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When 1 < p < ∞, maps f in W 1/p,p ((0, 1); S 1 ) have W 1/p,p phases ϕ, but the W 1/p,pseminorm of ϕ is not controlled by the one of f . Lack of control is illustrated by "the kink": f = e ıϕ , where the phase ϕ moves quickly from 0 to 2π. A similar situation occurs for maps f : S 1 → S 1 , with Moebius maps playing the role of kinks. We prove that this is the only loss of control mechanism: each map f :

(M a j ) ±1 , where M a j is a Moebius map vanishing at a j ∈ D, while the integer K = K( f ) and the phase ψ are controlled by M. In particular, we have K ≤ c p M for some c p . When p = 2, we obtain the sharp value of c 2 , which is c 2 = 1/(4π 2 ). As an application, we obtain the existence of minimal maps of degree one in W 1/p,p (S 1 ; S 1 ) with p ∈ (2 -ε, 2).

Résumé. Décomposition en profils et contrôle des phases des applications unimodulaires en dimension un.

Si 1 < p < ∞, les applications f appartenant à W 1/p,p ((0, 1); S 1 ) ont des phases ϕ dans W 1/p,p , mais la seminorme W 1/p,p de ϕ n'est pas contrôlée par celle de f . L'absence de contrôle est illustrée par "le pli": f = e ıϕ , où la phase ϕ augmente rapidement de 0 à 2π. Pour des applications f : S 1 → S 1 , le même phénomène apparaît, avec les transformations de Moebius jouant le rôle des plis. Nous prouvons que cet exemple est essentiellement le

Introduction

Let 0 < s < 1, 1 ≤ p < ∞ and let f : (0, 1) → S 1 belong to the space W s,p . Then f can be written as f = e ıϕ , where ϕ ∈ W s,p [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]. Once the existence of ϕ is known, a natural question is whether we can control |ϕ| W s,p in terms of | f | W s,p . For most of s, p the answer is positive. The exceptional cases are provided precisely by the spaces W 1/p,p ((0, 1); S 1 ), with 1 < p < ∞ [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]. In these spaces, lack of control is established via the following explicit example. For n ≥ 1, we define ϕ n as follows:

ϕ n (x) :=        0,
for 0 < x < 1/2 2πn(x -1/2), for 1/2 < x < 1/2 + 1/n 2π, for 1/2 + 1/n < x < 1 .

Then |ϕ n | W 1/p,p → ∞ (since ϕ n → ϕ = 2π χ (1/2,1) a.e., and ϕ does not belong to W 1/p,p ). On the other hand, if we extend u n := e ıϕ n with the value 1 outside (0, 1) and still denote the extension u n then, by scaling,

|u n | W 1/p,p ((0,1)) ≤ |u n | W 1/p,p (R) = |u 1 | W 1/p,p (R) < ∞.
Thus |u n | W 1/p,p ((0,1)) 1 and |ϕ n | W 1/p,p ((0,1)) → ∞. Finally, we invoke the fact that W 1/p,p phases are unique mod 2π [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF].

If one considers instead maps f : S 1 → S 1 , always in the critical case f ∈ W 1/p,p , 1 < p < ∞, then a new phenomenon occurs: f has a degree deg f , and does not have a W 1/p,p phase at all when deg f = 0 [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]Remark 10]. However, even if deg f = 0 (and thus f has a W 1/p,p phase ϕ), we have a loss of control phenomenon similar to the one on (0, 1). Indeed, let M a (z) := az 1 -a z , a ∈ D, z ∈ D, be a Moebius transform (that we identify with its restriction to S 1 , M a : S 1 → S 1 ). Let f a (z) := z M a (z), so that f a is smooth and deg f a = 0. One may prove (see below) that |M a | W 1/p,p = |Id| W 1/p,p , and thus f a is bounded in W 1/p,p . However, if a → α = e ıξ ∈ S 1 , then the smooth phase ϕ a of f a converges a.e. to ϕ(e ıθ ) :=

ξ -θ, if ξ -π < θ < ξ 2π + ξ -θ, if ξ < θ < ξ + π , which does not belong to W 1/p,p .
[Here, uniqueness of the phases and convergence hold mod 2π.] Thus ϕ a is not bounded as a → α ∈ S 1 . On the other hand, the plot of ϕ a shows that ϕ a has a "kink shape", and thus we have here the analog of the example on (0, 1). There are evidences that this loss of control mechanism is the only possible one. For example, the phase of the kink is not bounded in W 1/p,p , but clearly is in W 1,1 (same for f a ). Bourgain and Brezis [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] proved that for every f ∈ W 1/2,2 ((0, 1); S 1 ), we may split f = e ıψ v, with ψ and v = e ıη satisfying

|ψ| W 1/2,2 | f | W 1/2,2 and |η| W 1,1 = |v| W 1,1 | f | 2 W 1/2,2 . (1) 
Intuitively, one should think at v as at "the kink part of f ". The above result was extended by Nguyen [START_REF] Nguyen | Inequalities related to liftings and applications[END_REF] to 1 < p < ∞: for every 1 < p < ∞ and every f ∈ W 1/p,p ((0, 1); S 1 ), we may split f = e ıψ v, with ψ and v = e ıη satisfying

|ψ| W 1/p,p ≤ C p | f | W 1/p,p and |η| W 1,1 = |v| W 1,1 ≤ C p | f | p W 1/p,p . (2) 
Here we present another result in this direction, written for simplicity on the unit circle.

Theorem 1. Let 1 < p < ∞ and M > 0. Then there exist constants c p and F(M) such that:

every map f ∈ W 1/p,p (S 1 ; S 1 ) satisfying | f | p W 1/p,p ≤ M can be written as f = e ıψ K j=1
(M a j ) ε j , with

ε j ∈ {-1, 1}, K ≤ c p M, (3) 
and |ψ| p W 1/p,p ≤ F(M). ( 4 
)
When p = 2, we may take c 2 = 1/(4π 2 ), and this constant is optimal.

Corollary 1. Let 1 < p < ∞ and let f n , f ∈ W 1/p,p (S 1 ; S 1 ) be such that f n f in W 1/p,p . Then, up to a subsequence, there exist K ∈ N, ε j ∈ {-1, 1}, a j n ∈ D, α j ∈ S 1 , j = 1, . . . , K, ψ n ∈ W 1/p,p (S 1 ; R), and a constant C, such that:

i) f n = e ıψ n K j=1 (M a j n ) ε j f ; ii) a j n → α j as n → ∞; iii) ψ n C in W 1/p,p as n → ∞.
The theorem and the corollary are reminiscent of profile decompositions obtained in different, often geometrical, contexts. We mention e.g. the work of Sacks and Uhlenbeck [START_REF] Sacks | The existence of minimal immersions of 2-spheres[END_REF] on minimal 2-spheres, the analysis of Brezis and Coron [START_REF] Brezis | Problèmes de convergence dans certaines EDP non linéaires et applications géométriques[END_REF][START_REF] Brezis | Convergence de solutions de H-systèmes et application aux surfaces à courbure moyenne constante[END_REF][START_REF] Brezis | Convergence of solutions of H-systems or how to blow bubbles[END_REF] of constant mean curvature surfaces, or the one of Struwe [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF] of equations involving the critical Sobolev exponent. There are also abstract approaches to bubbling as in the work of Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] about concentrationcompactness or the characterization of lack of compactness of critical embeddings in Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], Jaffard [START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF] or Bahouri, Cohen and Koch [START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF].

Let us comment on the connection between (2) and our theorem. First, (2) has the following version for maps on S 1 : we may split f = e ıψ v,

with |ψ| W 1/p,p ≤ C p | f | W 1/p,p and |v| W 1,1 ≤ C p | f | W 1/p,p . Next, a Moebius maps satisfies |M a | W 1,1 = 2π, and thus K j=1 (M a j ) ε j W 1,1 ≤ 2π K ≤ 2π c p M. (5) 
Estimate [START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF] shows that ( 3) is a refinement of the second part of (2). On the other hand, ( 4) is weaker than the first part of (2), since F(M) need not have a linear growth (and actually we do not have any control on F). This suggests the following

Conjecture. Let 1 < p < ∞. Then there exist constants c p , d p such that every f ∈ W 1/p,p (S 1 ; S 1 ) satisfying | f | p W 1/p,p ≤ M can be decomposed as f = e ıψ K j=1 (M a j ) ε j , with ε j ∈ {-1, 1}, K ≤ c p M, (6) 
and

|ψ| p W 1/p,p ≤ d p M. (7) 
In addition, when p = 2, we may take c 2 = 1/(4π 2 ).

Proofs

We start by recalling or establishing few auxiliary results. Given 1 ≤ p < ∞, f , f n will denote maps in W 1/p,p (S 1 ; S 1 ). When 1 < p < ∞, " " refers to weak convergence in W 1/p,p . 1. Recall that, up to a multiplicative factor α ∈ S 1 , the Moebius transforms give all the conformal representations u : D → D. In particular, M a : S 1 → S 1 is a smooth orientation preserving diffeomorphism, and thus deg

M a = 1. Consequence: if g : S 1 → S 1 is continuous, then deg [g • M a ] = deg g. 2. If 1 ≤ p < ∞ and a ∈ D, then | f • M a | W 1/p,p = | f | W 1/p,p . [Here, we let | f | W 1,1 := ´S1 | ḟ | = ´2π 0 |d[ f (e ıθ )]/dθ| dθ and, for 1 < p < ∞, | f | p W 1/p,p := ´S1 ´S1 | f (x) -f (y)| p /|x -y| 2 dxd y.]
In or- der to prove the desired equality when p = 1, we write M a (e ıθ ) = e ıϕ(θ) , 0 ≤ θ ≤ 2π, with ϕ smooth and increasing. Then

| f • M a | W 1,1 = ˆ2π 0 d dθ [ f (e ıϕ(θ) )] dθ = ˆϕ-1 (2π) ϕ -1 (0) d dθ [ f (e ıθ )] dθ = ˆ2π 0 d dθ [ f (e ıθ )] dθ = | f | W 1,1 .
When 1 < p < ∞, we rely on the following identity, valid for measurable functions F :

S 1 × S 1 → [0, ∞]: ˆS1 ˆS1 F(M a (x), M a (y)) |x -y| 2 dxd y = ˆS1 ˆS1 F(x, y) |x -y| 2 dxd y. (8) 
Proof of ( 8): We have [M a ] -1 = M a and thus, after change of variables, (8) amounts to

|x -y| 2 | Ṁa (x)| | Ṁa (y)| = |M a (x) -M a (y)| 2 , ∀ x, y ∈ S 1 . (9) 
In turn, (9) follows immediately from the straightforward equality

| Ṁa (x)| = 1 -|a| 2 |1 -a x| 2 . 3. If 1 ≤ p < ∞ and a ∈ D, then deg [ f • M a )] =
deg f . Indeed, to start with, such f has a degree, since W 1/p,p → VMO and VMO maps gave a degree stable with respect to BMO convergence [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]. By item 1, the desired equality holds true for smooth f . The general case follows by density of C ∞ (S 1 ; S 1 ) into W 1/p,p (S 1 ; S 1 ) [11, Lemmas A.11 and A.12] and by stability of the VMO degree. 4. If 1 ≤ p < ∞ and the degree of f is d, then we may write f (z) = e ıψ(z) z d , with ψ ∈ W 1/p,p (S 1 ; R). This follows easily from the fact that maps f ∈ W 1/p,p ((0, 1); S 1 ) lift within W 1/p,p [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF].

5. Let 1 < p < ∞. For f ∈ W 1/p,p (S 1 ; S 1 ), let u = u( f ) be its harmonic extension. Set c p := inf{| f | p W 1/p,p ; u(0) = 0}.
Clearly, c p is achieved, and therefore c p > 0. 6. When p = 2, we have the following straightforward calculations: if f = n∈Z a n e ınθ , then Chapter 13], and deg [11, eq (25)]. This leads to

| f | 2 W 1/2,2 = 4π 2 n∈Z |n| |a n | 2 [10,
f = n∈Z n |a n | 2
4π 2 | deg f | ≤ | f | 2 W 1/2,2 ,
with equality e.g. when f (z) := z d . On the other hand, if u( f )(0) = 0, then a 0 = 0 and thus

| f | 2 W 1/2,2 = 4π 2 n =0 |n| |a n | 2 ≥ 4π 2 n =0 |a n | 2 = 4π 2 n∈Z |a n | 2 = 2π f 2 L 2 = 4π 2 .
Thus c 2 ≥ 4π 2 , and the example f (z) := z shows that c 2 = 4π 2 . 7. For 1 < p < ∞, there exists some constant c p such that 

c p | deg f | ≤ | f | p W 1/p,p , ∀ f ∈ W 1/p,p (
f = e ıψ , with ψ ∈ W 1/p,p (S 1 ; R) and |ψ| W 1/p,p ≤ C | f | W 1/p,p . (10) 
Indeed, set v := u/|u|, and write v = e ıϕ , with smooth ϕ. By standard properties of the functional calculus and of trace theory, and by the lifting estimates in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], we have ϕ ∈ W 2/p,p (D; R), and then ψ := tr ϕ ∈ W 1/p,p (S 1 ; R) satisfies

|ψ| W 1/p,p ≤ C(p) |ϕ| W 2/p,p ≤ C(p) |v| W 2/p,p ≤ C(δ, p) |u| W 2/p,p ≤ C(δ, p) | f | W 1/p,p . 9. Let 1 < p < ∞ and c < c p . If | f | p W 1/p,p ≤ c, then there exists some δ > 0 such that |u( f )| ≥ δ in D. Proof by contradiction: assume that | f n | p W 1/p,p ≤ c, f n g and and |u( f n )(a n )| ≤ 1/n. Since u(g • M a ) = [u(g)]
• M a , we may assume (by item 2) that a n = 0. We find that u( f

)(0) = 0 and | f | p W 1/p,p < c p , which is impossible. 10. Let 1 < p < ∞. Assume that f n f and f n → f a.e. Then | f n | p W 1/p,p = | f | p W 1/p,p + | f n f | p W 1/p,p + o(1)
. Indeed, if we set g n := f n f , then this follows from the Brezis-Lieb lemma [START_REF] Brezis | A relation between pointwise convergence of functions and convergence of functionals[END_REF] and the identity

g n (x) [ f n (x) -f n (y)] = f (x) -f (y) + g n (x) f (y) [g n (x) -g n (y)].
Proof of the Theorem 1. The proof is by complete induction on the integer part L := I(c p M) = I(M/c * p ) of c p M. The case where L = 0 follows from items 8 and 9. Let L > 0 and let M be such that I(M/c * p ) = L. Assume, by contradiction, that the theorem does not hold for M. We may thus find a sequence ( f n ) with the following properties:

(a) | f n | p W 1/p,p ≤ M.
(b) For any K ≤ L and any choice of a 1 , . . . , a K ∈ D and of signs ε j = ±1 such that K j=1 ε j = deg f n , if we write f n = e ıψ n K j=1 (M a j ) ε j , then we have

|ψ n | W 1/p,p → ∞.
[It is always possible to take K, a j , ε j and ψ n as above: it suffices to let K := | deg f | ≤ I(M/c p ) ≤ I(M/c * p ) = L, ε j := sgn deg f , and a j = 0.] By item 8 and property (b), there exist points a n ∈ D such that u( f n )(a n ) → 0. By item 2, we may assume in addition that a n = 0. Thus, in addition to (a) and (b), we may assume (c) f n f and f n → f a.e., for some f with u( f )(0) = 0. Set g n := f n f . By item 10 and the definition of c p , we have

| f | p W 1/p,p ≥ c p ≥ c * p , and |g n | p W 1/p,p = M -| f | p W 1/p,p + o(1). Let N > M -| f | p W 1/p,p be such that I(N/c * p ) = I((M -| f | p W 1/p,p )/c * p ) ≤ L -1. For large n, we have |g n | p W 1/p,p ≤ N.
By the induction hypothesis, we may write (possibly up to a subsequence)

g n = e ıη n R j=1 (M b j n ) ε j , with |η n | p W 1/p,p ≤ F(N) and R ≤ N/c * p .
On the other hand, if d := deg f , b j n := 0 and ε j := sgn d, then we may write f = e ıη R+|d| j=R+1 (M b j n ) ε j , with η ∈ W 1/p,p (item 4). In addition, we have |d| ≤ | f | p W 1/p,p /c p (item 7). Finally, with ψ n := η n + η and K := R + |d| ≤ M/c * p , we have f n = e ıψ n K j=1 (M b j n ) ε j , and (ψ n ) is bounded in W 1/p,p . This contradiction completes the proof of the first part of the theorem.

Optimality of (3) when p = 2 follows from the fact that, by item 6, f (z

) := z d , d > 0, satisfies | f | 2 W 1/2,2 = c 2 d
and requires at least d Moebius maps in its decomposition. Proof of Corollary 1. By replacing f n with f n f , we may assume that f n 1. Up to a subsequence, we may write f n = e ıη n P j=1 (M a j n ) ε j , with a j n → α j ∈ D, j = 1, . . . , P, and η n η.

With no loss of generality, we assume that α 1 , . . . , α K ∈ S 1 and α K+1 , . . . , α P ∈ D. Since (clearly) M a j n α j , j = 1, . . . , K, we find that 1 = e ı(η-C) P j=K+1 (M α j ) ε j for some appropriate C. Thus, with ζ n := η n -η, we have

f n = e ı(ζ n +C) K j=1 (M a j n ) ε j P j=K+1 M a j n M -1 α j ε j = e ıψ n K j=1 (M a j n ) ε j , for some ψ n such that ψ n -ζ n → C in W 1/p,
p , and thus ψ n C.

Applications

We start with an immediate consequence of Theorem 1.

Corollary 2.

Let d be a non negative integer and δ > 0. Then there exist a constant F(d, δ) such that: every map f ∈ W 1/2,2 (S 1 ; S 1 ) 

satisfying deg f = d and | f | 2 W 1/2,2 ≤ 4π 2 (d + 1) -δ dans be written as f = e ıψ d j=1 M a j , with |ψ| 2 W 1/2,2 ≤ F(d, δ).
m p := min{| f | p W 1/p,p ; deg f = 1} is achieved.
Proof. When p = 2, it follows from item 6 that m 2 is achieved by multiples of Moebius maps.

When 1 < p < 2, consider a minimizing sequence for m p . Since m p ≤ |Id| p W 1/p,p := I p , we may assume that

| f n | p W 1/p,p ≤ I p → I 2 = 4π 2 as p → 2. ( 11 
)
On the other hand, when f :

S 1 → S 1 we have | f | 2 H 1/2 ≤ 2 2-p | f | p W 1/p,p . Thus | f n | 2 H 1/2 ≤ J p := 2 2-p I p → 4π 2 as p → 2. ( 12 
)
For p sufficiently close to 2 and fixed δ > 0, we have J p ≤ 8π 2 -δ. We next apply Corollary 2 to f n and write f n = e ıψ n M a n , with

|ψ n | W 1/2,2 ≤ F(1, δ). Set g n := f n • M a n . By item 2, (g n ) is
a minimizing sequence for m p . On the other hand, we have g n = e ıϕ n Id, with ϕ n := ψ n • M a n bounded in W 1/2,2 (S 1 ; R) (by ( 8)). Therefore, up to a subsequence ϕ n ϕ in W 1/2,2 , and thus g n g := e ıϕ Id in W 1/2,2 . We find that deg g = 1. Since (g n ) is bounded in W 1/p,p , we obtain that g n g in W 1/p,p . By a standard argument, g achieves m p .

Corollary 1 implies the "bubbling-off of circles along a sequence of graphs", in a sense that will be specified below. A basic object within the theory of Cartesian currents of Giaquinta, Modica and Souček [START_REF] Giaquinta | Cartesian currents in the calculus of variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] is the one of graphs of maps, considered as currents. For smooth maps f : S 1 → S 1 , the graph is defined (as a current) as follows. Every smooth 1-form γ on S 1 × S 1 can be written (uniquely) as

γ(s, t) = F(s, t) ω(s) + G(s, t) λ(t);
here, ω and λ are the 1-forms given by ω(s, t) = s 1 ds 2 -s 2 ds 1 , respectively λ(t) = t 1 dt 2 -t 2 dt 1 , ∀ s, t ∈ S 1 , and F, G are smooth functions. Then (as an oriented curve on S 1 × S 1 ) the graph G f of f acts on γ through the formula

〈G f , γ〉 = ˆS1 F(s, f (s)) + ˆS1 G(s, f (s)) f ∧ ∂ τ f . ( 13 
)
Clearly, when f is smooth formula (13) defines a current G f ∈ D 1 (S 1 × S 1 ) := (Ω 1 (S 1 × S 1 )) * . It was proved in [17, Section 3] (see also [START_REF] Giaquinta | On sequences of maps into S 1 with equibounded W 1/2 energies[END_REF] for a higher dimensional context) that ( 13) can be used in order to define G f as a current when f is merely W 1/2,2 . The key observation is that the integral ´S1 G(s, f (s)) f ∧∂ τ f can be interpreted as a duality bracket between G(•, f

) ∈ W 1/2,2 and f ∧ ∂ τ f ∈ (W 1/2,2 ) * . If we set 〈G f , γ〉 := ˆS1 F(s, f (s)) + 〈G(•, f ), f ∧ ∂ τ f 〉 W 1/2,2 ,(W 1/2,2 ) * , ∀ f ∈ W 1/2,2 (S 1 ; S 1 ), (14) 
then we obtain a current which coincides with the usual graph of f when f is smooth, and is continuous with respect to the strong W 1/2,2 convergence [START_REF] Mironescu | A variational problem with lack of compactness for H 1/2 (S 1 ; S 1 ) maps of prescribed degree[END_REF].

One of the aims of the theory of Cartesian currents is to describe the limiting behavior of graphs under weak convergence of maps. In this direction, the following result was obtained in [START_REF] Mironescu | A variational problem with lack of compactness for H 1/2 (S 1 ; S 1 ) maps of prescribed degree[END_REF]Proposition 3.1].

Proposition 1. If f n

f in W 1/2,2 (S 1 ; S 1 ) then, up to a subsequence, there are finitely many points α 1 , . . . , α m ∈ S 1 and nonzero integers d 1 , . . . , d m such that

G f n → G f + m j=1 d j δ a j × S 1 in D 1 (S 1 × S 1 ). (15) 
Here,

〈δ α × S 1 , γ〉 = ˆS1 G(α, t).
A. Pisante [19] showed me that it is still possible to define G f and to extend Proposition 1 to maps f ∈ W 1/p,p (S 1 ; S 1 ) with 1 < p < ∞.

Proposition 2. (

[19]) Let 1 < p < ∞. It is possible to define G f ∈ D 1 (S 1 ×S 1 ), ∀ f ∈ W 1/p,p (S 1 ; S 1 ).
This definition is unique and natural, in the following sense:

1. G f coincides with the usual graph when f is smooth.

2. If f n → f strongly in W 1/p,p , then G f n → G f in D 1 (S 1 × S 1 ).
In particular, the density of C ∞ (S 1 ; S 1 ) into W 1/p,p (S 1 ; S 1 ) implies that G f is uniquely defined the properties 1 and 2 above.

Proof. Since we use arguments partly similar to the ones in [17, Proof of Proposition 3.1], we do not give all details. Given G ∈ C ∞ (S 1 × S 1 ), set

g(s) := S 1 G(s, t) d (t).
Then there exists some h ∈ C ∞ (S 1 ×S 1 ), that we may choose (at least locally around some fixed G 0 ) to depend smoothly on G such that G(s, t) λ(t) = g(s) λ(t) + d t h(s, t).

Here, d t stands for the partial differential ∂ τ(t) h(s, t) dt; d s is defined similarly.

When f is smooth we have 

〈G f , γ〉 = ˆS1 F(s, f (s)) - ˆS1 d s h(s, f (s)) + ˆS1 g(s) f (s) ∧ ∂ τ f (s). (16) 
Clearly, formula [START_REF] Mironescu | A variational problem with lack of compactness for H 1/2 (S 1 ; S 1 ) maps of prescribed degree[END_REF] still makes sense when f is merely in W 1/p,p (and thus ψ is merely W 1/p,p ).

It is easy to see that G f defined by ( 17) is a current, and that its dependence on f is continuous. [The latter property comes from the fact that the degree d and the phase ψ depend continuously on f [START_REF] Brezis | Sobolev Maps with Values into the Circle[END_REF].] For further use, let us note the following identity, obtained by density: if f ∈ C ∞ (S 1 ; S 1 ) and f (z) = e ıψ(z) z d , then f in W 1/p,p (S 1 ; S 1 ) then, up to a subsequence, there are finitely many points α 1 , . . . , α m ∈ S 1 and nonzero integers d 1 , . . . , d m such that

G f n → G f + m j=1 d j δ a j × S 1 in D 1 (S 1 × S 1 ). ( 19 
)
Sketch of proof. Let d := deg f and write f (z) = e ıψ(z) z d , with ψ ∈ W 1/p,p . We write f n as in Corollary 1. Set f n := f n e ıψ n f . Using [START_REF] Nguyen | Inequalities related to liftings and applications[END_REF] with f and f replaced by e ıψ n f and f n , we easily find that

〈G f n , γ〉 = 〈G f , γ〉 + K j=1 ˆS1 g(s) (M ε j a j ) ∧ ∂ τ (M ε j a j )(s) + o(1) as n → ∞. (20) 
A straightforward calculation shows that ˆS1 g(s) (M ε j a j ) ∧ ∂ τ (M ε j a j )(s) → 2π ε j g(α j ) as j → ∞, whence the conclusion of the proposition.

S 1 , 8 .

 18 S 1 ) [5, Corollary 0.5]. We let c p be the best constant such that this estimate holds, and set c * p := min{c p , c p }. We also set c p := 1/c * p . By item 6, for p = 2 we have c 2 = c 2 = c * 2 = 4π 2 , and c 2 = 1/(4π 2 ). Let 1 < p < ∞. Let δ > 0 and assume that |u( f )| ≥ δ in D. Then there exists some C = C(δ, p) such that

2 .

 2 Corollary 2 with d = 1, as well as a weak version of the corollary when d ≥ 2 were obtained in [2, Theorem 4.4, Theorem 4.8]. As an application of Corollary 2, we obtainTheorem There exists some ε > 0 such that, for p ∈ (2 -ε, 2],

  Let d := deg f and write, as in item 4, f (z) = e ıψ(z) z d , with ψ smooth. Then[START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] becomes〈G f , γ〉 = ˆS1 F(s, f (s)) -ˆS1 d s h(s, f (s)) + d ˆS1 g(s) -ˆS1 ∂ τ g(s) ψ(s).

  〈G f f , γ〉 = ˆS1 F(s, f (s) f (s)) -ˆS1 d s h(s, f (s) f (s)) + d ˆS1 g(s) -ˆS1 ∂ τ g(s) ψ(s) + ˆS1 g(s) f ∧ ∂ τ f (s).

( 18 )

 18 Proposition 3. ([19]) Let 1 < p < ∞. If f n
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