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Fusion of Force-Torque Sensors, Inertial Measurements Units and
Proprioception for a Humanoid Kinematics-Dynamics Observation

Mehdi Benallegue1,2, Alexis Mifsud1,2 and Florent Lamiraux1,2

Abstract— We present a scheme where the measurements
obtained through inertial measurement units (IMU), contact-
force sensors and porprioception (joint encoders) are merged in
order to observe humanoid unactuated floating-base dynamics.
The sensor data fusion is implemented using an Extended
Kalman Filter. The prediction part is constituted by viscoelastic
contacts assumption and a model expressing at the origin the
full body dynamics. The correction is achieved using embedded
IMU and force sensor. Simulation and experimentation on HRP-
2 robot show a state observation with improves inter-sensor
consistency but also increased reconstruction accuracy.

I. PROBLEM STATEMENT

The robot unactuated dynamics and its balance in par-
ticular depend only on external forces, mostly reduced to
two categories: contact forces and gravity [1]. On one hand
contact wrenches can be measured with embedded robot
force-torque sensors. On the other hand, we exploit usually
the forward kinematics and proprioceptive sensors (joint
encoders) to predict the robot weight. This prediction is
sometimes corrected using other sensors such as Inertial
Measurements Units (IMU) [2], [3]. This correction is specif-
ically important in the presence of uncertain environments or
compliant parts in the robot.

A good example of a robot that requires a fine reconstruc-
tion of the floating base kinematics is HRP-2. This humanoid
robot has a flexible part that lies between the ankle and
the foot. This flexibility is designed to protect the force-
torque sensors and the actuators from foot impacts with the
environment [4] (see Fig. 1).

HRP-2 is already capable of balanced walking with
compensating the flexibility deformation using a stabilizer
module. This module uses contact force sensors and has a
model of the elasticity of the flexible bush in order to track a
given reference contact wrench [5], [6]. Force measurements
can also be used to reconstruct the inertial parameters of a
humanoid robot [7] including HRP2-foot dynamics [8].

On the other hand, other woks were able to show that it is
possible to reconstruct accurately the kinematics of a robot
using only IMU measurements [3]. Indeed, inertial measure-
ment units provide valuable information about not only the
orientation of the robot, but also about the angular velocity
and body accelerations in the inertial reference frame. When
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Fig. 1. The foot of HRP-2. Between the ankle joint and the sole of the
robot, there is a flexible rubber bush.

coupled with proprioceptive sensors that provide the position
of contact with the environment, the 6D floating base kine-
matics becomes fully observable [2]. Furthermore, we have
shown recently that this estimation is reliable enough to drive
a closed-loop stabilization of the flexibility for a humanoid
robot like HRP-2 [9]. In another work, we have shown that
the combination of IMU signals with viscoelastic model of
the flexibility and the full body dynamical system enables
to estimate contact forces and moments without any need of
force sensor [10].

Accordingly, we see that IMUs and force sensors pro-
vide complementary yet redundant measurements to record
contact wrenches and floating base dynamics. However, in
order to make the link between the kinematics and dynamics,
a dynamical model of unactuated degrees of freedom and
contact wrenches has to be built.

In the presence of a force and torque applied on the
foot the compliant part is subject to deformation. We can
model the flexibility force response to deformation as a
rotational and translational spring-damper. By doing so,
we link torque/forces to kinematic deviation. On the other
hand contact forces drive the floating-base kinematics and
gravitational effects on the robot. Reciprocally, we have
to take into account that a humanoid robot is not a rigid
body. Actuated gesticulation lead to variations of angular
momenta and center of mass position, which modifies contact
forces and torques and therefore influences partially the
flexibility deformation. If we consider all these relations
between contact forces, weight, gesticulation, and flexibility
deformation we obtain a dynamical system that may predict
robot kinetics and even balance.

This model requires all the embedded sensors available
on the robot to correct the prediction in real-time. However,
to our best knowledge few works merged measurements



from IMUs, proprioception and force sensors of a humanoid
robot in a single state estimator that considers full body
dynamical model, especially in the context of compliant
limbs or surfaces. This paper addresses this issue and shows
a simple design using extended Kalman filtering.

In Section II we describe the model of elasticity and its
dynamics. In Section III, we show the model of sensors
and describe the suggested state observer. Section IV shows
simulations and real experiments and estimation results.
Finally, Section V, concludes the paper with a discussion
on the results and related works.

II. FLEXIBILITY DYNAMICAL MODEL

A. Flexibility as a 6D transformation

HRP-2 is 30+6 DoF stiffly position-controlled robot. The
position, velocity and acceleration of a link is perfectly
known in the robot root reference frame and only depends
on the 30 dimensional joint positions, velocities and accel-
erations. Indeed, these values are not only measured with
proprioceptive sensors such as joint encoders, but these
variables are actuated to track references provided by full
body controllers. Therefore, the availability of link positions
is valid for all HRP-2 joints except for the soles, because
they lie behind the flexibility which has unkown state. In
our next developments, we will ignore this fact, and neglect
the mass contribution of the soles.

The controller of HRP-2 considers that the position, the
velocity and acceleration of the root reference frame is
perfectly known in another reference frame that takes into ac-
count the unactuated floating-base kinematics and describes
the robot configuration in 36 dimension. All the controllers
of the robot are written in this reference frame, that we call
“control frame” and we denote C. Robot controllers assume
that C is the world frame, but this assumption is wrong.
in reality, the flexibility deformation creates a discrepancy
between the control frame C and the actual world reference
frame W . The transformation between C and W is a right-
handed rigid transformation that can be represented by a
homogeneous transformation matrix denoted WMC .

The flexibility is considered compliant on all the 6D. Thus,
there is a bijection between the flexibility deformations and
possible values of WMC . We prefer then to use WMC to
represent any state of the flexibility, instead of representing
the 6 DoF deformation at a joint level (see Figure 2). The
advantages of this representation are multiple. First it enables
to represent the flexibility of any number of contacts, and to
stay consistent even if this number is modified. Second, it
does not interfere with the controllers of the robot that work
in C. Third, it enables to easily compute in W the position
of a body that is described by the homogeneous matrix CMi

in C and can be written as

WMi =
WMC

CMi. (1)

This flexibility configuration, being an element of SE(3),
defines a translation represented by tC ∈ R3 and a rotation
in SO(3) represented by a rotation matrix RC ∈ R3×3. We
choose to include also in the state of the flexibility their

Fig. 2. Definition of the frames used for the modeling of the dynamic of
the flexibility. CMi is the position of the body Bi in the rigid-body control
frame C. WMi is the position of the same body Bi in the world reference
frame W . WMC is the homogeneous matrix between these two frames.

first and second time derivatives. The state vector of our
dynamical system is then:

x =
(
ttC Ωt

C ṫtC ωt
C ẗtC ω̇t

C
)t
, (2)

where t upper-script stands for transpose, ωC is a vector of
R3 such that ṘC = [ωC ]×RC , and ΩC is a vector in R3 so that
RC = exp([ΩC ]×) with [�]× the skew-symmetric operator

defined by:

xy
z


×

=

 0 −z y
z 0 −x
−y x 0

.

The force response of the flexibility only depends on this
state vector, especially with the viscoelastic model. This
model enables to link forces and kinematics and is the main
reason we are able to make the IMU-Force sensor fusion of
this paper.

B. Contact wrenches model
We assume linear spring-damper force/torque response

to the 6D deformation of each contact point. Therefore
we decompose this model into forces and moments, the
forces are responses to translations of the flexibility and the
moments are the sum of the response to angular deformation
and the moment of the linear forces applied at contact points.

1) Forces: If there is a contact with the environment,
the elastic force of contact i is proportional to the distance
between the current flexible joint position pi and its rest
position pi,C (defined by the position at zero flexibility). The
viscous forces of the contact i are proportional to velocity
of this deformation. We assume that contact points do not
move but the dynamics can be generalized to moving contact
points. The elasticity and viscosity factors are represented by
3×3 matrices KFs and damping KFd respectively.

Accordingly, the forces are expressed as

fi = −KFsdi −KFdḋi, (3)

where

di = pi − pi,C

= RCpi,C + tC − pi,C , (4)

and
ḋi = [ωC ]×RCpi,C + ṫC . (5)

We finally sum the forces fi to get the total contact forces
fc =

∑nc

i=1 fi



2) Moments: The moment generated by the contact force
i is the sum of the pure torque induced by torsional spring
and the moments of linear contact forces fi. The dynamics of
the robot are expressed in the origin of the world reference
frameW . The torsional springs have viscoelastic parameters,
elasticity KTs and damping KTd, also positive definite 3×3
matrices. Its expression is a simplified version of the model
presented in [11] and [12]1 giving the following total moment
for i-th contact:

mi = −KTsΩC −KFdωC + [pi]×fi. (6)

We finally sum the torques mi over the contacts external
moment: mc =

∑nc

i=1 mi

C. The feed-forward state dynamics

The external forces fc and weight, and moment mc

introduce an alteration of the linear and angular momenta
of the robot. Since the robot is considered as a rigidly
moving multibody, all joint velocities and accelerations are
independent from the total momenta. The alteration of the
momenta implies therefore a variation of the linear and an-
gular velocities of the flexibility ṫC and ωC , i.e. it determines
the accelerations ẗC and ω̇C .

We show next how these expressions can be used to predict
the future state evolution. The condition is to be able to know
all the mechanical information expressed in the control frame
C: the mass m, the position cC , velocity ċC and acceleration
c̈C of the CoM, the total tensor of inertia of the robot IC and
its time-derivative İC , and the total angular momentum σC
and its derivative σ̇C . These data are supposed to be given
directly from the controller and preconception of he robot,
since it operates in C. We will not address the way they
are computed. We use Newton-Euler equations to derive the
expression of ẗC and ω̇C .

1) Newton: It provides the following relation:

fc − gmuz =
d

dt

(
n∑

i=1

miċi

)
, (7)

where uz =
[
0 0 1

]t
is the unit vector along the vertical

z-axis, ci is the center of mass of body i. We develop this
expression in function of information expressed in C using
(1) for the center of mass position:

fc =[ω̇C ]×RCmcC + [ωC ]
2
×RCmcC + 2[ωC ]×RCmċC

+RCmc̈C +mẗC + gmuz. (8)

2) Euler: The sum of external moments is equal to the
time-variation of the total angular momentum σ of the body.
Each body Bi which has an inertia tensor Ii, an orientation
Ri and an angular velocity ωi in W has a contribution on
the total angular momentum. These angular momenta are

1Our model and the model of these former works are equivalent for small
angles.

summed, to express Euler equation:

mc − [RCcC ]×gmuz = σ̇ (9)

=
d

dt

n∑
i=1

(
RiIiR

t
iωi +mi[ci]×ċi

)
(10)

After conversion to available values expressed in C using (1)
we obtain the following equation:

mc =[ωC ]×RCICR
t
CωC +RC İCR

t
CωC +RCICR

t
Cω̇C

+ [ωC ]×RCσC +RCσ̇C + [tC ]×fc +m[RCcC ]×ẗC

+ [RCcC ]×gmuz. (11)

Details of these equations are available in [10]
3) The state dynamics: We invert the system (8,11) to get

the equations giving the acceleration part of the state vector

ω̇C =RC(IC +m[cC ]
2
×)
−1Rt

C

(mc − [RCcC + tC ]×fc

−
(
([ωC ]×RCICR

t
C +RC İCR

t
C)ωC +RCσ̇C + [ωC ]×RCσC

)
+ [RCcC]× (RCmc̈C + 2m[ωC ]×RC ċC +m[ωC ]

2
×RCcC)

)
)

(12)

and:

ẗC =
1

m

(
fc − (RCmc̈C + 2m[ωC ]×RC ċC +m[ωC ]

2
×RCcC

+gmuz)) + [RCcC ]×ω̇C (13)

These equations enable to predict the future dynamics
of the flexibility. This prediction progressively accumulates
error due to modeling errors and unmodelled perturba-
tions [10]. Obviously, this predictor requires to be corrected
using sensors feedback, we describe hereinafter quickly the
sensors model and the state observation framework.

III. STATE OBSERVATION

A. Sensors

The aim of this paper is to integrate two kinds of sensors:
IMU and force sensors. We show the model of the measure-
ment dynamics we consider for each of these sensors.

1) Inertial Measurements Unit: The IMU which is em-
bedded in HRP-2 is the original stock sensor which is nearly
10 years old. It is composed with a 3-axis gyrometer and a
3-axis accelerometer.

The gyrometer measures the angular velocity of the IMU
with respect to W but expressed in the IMU reference
frame. We consider that the kinematics of the sensor in the
local reference frame C as perfectly known. This kinematics
includes CRt

s, Cps and Cωs the rotation matrix, position
and angular velocity of the sensor in C, respectively. The
measurement of the gyrometer is then

yg = Rt
sωs =

CRt
s
Cωs +

CRt
sR

t
CωC (14)

The accelerometer measures the sum of the gravitational
field and its own acceleration p̈a in W . Using also the



known internal kinematics of the IMU the accelerometer
measurement ya is then:

ya = CRt
sR

t
C

(
d2

dt2
(RC

Cps + tC) + guz

)
= CRt

sR
t
C(([ω̇C ]× + [ωC ]

2
×)RC

Cps + 2[ωC ]×RC
Cṗs)

+ CRt
s(
Cp̈s +Rt

Cp̈C) + g CRt
sR

t
Cuz (15)

The system with these only measurements is fully observ-
able, including the force contacts [10]. However, this obser-
vation requires a precise model of the flexibility viscoelastic
parameters. This drawback can be overcome by adding the
force measurement that we introduce hereafter.

2) Force sensors: We have a 6D force/torque sensor at
each of the four end effectors of HRP-2. The sensor provides
3d forces and 3d moments expressed at the contact point, in
the end-effector frame. Since we suppose that the contacts
are firmly connected to the environment, we do not consider
here sliding or tipping. Of course if this condition is not
met, it has to be detected. To do so, the simplest method we
suggest is to test the force contacts for compliance to friction
cone and center of pressure constraints.

The expression of the force measurements is derived from
equations (3) and (6) and give

yfi =
CRt

s
CRt

cifi = −
CRt

s
CRt

ci(KFsdi +KFdḋi) (16)

ymi = − CRt
s
CRt

ci(KTsΩC +KFdωC), (17)

where yfi and ymi
are the linear force and moment mea-

surements of the contact i, respectively, and CRt
ci is the

rotation matrix giving the orientation of the end-effector at
contact ci in the control frame C. Note that the size of these
measurements depend on the number of contacts and may
vary during operation.

B. Extended Kalman Filtering

The observer we use for merging these measurements
is a simple Extended Kalman Filter (EKF). We use the
dynamics presented in Eq. (12, 13) and their time-integration,
the known inputs expressed in C and the sensor model
of Eq. (14, 15, 16, 17) as a dynamical model for the
prediction/correction iteration of the Extended Kalman filter.

This approach does not suffer from the modification of the
number of contacts and can be used in real-time. The C++
code is open-source and can be found in [13].

As we show in the next section, this estimation enables
obviously to rebuild a state vector which is more consistent
with all the measurement than with any sensor alone. But
also, we show that the IMU measurement can even improve
the quality of the force estimation.

IV. EXPERIMENTS

In this section, we describe the experimental validation of
our state observer and specifically of the fusion of the IMU
with force sensors. Therefore, we compare three different
state observers: 1- the one which combines force and IMU
measurement (F-IMU-Fusion), 2- the one that uses only force
measurements (Force-EKF), 3- the observer that takes only

IMU (IMU-EKF). All three models have the same dynam-
ical system with the same parameters, the only difference
between them lies in the Kalman correction (update) step.

We choose two criteria to compare the performance of
these observers, in terms of estimation accuracy and sensor
consistency. The first criterion is the quality of the recon-
struction of the Center of Pressure (CoP) also called Zero
Moment Point (ZMP), i.e. the distance of the estimated
position to a ground-truth CoP. This criterion enables to
assess the quality of the forces and moments reconstruction.
Furthermore, the CoP represents an important balance esti-
mator for humanoid robots [1]. However, since we do not
have a perfect estimation of the CoP position, we consider
that the CoP measured with the force sensors is the real one.
Hence, for performance evaluation we add artificial Gaussian
white noise to the force sensor measurements that we feed to
the observers. This enables to see their ability to overcome
these perturbations. The noise is centered and of standard
deviation of 10 n for forces and 10 n.m for moments.

The second criterion is the consistency between the esti-
mation and IMU sensors measurements. We estimate this by
showing the difference in the estimation of the orientation of
the flexibility. We consider that the estimation of IMU-EKF
is the most consistent to IMU measurements. Then we study
the angular distance between this value and the estimation
of F-IMU-Fusion or Force-EKF. The closer we get to IMU-
EKF measurement, the more our estimation is consistent with
IMU measurement.

An experiment is conducted in simulation and similarly on
the real robot. The robot is standing upright on his both legs.
Two force sensors are activated, one for each foot. The three
observers are running in parallel and the robot undergoes
perturbations: by changing the position of the Center of Mass
in simulation and by pushing the real robot. We study then
the evolution of the estimation.

A. Simulation

The simulation is made in Open-HRP, an open source
dynamical simulator, which simulates also sensors signals
and HRP-2 flexible bushes. The sampling rate is of 200Hz.
Figures 3 and 4 show, over time, the CoP fore each of
the three observers on x axis and y axis respectively. The
solid black line is the CoP extracted from the noiseless force
sensors and are perfect measurements. Along x axis, all the
estimators seem to have comparable precision in the CoP
position. Along y axis, we introduced a modeling error:
the linearity assumption of the compression spring is false
and has maximum effects along this axis. Therefore the
estimation of IMU-EKF is wrong. And due to measurement
noise, the estimation of Force-EKF is also far from the
noiseless measurement. However, the fusion of the sensors
enables to reduce this error. The mean position error of the
Force-EKF is 1.4 centimeters, the error of IMU-EKF is 1.2
centimeters, and the error of Fusion is of 1.0 centimeter.
This improvement may seem small but we have to take into
account that the stable area for CoP position in HRP-2 foot
is of about 4cm×4cm. But most of all, we have to consider
that the fusion uses the same noisy force signal as Force-
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Fig. 3. Simulation: the different estimations of the x-position of CoP over
time.
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Fig. 4. Simulation: the different estimations of the y-position of CoP over
time.

EKF and an IMU signal that is sensitive to modeling error.
Indeed, modeling errors may lead two sensing systems to
reconstruct too different states separately. This inconsistency
may jeopardize the relevance of the estimation or even
threaten the convergence of the observer. Instead, what we
observe here is the general fact that, on average, sensing
systems partially compensate errors of each other in the
estimation, which is the core idea behind sensor fusion [14].

Figure 5 shows the angle between the two estimators F-
IMU-Fusion and Force-EKF and the estimation of IMU-EKF.
We see clearly that this fusion enables to stay closer to IMU-
EKF and its measurement has a better consistency with the
IMU measurement. The mean angles are 0.0027 rad for the
fusion and 0.0049 rad for the Force-EKF. This effect was
obviously expected and it is not surprizing that a fusion
enables improved multi-sensors consistency.

B. Real robot

The experiments were conducted on HRP-2. We used the
stiffness and damping matrices identified for another HRP-
2 robot [8]. The sampling rate is also of 200Hz, and state
observations were made in real-time (120µs for a complete
EKF observation using our library). Figures 7 and 6 show the
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Fig. 5. Simulation: difference between the IMU-EKF flexibility orientation
and (i) the F-IMU-Fusion in thin blue, and (ii) the Force-EKF in thick gray
lines.

CoP estimations over time for the real robot when pushed.
Here the modeling error is smaller and we see that the
three estimations are able to follow the position of the CoP
provided by the force sensor. Nevertheless, we are still able
to see an improvement of the force measurement with the
sensors fusion. The mean error of Force-EKF is 0.84 cm,
the error of IMU-EKF is 0.44 cm and the error of fusion is
0.36 cm.

The IMU consistency showed in Figure 8 shows also a
more important improvement of the fusion, with an angle of
0.0004 rad instead of 0.0042 rad for Force-EKF.

V. DISCUSSION AND CONCLUSION

We have developed in this paper a dynamical-model based
state observer using (i) as given inputs values provided from
proprioception and high level control of the robot and (ii)
as a corrector the measurements provided by a data fusion
of an accelerometer, a gyrometer and a force/torque sensor
at each contact point. We have seen through simulation and
experimentation that this fusion not only improves naturally
the estimation in terms of consistency with sensors measure-
ments but may also improve the precision of the estimation
itself, by providing precise reconstruction of the Center of
Pressure.

These effects of multisensor data fusion involving IMUs
are already widely used in robotics for odometry and locali-
zation [15], [16], [3], or even stabilization and control [17],
[18]. But few of them to our best knowledge involve also
both force sensors and proprioception inside the sensor data
fusion. Most works that consider both IMUs and force
sensors use the signals separately [19], [20], [21], which
means that they mostly use these sensors to reconstruct
distinct parts of the state of the robot, which is not properly
a full state estimation using fusion. A noticeable exception is
the work of Zhang et al [22] who used inertial measurement
units and force sensors embedded in a bicycle to reconstruct
the state of human rider. Due to lack of proprioceptive data
from the human, the authors had to resort to a simplified
dynamical model of a spherical inverted pendulum.

Finally, coming back to our method, the inconsistency of
measurements are due to modeling errors. This error may lie
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Fig. 6. Real Robot: the different estimations of the x-position of CoP over
time.
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Fig. 7. Real Robot: the different estimations of the y-position of CoP over
time.

in the parameters or the linear nature of the viscoelasticity.
But it may also be due to a different ground stiffness or
inclination from what is expected. Nevertheless, these errors
may be observed and corrected in real-time if the relevant
parameters are introduced in the state observation. This
solution may constitute an interesting future development of
our research.
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