
δ
σ(h)
a,j − δ

σ(h)
b,j

)
· ωj (12)

where ωj denotes the weight of the criterion j. ∀(a, b) ∈ BC, ∀h ∈
P and the lexicographic order σ, we compute δ

σ(h)
a,j and δ

σ(h)
b,j as

follows:

δ
σ(h)
a,j =

{
1 if aj ⩾ p

σ(h)
j

0 if aj < p
σ(h)
j

, δ
σ(h)
b,j =

{
1 if bj ⩾ p

σ(h)
j

0 if bj < p
σ(h)
j

(13)
In fact, the (global) judgement of preference between (a, b) is

based on the relative preference between (a, b) with respect to the
reference point pσ(h), which is deduced by

a ≿σ(h) b ⇐⇒ s
σ(h)

(a,b) ≥ 0 (14)

If δσ(h)
a,j equals to 1, it means that the criterion j is contributing to

the statement a ≿σ(h) b. The criterion j is namely a contributing

criterion for a in this case. Similarly, if δσ(h)
b,j equals to 1, it means

that the criterion j is weakening the statement a ≿σ(h) b. The crite-
rion j is then namely a weakening criterion for b. Particularly, when
δ
σ(h)
a,j − δ

σ(h)
b,j = 0, the criterion j is neither contributing nor weak-

ening. We said that it is neutralized.
The variation ±θ

σ(h)
j affects the calculation of s

σ(h)

(a,b) through

(δ
σ(h)
a,j , δ

σ(h)
b,j ). All the possible impacts provoked by ±θ

σ(h)
j can

be summarized (as shown in Table 1) by the value change of
(δ

σ(h)
a,j , δ

σ(h)
b,j ), where the changed value can be denoted and calcu-

lated by:

δ′
σ(h)
a,j =

{
1 if aj ⩾ p′

σ(h)
j

0 if aj < p′
σ(h)
j

(15)

δ′
σ(h)
b,j =

{
1 if bj ⩾ p′

σ(h)
j

0 if bj < p′
σ(h)
j

(16)

Formally, the positive and negative impacts are respectively de-
fined as follows:

Ipos
(
±θ

σ(h)
j

)
=

{
(a, b) ∈ BC

∣∣∣ (δ′σ(h)
a,j − δ′

σ(h)
b,j )− (δ

σ(h)
a,j − δ

σ(h)
b,j ) > 0

}
(17)

Ineg

(
±θ

σ(h)
j

)
=

{
(a, b) ∈ BC

∣∣∣ (δ′σ(h)
a,j − δ′

σ(h)
b,j )− (δ

σ(h)
a,j − δ

σ(h)
b,j ) < 0

}
(18)

Table 1: Impacts provoked by ±θ
σ(h)
j on

(
δ
σ(h)
a,j , δ

σ(h)
b,j

)
Before After Impact Description

I1 (0,1) (0,0) positive weakening criterion neutralized
I2 (0,1) (1,1) positive weakening criterion neutralized
I3 (0,0) (1,0) positive criterion become contributing
I4 (1,1) (1,0) positive criterion become contributing
I5 (1,0) (0,0) negative contributing criterion neutralized
I6 (1,0) (1,1) negative contributing criterion neutralized
I7 (0,0) (0,1) negative criterion become weakening
I8 (1,1) (0,1) negative criterion become weakening
I9 (0,0) (1,1) neutral no impact on the slack
I10 (1,1) (0,0) neutral no impact on the slack
I11 (0,0) (0,0) neutral no impact on the slack
I12 (1,1) (1,1) neutral no impact on the slack
I13 (1,0) (1,0) neutral no impact on the slack
I14 (0,1) (0,1) neutral no impact on the slack
I15 (0,1) (1,0) n.c. impossible
I16 (1,0) (0,1) n.c. impossible

For instance, we represent, in Figure 1, a couple of examples to
illustrate the adjustment of reference points. We suppose that

• The criteria (c1, c2, c3 and c4) are equal weighted,
i.e. ∀j ∈ {1, 2, 3, 4}, ωj = 0.25.

• The reference points are uniformly initialized and used in se-
quence, i.e. first p1, then p2 and p3.

• The DM provided a ≿ b as input.

With the initialized reference points, we derive at first that a ∼p1

b, b ≿p2 a and a ≿p3 b. Since the reference points are used sequen-
tially, we derive then b ≿ a, which is inconsistent with the statement



of the DM. Thus, the reference points should be adjusted by the al-
gorithm.

In Figure 1(a), the criterion j = 3, which was originally weaken-
ing the statement a ≿ b (as δp

2

a,3 = 0), is neutralized by applying

the variation −θp
2

3 to the reference point p2 on the criterion j = 3,

because δ′
p2

a,3 = δ′
p2

b,3 = 1 and δ′
p2

a,3 − δ′
p2

b,3 = 0. It is considered
to be a (potential) positive impact, for the fact that, as shown in this
example, we newly derive that a ∼p2 b and finally a ≿ b, which is
consistent with the DM’s statement. In this sense, the reference point
p2 is adjusted.

In Figure 1(b), the criterion j = 2, which was originally neither
weakening nor contributing to statement a ≿ b (as δp

2

a,2 − δp
2

b,2 = 0),

becomes contributing by applying the variation +θp
2

2 to the reference

point p2 on the criterion j = 2, because δ′p
2

a,2 = 1 and δ′
p2

b,2 = 0. It is
also considered to be a (potential) positive impact, for the similar fact
that we can again finally derive that a ≿ b in this example with the
adjusted reference point p2 even though it was adjusted in a different
way.

Figure 1: Adjustment of reference points

(a) Impact of −θp
2

3 (i.e. I2) (b) Impact of +θp
2

2 (i.e. I4)

So far, we identify four positive possibilities as well as four nega-
tive possibilities and sum up accordingly the quantity of the positive
(respectively, negative) impacts by

Ipos =
∣∣∣Ipos (±θ

σ(h)
j

)∣∣∣ = |I1|+ |I2|+ |I3|+ |I4| (19)

Ineg =
∣∣∣Ineg

(
±θ

σ(h)
j

)∣∣∣ = |I5|+ |I6|+ |I7|+ |I8| (20)

However, we need to make some empirical remarks such that:

1. Usually, the variation ±θ
σ(h)
j provokes both the positive and neg-

ative impacts on different pairs of alternatives at the same time.
Having more positive impacts means that we have more chance to
improve the S-RMP model quality, but not necessarily.

2. Sometimes, we provoke as many negative impacts as the positive
impacts. In such a case, we are more interested in the case where
a large quantity of impacts provoked, as it allows us to introduce
more diversity to the population.

3. When there are less positive impacts than the negative ones, or
even no positive impacts provoked, we consider that it is still pos-
sible to improve the model potentially.

Based on these observations, we define accordingly the probabil-
ity of applying the variation ±θ

σ(h)
j to the current S-RMP model,

denoted by µ(±θ
σ(h)
j ) as it is associated to the variation ±θ

σ(h)
j , as

below :

µ
(
±θ

σ(h)
j

)
=


Ipos

Ipos+Ineg
if Ipos ̸= 0 and Ipos > Ineg

1− 1
Ipos

if Ipos ̸= 0 and Ipos = Ineg

0.5 ∗Gaussian if Ipos = 0 or Ipos < Ineg

(21)
Otherwise, as we treat the reference points one by one accord-

ing to the lexicographic order, once (14) is affirmed, (a, b) will be
appended to the list for keeping ignorable pairwise comparisons. Ac-
tually, (a, b) is considered to be ignorable, because the adjustment
for the rest of the reference points will not affect the global judge-
ment on the preference between (a, b) and the impacts provoked by
±θ

σ(h+1)
j on (δ

σ(h+1)
a,j , δ

σ(h+1)
b,j ) (and so on, if exists) can be then

ignored. In other words, once the comparison between any two alter-
natives (a, b) is restored by the previous reference point, no matter
how they compare to the rest of the reference points, it will not be
changed.

3.3.5 Substitution operation

As presented in Section 3.3.1, the mutants with the adjusted crite-
ria weights (Section 3.4 for details) will be re-evaluated and then
appended to the n-th generation of population Gt. The population
that contains both the ”children” and the ”parents” is denoted by G

′
t .

Substitution operation decides who will survive in the (t+1)-th gen-
eration of population.

Firstly, it is about selecting the best individuals from the n-th gen-
eration of population G

′
t . Therefore, the principle is the same as the

selection operation presented in Section 3.3.3. We define the proba-
bility ζ associated to an S-RMP model fs of being submitted to the
(t+ 1)-th generation by:

ζ(fs) =
RA(fs)−RA

′
min

RA′
max −RA

′
min

(22)

where,

RA
′
min = min

{
RA(fs) | ∀fs ∈ G

′
t

}
(23)

RA
′
max = max

{
RA(fs) | ∀fs ∈ G

′
t

}
(24)

Secondly, if there is not enough number of individuals that are
good enough to be submitted, some newly initialized S-RMP models
will be appended to the (t+ 1)-th generation under the constraint of
the initial size of the operating population.

After having defined the substitution operation, the evolutionary
part of the algorithm for learning the reference points is completed.
Now, we discuss how to adjust the criteria weights.

3.4 Learning the criteria weights
Assuming that the reference points are given, we consider the adjust-
ment of criteria weights as a linear optimization problem.

We are interested in setting good values for the criteria weights ωj ,
j ∈ M to restore as many as possible pairwise comparisons provided
by the DM. However, to do that we usually need to introduce binary
variables into the program as it is described in [22]. In the case of
a large dataset, using binary variables will considerably increase the
computation time ([23, 12]). Therefore, we propose in this paper an
alternative formulation without binary variables that has been proved
to be quite efficient (Section 4 for the numerical test results).

We note at first that ωj , j ∈ M are the unknown variables to
be adjusted. Considering then the slack defined by (12) and (13),



we remark that it is actually an indicator that shows if the (relative)
preference between two alternatives can be restored by the current S-
RMP model. Hopefully, for any pairwise comparison (a, b) provided
by the DM, there should be at least one of the slack variables sσ(h)

(a,b)

such that

∃h∗ ∈ P, s
σ(h∗)
(a,b) > 0, s

σ(1)

(a,b) = s
σ(2)

(a,b) = ... = s
σ(h∗−1)

(a,b) = 0 (25)

where σ is a specified lexicographic order of reference points.
However, we cannot translate (25) as part of the linear constraints

of the problem, because it is not always true. It means that it is not
always possible to find such an S-RMP model with the given refer-
ence points and the adjusted criteria weights that restores exactly all
the provided pairwise comparisons.

In fact, our objective is, by adjusting the criteria weights, to make
the model compatible with as many as possible pairwise comparisons
provided by the DM. In this case, (25) should be integrated as part of
the objective function but not as linear constraints.

Hence, to account for this, we define then another two auxiliary
variables sσ(h)+

(a,b) and s
σ(h)−
(a,b) for ∀h ∈ P, ∀(a, b) ∈ BC by:

s
σ(h)

(a,b) − s
σ(h)+

(a,b) + s
σ(h)−
(a,b) ≥ 0 (26)

where both of them are positive by definition. Actually, sσ(h)+

(a,b) rep-
resents the positive terms in the definition of sh(a,b) that contributes

to the statement. Respectively, sσ(h)−
(a,b) represents the negative terms

in the definition of sh(a,b) that weaken the statement.
Moreover, in order to maximize the number of pairwise compar-

isons correctly restored by the model, the objective function is de-
fined as below:

max
∑

(a,b)∈BC

k∑
h=1

ωσ(h) ·
(
s
σ(h)+

(a,b) − α · sσ(h)−
(a,b)

)
(27)

where we make use of two weighting system α and ωσ(h).
On the one hand, ωσ(h) for ∀h ∈ P weights the reference points.

We remark that, by carefully choosing their values, it is approxi-
mately equivalent to using the reference points in their lexicographic
order. Actually, if k ⩾ 2, whatever the value of ωσ(k),

ωσ(k−h) =
1

ϵ
·

k∑
i=k−h+1

ωσ(i) (28)

that depends on the small value for ϵ. ϵ represent the accuracy of the
criteria weights that we impose in the solution. For example, if ϵ =
10−3 and we take ωσ(3) = 1 for an S-RMP model with 3 reference
points, then we can deduce that ωσ(2) = 103 and ωσ(1) = 106+103.

On the other hand, α balances the compensatory behavior between
pairwise comparisons. We note that, to avoid using binary variables,
such an objective function cannot garantee that the maximal number
of pairwise comparisons can be correctly restored. However, by set-
ting a big enough value for α (for example, α = 103), it is able to
reduce the compensatory effects efficiently.

We summarize the linear program as below:

max
∑

(a,b)∈BC

k∑
h=1

ωσ(h) ·
(
s
σ(h)+

(a,b) − α · sσ(h)−
(a,b)

)

s.t.
m∑

j=1

ωj = 1

∀(a, b) ∈ BC, ∀h ∈ P,

s
σ(h)

(a,b) =

m∑
j=1

(
δ
σ(h)
a,j − δ

σ(h)
b,j

)
· ωj

s
σ(h)

(a,b) − s
σ(h)+

(a,b) + s
σ(h)−
(a,b) ≥ 0

s
σ(h)+

(a,b) ≥ 0, s
σ(h)−
(a,b) ≥ 0

4 Numerical analysis

In this section, the proposed algorithm is further investigated numer-
ically based on a large set of artificially generated data. Statistical
techniques were used to demonstrate the advantages of the meta-
heuristic comparing with the conventional disaggregation methods
for outranking models based on LP.

We are firstly concerned with the quality of the solution. For a
suchlike evolutionary approach, it is represented by the ”best” in-
dividual in the operating population. Secondly, there is usually a
compromise between the optimality of the solution and the number
of iterations it takes to reach a satisfactory result as we mentioned
in Section 3.1. By simulating the different decision circumstances
with a large quantity of randomly generated data, we investigate the
improvement curves produced in each circumstance to better under-
stand the behavior of the algorithm. Otherwise, we examine also the
runtime characteristics of the proposed metaheuristic, since one of
the interest of this work is to overcome the insolvability of the MIP-
based disaggregation methods in dealing with large datasets (Section
2.3.2).

The different decision circumstances that we studied are discussed
in the next section.

4.1 Experiments

In the experiments, we consider 1000 alternatives and a varying num-
bers of criteria (4, 6, 8 or 10). We generate randomly an initial S-
RMP model to test the algorithm. It is denoted by fβ , as it is defined
by a set of parameters β. It simulates the preference model of a fic-
titious DM. Then, 500 reference pairwise comparisons among the
alternatives are derived from the initial model fβ based on their ran-
domly generated evaluations on the criteria. We consider also differ-
ent numbers of reference points in the initial model fβ (Ini. NRP, for
Initial Number of Reference Points) to simulate different complexity
levels of the DM’s preference system.

The experiments are divided into two groups according to the dif-
ferent preset numbers of reference points in the inferred model (Inf.
NRP): In Group A, we infer S-RMP models with only 1 reference
point whatever the initial number of reference points in β. While,
in Group B, we infer S-RMP models with exactly their initial num-
ber of reference points, so as to compare these two groups of ex-
periment and better understand the importance of carefully setting a
corresponding number of reference points in S-RMP disaggregation.
The different cases that we considered are distinguished by:



• Number of criteria = 4, 6, 8 or 10
• Ini. NRP = 1,2 or 3
• Inf. NRP = 1 or the initial number

The experiments are then numbered by a trio-index as shown in
Table 2 and Table 3. For instance, ”4.1.A” means that, we consider 4
criteria and the initial model is generated with 1 reference point and
it is in the group ”A”. For each experiment, all the provided results
are based on the average of 100 repeated trials under the same testing
conditions 2.

4.2 Empirical results
4.2.1 Quality of the solution

The inferred model is denoted by fβ̂∗ with some parameters β̂∗. As
shown in Table 2 and Table 3, the ”closeness” between the initial
model fβ and the inferred model fβ̂∗ is measured by the RA. Since
we generated the input information without introducing any incon-
sistency, the measured value of RA is always expected to be as close
as possible to 1.00. The ”Starting RA” represents the quality of the
”best” individual in the initialized population. The ”Final RA” repre-
sents the quality of the final inferred model fβ̂∗ , which is the ”best”
individual in the population when the algorithm terminated. How-
ever, we remind that multiple non-identical individuals may give the
same value of RA, as the solution is not unique (as presented in Sec-
tion 2.3.1).

In the group A of experiments, we generated the initial models
with 1, 2 or 3 reference points and inferred S-RMP models involving
only 1 reference point (Table 2). We notice that the best final RA,
0.997, is observed in the experiment 4.1.A, while the worst is ob-
served in the experiment 4.3.A. It shows, in general, the capability
of the proposed metaheuristic while inferring an S-RMP model as
simply as possible.

However, exceptions are observed in the experiment 10.3.A. The
final RA is instead even greater than 10.1.A on average. The ran-
domized starting models are also better than in the other two cases
(10.1.A and 10.2.A). This will be further discussed (Section 4.3).

Table 2: Group A of experiments

Exp. Num. Cri. Ini. NRP Inf. NRP Starting RA Final RA
4.1.A 4 1 1 0.807 0.997
4.2.A 4 2 1 0.746 0.904
4.3.A 4 3 1 0.735 0.880
6.1.A 6 1 1 0.813 0.987
6.2.A 6 2 1 0.761 0.934
6.3.A 6 3 1 0.741 0.912
8.1.A 8 1 1 0.810 0.969
8.2.A 8 2 1 0.760 0.940
8.3.A 8 3 1 0.746 0.925
10.1.A 10 1 1 0.805 0.960
10.2.A 10 2 1 0.761 0.931
10.3.A 10 3 1 0.810 0.969

In the group B of experiments, we assume that we can correctly
set the number of reference points in the S-RMP models to be in-
ferred (Table 3). At this time, the worst final RA is observed in
the experiment 10.3.B. It is reasonable, since it is the most compli-
cated case that has been considered in our analysis. However, 0.950,

2 Intel Core i3-2120 3.30 GHz CPU, 4 GB RAM, Ubuntu 14.04 LTS, Eclipse
IDE Kepler SR2, Cplex 12.6

which means 95% of the 500 input pairwise comparisons could be
restored correctly in the inferred S-RMP model, is already satisfac-
tory enough for the disaggregation.

Table 3: Group B of experiments

Exp. Num. Cri. Ini. NRP Inf. NRP Starting RA Final RA
4.1.B 4 1 1 0.807 0.997
4.2.B 4 2 2 0.810 0.983
4.3.B 4 3 3 0.819 0.973
6.1.B 6 1 1 0.813 0.987
6.2.B 6 2 2 0.798 0.966
6.3.B 6 3 3 0.796 0.968
8.1.B 8 1 1 0.810 0.969
8.2.B 8 2 2 0.780 0.961
8.3.B 8 3 3 0.784 0.961

10.1.B 10 1 1 0.805 0.964
10.2.B 10 2 2 0.777 0.952
10.3.B 10 3 3 0.775 0.950

By comparing with the group A, we observe that the starting RAs
as well as the final RAs are significantly enhanced in the group B of
experiments by presetting correctly the number of reference points,
especially in the experiments where the initial models are generated
with more than one reference points (except for 10.3.A and 10.3.B).

To better understand the behavior of the proposed algorithm, the
improvement curves are drawn and investigated below.

4.2.2 Behavior of the algorithm

The improvement curves show not only the starting and the final
point, but the evolution of RA in function of the number of itera-
tions during the whole process. As shown in Figure 2 (for Group A)
and Figure 3 (for Group B), the RA is improved and converges pro-
gressively. Without any surprise, the exceptional phenomenon that
we pointed out in Section 4.2.1 for 10.3.A is also observed in Figure
2(d). The dotted curve that represents the case involving 3 reference
points is instead placed above the curve that represents the case in-
volving 1 reference point (Section 4.3 for further discussions).

For a fixed number of criteria, by comparing each of the subfigures
in Group A with the ones in Group B (for example, Figure 2(a) with
Figure 3(a)), we can firstly visualize the intensively reduced level of
RA due to the improperly set number of reference points. Moreover,
we notice that the reduced level is more significant when the model
involves fewer criteria.

Otherwise, we observe that, in Figure 3, the dashed line for ”2p”
and the dotted line for ”3p” almost coincide with each other. It means
that, comparing with the single reference point cases, the improving
RA is reduced quasi-equally in the multiple reference points cases
regardless of the number of reference points involved.

Actually, the improvement curves can also be grouped by number
of reference points (as shown in Figure 4 and Figure 5) instead of
by criteria number. In Figure 4(c), we inferred S-RMP models that
involve only 1 reference point from the information derived from
the initial models that involve 3 reference points. We notice that, not
similar to the other figures, the curves (in Figure 4(c)) that represent
the cases where more criteria are involved are above the others that
represent the cases where fewer criteria are involved. Related discus-
sions are provided in Section 4.3.

Moreover, the improvement curves can be divided into two stages.
The first stage is the rising section, while the second stage is the
flat section. The flat section shows the final RA that we can reach,



Figure 2: Group A of experiments (num. of criteria)
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Figure 3: Group B of experiments (num. of criteria)
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while the rising section also reveals some important advantages of
the proposed metaheuristic.

We measure the first stage of the improvement curves by the rapid-
ity of convergence. It is defined as the necessary number of iterations
needed to reach a quasi-satisfactory RA. To be precise, we define the
quasi-satisfactory RA as the 97% of the final RA. It shows the ef-
ficiency of the metaheuristic algorithm. The results are presented in
Table 4.

We can observe that the metaheuristic approach is generally quite
efficient. Table 4 shows that the inferred models can reach a quasi-
satisfactory state within around the first 30 iterations and it depends
on the complexity of the preference model of the DM.

Figure 4: Group A of experiments (num. of ref. pts)
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Figure 5: Group B of experiments (num. of ref. pts)
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4.2.3 Computation time

The average computation time is provided in Table 5. We observed
that, even for the case involving 3 reference points and 10 criteria,
the computation time remains within around 3 minutes. These results
should be further compared to the computation times of algorithms
using MIP formulations.

Besides, not only should the runtime value be measured, but also
the evolution of computation time as a function of the criteria number
or the number of the reference points should be investigated. It is
interesting while comparing with other MIP-based algorithms, as it
demonstrates the significant runtime advantage of the metaheuristic
algorithm.



Table 4: Rapidity of convergence (group B, in number of iterations)

Num. Cri. 1 ref. pt 2 ref. pts 3 ref. pts
4 14 21 19
6 20 21 22
8 20 29 31
10 23 29 32

Table 5: Computation time (group B, in seconds)

Num. Cri. 1 ref. pt 2 ref. pts 3 ref. pts
4 44.55 69.58 77.98
6 85.78 101.48 110.20
8 119.67 136.46 146.35
10 148.28 169.75 182.06

By drawing the runtime curves, as shown in Figure 6(a), we notice
that the computation time is proportional with the criteria number.
We remind that it increases exponentially in the MIP-based S-RMP
disaggregation methods (Section 2.3.2). It endues the metaheuristic
approach with the capacity of dealing with the decision instances that
involve a large quantity of evaluating criteria.

Besides, we also notice that we consume more computation time
when dealing with more reference points, but not as much as for
the LP-based methods. To be clear, we draw once again the runtime
curves in function of the number of reference points (as shown in
Figure 6(b)). At this point of view, the obtained curves are all sub-
linear regardless of the criteria number while in the LP-based S-RMP
disaggregation methods, they are usually exponential vs. the number
of reference points.

4.3 Discussion
By checking the result of the numerical tests, we notice that the pre-
set number of reference points should be carefully adjusted to derive
a better solution, since the final RA is intensively reduced (except
for 10.3.A) in Group A (i.e. learning S-RMP models with single ref-
erence point) of experiments when the initial number of reference
points increases. Nevertheless, starting from an S-RMP model with
single reference point shows greater interpretability to the problem. It
actually expresses a very natural rule based on the distinction of two
classes of evaluation on each criterion. Besides, it helps us to estimate
the complexity of S-RMP models and to fix the number of reference
points. It means that we should consider increasing the number of
reference points when the final RA is not as satisfactory as we ex-
pected.

Moreover, we also notice that the number of criteria should be
limited. On one hand, we observe that, when the number of refer-
ence points is fixed, the final RA is descending progressively when
the criteria number increases. On the other hand, the exceptional phe-
nomenon that we observed (10.3.A) shows that, when there are more
criteria, it is easier to derive an S-RMP model that involves only one
reference point and gives a better RA. In other words, it is easier to
adjust one reference point by calibrating its valuation and the weights
of criteria than to calibrating multiple reference points at the same
time.

The study about the rapidity of convergence of the algorithm could
help us to adjust when to interrupt the algorithm when dealing with
real datasets, and to economize the total computation time in differ-
ent application circumstances. For instance, in the online web ap-

Figure 6: Computation time (in seconds)
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plications, the response time should usually be much more valuable
than in the offline recommendations. To obtain the most accurate re-
sult, it is possible to run the program during a very long time, even
day and night, in the offline cases. However, an acceptable solution
should be worked out as quickly as possible in the online cases and
then be adjusted step by step by a follow-up interactive process.

5 Conclusion

This paper presents an efficient metaheuristic approach to infer S-
RMP models from a large set of pairwise comparisons provided by
the DM. The proposed algorithm was tested with a large quantity
of artificially generated data that simulates a variety of different de-
cision circumstances. Firstly, the metaheuristic is able to deal with
instances involving as many as 500 pairwise comparisons. Suchlike
instances cannot be solved using MIP formulations. Secondly, the
computation time is proportional with the number of criteria involved
and sub-linearly increases with the number of reference points. Fi-
nally, even if the metaheuristic is not able to learn an S-RMP model
which to restore all pairwise comparisons, it infers S-RMP models
which restore up to at least 95% of the input information within a
reasonable computation time. We remark that it constitutes a good
trade-off of quality of result vs. computation time.

One of the interesting questions emerged from this work is the
adjustment of the number of reference points. Moreover, the perfor-
mance of the proposed metaheuristic should also be explored when
we are in presence of inconsistencies, for example, in the case of
group decision problems or in the case of real world applications.
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