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Profile decomposition and phase control for
circle-valued maps in one dimension

Petru Mironescu*

January 2, 2016

Abstract. When 1 < p <∞, maps f in W1/p,p((0,1);S1) have W1/p,p phases ϕ, but the W1/p,p-
seminorm of ϕ is not controlled by the one of f . Lack of control is illustrated by “the kink”:
f = eıϕ, where the phase ϕ moves quickly from 0 to 2π. A similar situation occurs for maps
f : S1 → S1, with Moebius maps playing the role of kinks. We prove that this is the only
loss of control mechanism: each map f : S1 → S1 satisfying | f |p

W1/p,p ≤ M can be written as

f = eıψ
K∏

j=1
(Ma j )

±1, where Ma j is a Moebius map vanishing at a j ∈D, while the integer K = K( f )

and the phase ψ are controlled by M. In particular, we have K ≤ cp M for some cp. When p = 2,
we obtain the sharp value of c2, which is c2 = 1/(4π2). As an application, we obtain the existence
of minimal maps of degree one in W1/p,p(S1;S1) with p ∈ (2−ε,2).

Résumé. Décomposition en profils et contrôle des phases des applications unimodu-
laires en dimension un. Si 1 < p <∞, les applications f appartenant à W1/p,p((0,1);S1) ont
des phases ϕ dans W1/p,p, mais la seminorme W1/p,p de ϕ n’est pas contrôlée par celle de f .
L’absence de contrôle est illustrée par “le pli”: f = eıϕ, où la phase ϕ augmente rapidement de
0 à 2π. Pour des applications f :S1 →S1, le même phénomène apparaît, avec les transforma-
tions de Moebius jouant le rôle des plis. Nous prouvons que cet exemple est essentiellement le

seul : toute application f :S1 →S1 telle que | f |p
W1/p,p ≤ M s’écrit f = eıψ

K∏
j=1

(Ma j )
±1, où Ma j est

une transformation de Moebius s’annulant en a j ∈ D, tandis que l’entier K = K( f ) et la phase
ψ sont contrôlés par M. En particular, nous avons K ≤ cp M pour une constante cp. Pour p = 2,
nous obtenons la valeur optimale de c2, qui est c2 = 1/(4π2). Comme application, nous obtenons
l’existence d’une application minimale de degré un dans W1/p,p(S1;S1) avec p ∈]2−ε,2[.

1 Introduction
Let 0< s < 1, 1≤ p <∞ and let f : (0,1)→S1 belong to the space W s,p. Then f can be written as
f = eıϕ, where ϕ ∈W s,p [4]. Once the existence of ϕ is known, a natural question is whether we
can control |ϕ|W s,p in terms of | f |W s,p . For most of s, p the answer is positive. The exceptional
cases are provided precisely by the spaces W1/p,p((0,1);S1), with 1< p <∞ [4]. In these spaces,
lack of control is established via the following explicit example. For n ≥ 1, we define ϕn as
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follows:

ϕn(x) :=


0, for 0< x < 1/2
2πn(x−1/2), for 1/2< x < 1/2+1/n
2π, for 1/2+1/n < x < 1

.

Then |ϕn|W1/p,p →∞ (since ϕn → ϕ = 2πχ(1/2,1) a.e., and ϕ does not belong to W1/p,p). On the
other hand, if we extend un := eıϕn with the value 1 outside (0,1) and still denote the extension
un then, by scaling,

|un|W1/p,p((0,1)) ≤ |un|W1/p,p(R) = |u1|W1/p,p(R) <∞.

Thus |un|W1/p,p((0,1)) . 1 and |ϕn|W1/p,p((0,1)) → ∞. Finally, we invoke the fact that W1/p,p

phases are unique mod 2π [4].
If one considers instead maps f :S1 →S1, always in the critical case f ∈W1/p,p, 1 < p <∞,

then a new phenomenon occurs: f has a degree deg f , and does not have a W1/p,p phase at all
when deg f 6= 0 [11, Remark 10]. However, even if deg f = 0 (and thus f has a W1/p,p phase ϕ),
we have a loss of control phenomenon similar to the one on (0,1). Indeed, let Ma(z) := a− z

1−a z
,

a ∈D, z ∈D, be a Moebius transform (that we identify with its restriction to S1, Ma :S1 →S1).
Let fa(z) := z Ma(z), so that fa is smooth and deg fa = 0. One may prove (see below) that
|Ma|W1/p,p = |Id|W1/p,p , and thus fa is bounded in W1/p,p. However, if a → α = eıξ ∈ S1, then the

smooth phase ϕa of fa converges a.e. to ϕ(eıθ) :=
{
ξ−θ, if ξ−π< θ < ξ
2π+ξ−θ, if ξ< θ < ξ+π , which does not

belong to W1/p,p. [Here, uniqueness of the phases and convergence hold mod 2π.] Thus ϕa is
not bounded as a →α ∈S1. On the other hand, the plot of ϕa shows that ϕa has a “kink shape”,
and thus we have here the analog of the example on (0,1).

There are evidences that this loss of control mechanism is the only possible one. For ex-
ample, the phase of the kink is not bounded in W1/p,p, but clearly is in W1,1 (same for fa).
Bourgain and Brezis [3] proved that for every f ∈W1/2,2((0,1);S1), we may split f = eıψ v, with
ψ and v = eıη satisfying

|ψ|W1/2,2 . | f |W1/2,2 and |η|W1,1 = |v|W1,1 . | f |2W1/2,2 . (1)

Intuitively, one should think at v as at “the kink part of f ”. The above result was extended
by Nguyen [18] to 1 < p <∞: for every 1 < p <∞ and every f ∈ W1/p,p((0,1);S1), we may split
f = eıψ v, with ψ and v = eıη satisfying

|ψ|W1/p,p ≤ Cp | f |W1/p,p and |η|W1,1 = |v|W1,1 ≤ Cp | f |pW1/p,p . (2)

Here we present another result in this direction, written for simplicity on the unit circle.

Theorem 1. Let 1 < p < ∞ and M > 0. Then there exist constants cp and F(M) such that:

every map f ∈ W1/p,p(S1;S1) satisfying | f |p
W1/p,p ≤ M can be written as f = eıψ

K∏
j=1

(Ma j )
ε j , with

ε j ∈ {−1,1},

K ≤ cp M, (3)

and

|ψ|p
W1/p,p ≤ F(M). (4)
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When p = 2, we may take c2 = 1/(4π2), and this constant is optimal.

Corollary 1. Let 1< p <∞ and let fn, f ∈W1/p,p(S1;S1) be such that fn * f in W1/p,p. Then, up
to a subsequence, there exist K ∈N, ε j ∈ {−1,1}, a jn ∈D, α j ∈S1, j = 1, . . . ,K , ψn ∈ W1/p,p(S1;R),
and a constant C, such that:
i) fn = eıψn

∏K
j=1(Ma jn

)ε j f ;
ii) a jn →α j as n →∞;
iii) ψn *C in W1/p,p as n →∞.

The theorem and the corollary are reminiscent of profile decompositions obtained in dif-
ferent, often geometrical, contexts. We mention e.g. the work of Sacks and Uhlenbeck [20]
on minimal 2-spheres, the analysis of Brezis and Coron [6, 7, 8] of constant mean curvature
surfaces, or the one of Struwe [21] of equations involving the critical Sobolev exponent. There
are also abstract approaches to bubbling as in the work of Lions [16] about concentration-
compactness or the characterization of lack of compactness of critical embeddings in Gérard
[12], Jaffard [15] or Bahouri, Cohen and Koch [1].

Let us comment on the connection between (2) and our theorem. First, (2) has the follow-
ing version for maps on S1: we may split f = eıψ v, with |ψ|W1/p,p ≤ Cp| f |W1/p,p and |v|W1,1 ≤
Cp| f |W1/p,p . Next, a Moebius maps satisfies |Ma|W1,1 = 2π, and thus∣∣∣∣∣ K∏

j=1
(Ma j )

ε j

∣∣∣∣∣
W1,1

≤ 2πK ≤ 2π cp M. (5)

Estimate (5) shows that (3) is a refinement of the second part of (2). On the other hand, (4)
is weaker than the first part of (2), since F(M) need not have a linear growth (and actually we
do not have any control on F). This suggests the following

Conjecture. Let 1< p <∞. Then there exist constants cp,dp such that every f ∈W1/p,p(S1;S1)

satisfying | f |p
W1/p,p ≤ M can be decomposed as f = eıψ

K∏
j=1

(Ma j )
ε j , with ε j ∈ {−1,1},

K ≤ cp M, (6)

and

|ψ|p
W1/p,p ≤ dp M. (7)

In addition, when p = 2, we may take c2 = 1/(4π2).

2 Proofs
We start by recalling or establishing few auxiliary results. Given 1 ≤ p <∞, f , fn will denote
maps in W1/p,p(S1;S1). When 1< p <∞, “*” refers to weak convergence in W1/p,p.
1. Recall that, up to a multiplicative factor α ∈ S1, the Moebius transforms give all the con-
formal representations u :D→D. In particular, Ma :S1 →S1 is a smooth orientation preserv-
ing diffeomorphism, and thus deg Ma = 1. Consequence: if g : S1 → S1 is continuous, then
deg[g ◦Ma]= deg g.
2. If 1 ≤ p < ∞ and a ∈ D, then | f ◦ Ma|W1/p,p = | f |W1/p,p . [Here, we let | f |W1,1 := ´

S1 | ḟ | =´ 2π
0 |d[ f (eıθ)]/dθ|dθ and, for 1 < p < ∞, | f |p

W1/p,p := ´
S1

´
S1 | f (x)− f (y)|p/|x− y|2 dxdy.] In or-

der to prove the desired equality when p = 1, we write Ma(eıθ) = eıϕ(θ), 0 ≤ θ ≤ 2π, with ϕ

smooth and increasing. Then

| f ◦Ma|W1,1 =
ˆ 2π

0

∣∣∣∣ d
dθ

[ f (eıϕ(θ))]
∣∣∣∣ dθ =

ˆ ϕ−1(2π)

ϕ−1(0)

∣∣∣∣ d
dθ

[ f (eıθ)]
∣∣∣∣ dθ =

ˆ 2π

0

∣∣∣∣ d
dθ

[ f (eıθ)]
∣∣∣∣ dθ = | f |W1,1 .
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When 1 < p <∞, we rely on the following identity, valid for measurable functions F :S1 ×
S1 → [0,∞]:ˆ

S1

ˆ
S1

F(Ma(x), Ma(y))
|x− y|2 dxdy=

ˆ
S1

ˆ
S1

F(x, y)
|x− y|2 dxdy. (8)

Proof of (8): We have [Ma]−1 = Ma and thus, after change of variables, (8) amounts to

|x− y|2 |Ṁa(x)| |Ṁa(y)| = |Ma(x)−Ma(y)|2, ∀x, y ∈S1. (9)

In turn, (9) follows immediately from the straightforward equality |Ṁa(x)| = 1−|a|2
|1−a x|2 .

3. If 1≤ p <∞ and a ∈D, then deg[ f ◦Ma)]= deg f . Indeed, to start with, such f has a degree,
since W1/p,p ,→ VMO and VMO maps gave a degree stable with respect to BMO convergence
[11]. By item 1, the desired equality holds true for smooth f . The general case follows by
density of C∞(S1;S1) into W1/p,p(S1;S1) [11, Lemmas A.11 and A.12] and by stability of the
VMO degree.
4. If 1≤ p <∞ and the degree of f is d, then we may write f (z)= eıψ(z) zd, withψ ∈W1/p,p(S1;R).
This follows easily from the fact that maps f ∈W1/p,p((0,1);S1) lift within W1/p,p [4].
5. Let 1 < p < ∞. For f ∈ W1/p,p(S1;S1), let u = u( f ) be its harmonic extension. Set c′p :=
inf{| f |p

W1/p,p ; u(0)= 0}. Clearly, c′p is achieved, and therefore c′p > 0.
6. When p = 2, we have the following straightforward calculations: if f = ∑

n∈Zan eınθ, then
| f |2

W1/2,2 = 4π2 ∑
n∈Z |n| |an|2 [10, Chapter 13], and deg f =∑

n∈Zn |an|2 [11, eq (25)]. This leads to
4π2 |deg f | ≤ | f |2

W1/2,2 , with equality e.g. when f (z) := zd. On the other hand, if u( f )(0)= 0, then
a0 = 0 and thus

| f |2W1/2,2 = 4π2 ∑
n 6=0

|n| |an|2 ≥ 4π2 ∑
n 6=0

|an|2 = 4π2 ∑
n∈Z

|an|2 = 2π‖ f ‖2
L2 = 4π2.

Thus c′2 ≥ 4π2, and the example f (z) := z shows that c′2 = 4π2.
7. For 1< p <∞, there exists some constant c′′p such that c′′p |deg f | ≤ | f |p

W1/p,p , ∀ f ∈W1/p,p(S1,S1)
[5, Corollary 0.5]. We let c′′p be the best constant such that this estimate holds, and set
c∗p := min{c′p, c′′p}. We also set cp := 1/c∗p. By item 6, for p = 2 we have c′′2 = c′2 = c∗2 = 4π2,
and c2 = 1/(4π2).
8. Let 1< p <∞. Let δ> 0 and assume that |u( f )| ≥ δ in D. Then there exists some C = C(δ, p)
such that

f = eıψ, with ψ ∈W1/p,p(S1;R) and |ψ|W1/p,p ≤ C | f |W1/p,p . (10)

Indeed, set v := u/|u|, and write v = eıϕ, with smooth ϕ. By standard properties of the func-
tional calculus and of trace theory, and by the lifting estimates in [4], we have ϕ ∈W2/p,p(D;R),
and then ψ := trϕ ∈W1/p,p(S1;R) satisfies

|ψ|W1/p,p ≤ C(p) |ϕ|W2/p,p ≤ C(p) |v|W2/p,p ≤ C(δ, p) |u|W2/p,p ≤ C(δ, p) | f |W1/p,p .

9. Let 1 < p <∞ and c < c′p. If | f |p
W1/p,p ≤ c, then there exists some δ > 0 such that |u( f )| ≥ δ

in D. Proof by contradiction: assume that | fn|pW1/p,p ≤ c, fn * g and and |u( fn)(an)| ≤ 1/n. Since
u(g ◦ Ma) = [u(g)] ◦ Ma, we may assume (by item 2) that an = 0. We find that u( f )(0) = 0 and
| f |p

W1/p,p < c′p, which is impossible.

10. Let 1 < p <∞. Assume that fn * f and fn → f a.e. Then | fn|pW1/p,p = | f |p
W1/p,p +| fn f |p

W1/p,p +
o(1). Indeed, if we set gn := fn f , then this follows from the Brezis-Lieb lemma [9] and the
identity

gn(x) [ fn(x)− fn(y)]= f (x)− f (y)+ gn(x) f (y) [gn(x)− gn(y)].
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Proof of the Theorem 1. The proof is by complete induction on the integer part L := I(cp M) =
I(M/c∗p) of cp M. The case where L = 0 follows from items 8 and 9. Let L > 0 and let M be such
that I(M/c∗p) = L. Assume, by contradiction, that the theorem does not hold for M. We may
thus find a sequence ( fn) with the following properties:
(a) | fn|pW1/p,p ≤ M.
(b) For any K ≤ L and any choice of a1, . . . ,aK ∈D and of signs ε j =±1 such that

∑K
j=1 ε j = deg fn,

if we write fn = eıψn
∏K

j=1(Ma j )
ε j , then we have |ψn|W1/p,p →∞. [It is always possible to take K ,

a j, ε j and ψn as above: it suffices to let K := |deg f | ≤ I(M/c′′p) ≤ I(M/c∗p) = L, ε j := sgndeg f ,
and a j = 0.]

By item 8 and property (b), there exist points an ∈D such that u( fn)(an)→ 0. By item 2, we
may assume in addition that an = 0. Thus, in addition to (a) and (b), we may assume
(c) fn * f and fn → f a.e., for some f with u( f )(0)= 0.

Set gn := fn f . By item 10 and the definition of c′p, we have | f |p
W1/p,p ≥ c′p ≥ c∗p, and |gn|pW1/p,p =

M − | f |p
W1/p,p + o(1). Let N > M − | f |p

W1/p,p be such that I(N/c∗p) = I((M − | f |p
W1/p,p )/c∗p) ≤ L − 1.

For large n, we have |gn|pW1/p,p ≤ N. By the induction hypothesis, we may write (possibly up
to a subsequence) gn = eıηn

∏R
j=1(Mb jn

)ε j , with |ηn|pW1/p,p ≤ F(N) and R ≤ N/c∗p. On the other

hand, if d := deg f , b jn := 0 and ε j := sgnd, then we may write f = eıη∏R+|d|
j=R+1(Mb jn

)ε j , with
η ∈ W1/p,p (item 4). In addition, we have |d| ≤ | f |p

W1/p,p /c′′p (item 7). Finally, with ψn := ηn +η
and K := R + |d| ≤ M/c∗p, we have fn = eıψn

∏K
j=1(Mb jn

)ε j , and (ψn) is bounded in W1/p,p. This
contradiction completes the proof of the first part of the theorem.

Optimality of (3) when p = 2 follows from the fact that, by item 6, f (z) := zd, d > 0, satisfies
| f |2

W1/2,2 = c2 d and requires at least d Moebius maps in its decomposition. �

Proof of Corollary 1. By replacing fn with fn f , we may assume that fn * 1. Up to a sub-
sequence, we may write fn = eıηn

∏P
j=1(Ma jn

)ε j , with a jn → α j ∈ D, j = 1, . . . ,P, and ηn * η.
With no loss of generality, we assume that α1, . . . ,αK ∈S1 and αK+1, . . . ,αP ∈D. Since (clearly)
Ma jn

* α j, j = 1, . . . ,K , we find that 1 = eı(η−C) ∏P
j=K+1(Mα j )

ε j for some appropriate C. Thus,
with ζn := ηn −η, we have

fn = eı(ζn+C)
K∏

j=1
(Ma jn

)ε j
P∏

j=K+1

(
Ma jn

M−1
α j

)ε j = eıψn
K∏

j=1
(Ma jn

)ε j ,

for some ψn such that ψn −ζn → C in W1/p,p, and thus ψn *C. �

3 Applications
We start with an immediate consequence of Theorem 1.

Corollary 2. Let d be a non negative integer and δ > 0. Then there exist a constant F(d,δ)
such that: every map f ∈W1/2,2(S1;S1) satisfying deg f = d and | f |2

W1/2,2 ≤ 4π2 (d+1)−δ dans be
written as f = eıψ∏d

j=1 Ma j , with |ψ|2
W1/2,2 ≤ F(d,δ).

Corollary 2 with d = 1, as well as a weak version of the corollary when d ≥ 2 were obtained
in [2, Theorem 4.4, Theorem 4.8]. As an application of Corollary 2, we obtain

Theorem 2. There exists some ε> 0 such that, for p ∈ (2−ε,2],

mp :=min{| f |p
W1/p,p ; deg f = 1}

is achieved.
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Proof. When p = 2, it follows from item 6 that m2 is achieved by multiples of Moebius maps.
When 1< p < 2, consider a minimizing sequence for mp. Since mp ≤ |Id|p

W1/p,p := Ip, we may
assume that

| fn|pW1/p,p ≤ Ip → I2 = 4π2 as p → 2. (11)

On the other hand, when f :S1 →S1 we have | f |2
H1/2 ≤ 22−p| f |p

W1/p,p . Thus

| fn|2H1/2 ≤ Jp := 22−p Ip → 4π2 as p → 2. (12)

For p sufficiently close to 2 and fixed δ> 0, we have Jp ≤ 8π2 −δ. We next apply Corollary
2 to fn and write fn = eıψn Man , with |ψn|W1/2,2 ≤ F(1,δ). Set gn := fn ◦Man . By item 2, (gn) is
a minimizing sequence for mp. On the other hand, we have gn = eıϕn Id, with ϕn :=ψn ◦Man

bounded in W1/2,2(S1;R) (by (8)). Therefore, up to a subsequence ϕn * ϕ in W1/2,2, and thus
gn * g := eıϕ Id in W1/2,2. We find that deg g = 1. Since (gn) is bounded in W1/p,p, we obtain
that gn * g in W1/p,p. By a standard argument, g achieves mp. �

Corollary 1 implies the “bubbling-off of circles along a sequence of graphs”, in a sense that
will be specified below. A basic object within the theory of Cartesian currents of Giaquinta,
Modica and Souček [13] is the one of graphs of maps, considered as currents. For smooth maps
f : S1 → S1, the graph is defined (as a current) as follows. Every smooth 1-form γ on S1 ×S1

can be written (uniquely) as

γ(s, t)= F(s, t)ω(s)+G(s, t)λ(t);

here, ω and λ are the 1-forms given by

ω(s, t)= s1 ds2 − s2 ds1, respectively λ(t)= t1 dt2 − t2 dt1, ∀ s, t ∈S1,

and F, G are smooth functions. Then (as an oriented curve on S1 ×S1) the graph G f of f acts
on γ through the formula

〈G f ,γ〉 =
ˆ
S1

F(s, f (s))+
ˆ
S1

G(s, f (s)) f ∧∂τ f . (13)

Clearly, when f is smooth formula (13) defines a current G f ∈D1(S1×S1) := (Ω1(S1×S1))∗.
It was proved in [17, Section 3] (see also [14] for a higher dimensional context) that (13) can
be used in order to define G f as a current when f is merely W1/2,2. The key observation is that
the integral

´
S1 G(s, f (s)) f ∧∂τ f can be interpreted as a duality bracket between G(·, f ) ∈W1/2,2

and f ∧∂τ f ∈ (W1/2,2)∗. If we set

〈G f ,γ〉 :=
ˆ
S1

F(s, f (s))+〈G(·, f ), f ∧∂τ f 〉W1/2,2,(W1/2,2)∗ , ∀ f ∈W1/2,2(S1;S1), (14)

then we obtain a current which coincides with the usual graph of f when f is smooth, and is
continuous with respect to the strong W1/2,2 convergence [17].

One of the aims of the theory of Cartesian currents is to describe the limiting behavior of
graphs under weak convergence of maps. In this direction, the following result was obtained
in [17, Proposition 3.1].

Proposition 1. If fn * f in W1/2,2(S1;S1) then, up to a subsequence, there are finitely many
points α1, . . . ,αm ∈S1 and nonzero integers d1, . . . ,dm such that

G fn →G f +
m∑

j=1
d j δa j ×�S1� in D1(S1 ×S1). (15)
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Here,

〈δα×�S1�,γ〉 =
ˆ
S1

G(α, t).

A. Pisante [19] showed me that it is still possible to define G f and to extend Proposition 1
to maps f ∈W1/p,p(S1;S1) with 1< p <∞.

Proposition 2. ([19]) Let 1< p <∞. It is possible to define G f ∈D1(S1×S1), ∀ f ∈W1/p,p(S1;S1).
This definition is unique and natural, in the following sense:

1. G f coincides with the usual graph when f is smooth.

2. If fn → f strongly in W1/p,p, then G fn →G f in D1(S1 ×S1).

In particular, the density of C∞(S1;S1) into W1/p,p(S1;S1) implies that G f is uniquely de-
fined the properties 1 and 2 above.

Proof. Since we use arguments partly similar to the ones in [17, Proof of Proposition 3.1], we
do not give all details. Given G ∈ C∞(S1 ×S1), set

g(s) :=
 
S1

G(s, t)d`(t).

Then there exists some h ∈ C∞(S1×S1), that we may choose (at least locally around some fixed
G0) to depend smoothly on G such that

G(s, t)λ(t)= g(s)λ(t)+dth(s, t).

Here, dt stands for the partial differential ∂τ(t)h(s, t)dt; ds is defined similarly.
When f is smooth we have

〈G f ,γ〉 =
ˆ
S1

F(s, f (s))−
ˆ
S1

dsh(s, f (s))+
ˆ
S1

g(s) f (s)∧∂τ f (s). (16)

Let d := deg f and write, as in item 4, f (z)= eıψ(z) zd, with ψ smooth. Then (16) becomes

〈G f ,γ〉 =
ˆ
S1

F(s, f (s))−
ˆ
S1

dsh(s, f (s))+d
ˆ
S1

g(s)−
ˆ
S1
∂τg(s)ψ(s). (17)

Clearly, formula (17) still makes sense when f is merely in W1/p,p (and thus ψ is merely
W1/p,p).

It is easy to see that G f defined by (17) is a current, and that its dependence on f is con-
tinuous. [The latter property comes from the fact that the degree d and the phase ψ depend
continuously on f [10].] �

For further use, let us note the following identity, obtained by density: if f̃ ∈ C∞(S1;S1) and
f (z)= eıψ(z) zd, then

〈G f f̃ ,γ〉 =
ˆ
S1

F(s, f (s) f̃ (s))−
ˆ
S1

dsh(s, f (s) f̃ (s))+d
ˆ
S1

g(s)−
ˆ
S1
∂τg(s)ψ(s)

+
ˆ
S1

g(s) f̃ ∧∂τ f̃ (s).
(18)
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Proposition 3. ([19]) Let 1< p <∞. If fn * f in W1/p,p(S1;S1) then, up to a subsequence, there
are finitely many points α1, . . . ,αm ∈S1 and nonzero integers d1, . . . ,dm such that

G fn →G f +
m∑

j=1
d j δa j ×�S1� in D1(S1 ×S1). (19)

Sketch of proof. Let d := deg f and write f (z) = eıψ(z) zd, with ψ ∈ W1/p,p. We write fn as in
Corollary 1. Set f̃n := fn eıψn f . Using (18) with f and f̃ replaced by eıψn f and f̃n , we easily
find that

〈G fn ,γ〉 = 〈G f ,γ〉+
K∑

j=1

ˆ
S1

g(s) (Mε j
a j )∧∂τ(M

ε j
a j )(s)+ o(1) as n →∞. (20)

A straightforward calculation shows thatˆ
S1

g(s) (Mε j
a j )∧∂τ(M

ε j
a j )(s)→ 2πε j g(α j) as j →∞,

whence the conclusion of the proposition. �
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