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CLTs for general branching processes related to splitting trees.

Benoit Henry
1,2

Abstract

We consider a general branching population where the lifetimes of individuals are i.i.d. with

arbitrary distribution and each individual gives birth to new individuals at Poisson times inde-

pendently from each others. The population counting process is a Binary Homogeneous Crump-

Jargers-Mode process. Moreover, we suppose that the individuals experience mutations at Poisson

rate θ under the infinite-alleles assumption. These mutations lead to a partition of the population

by type. In this paper, we obtain central limit theorems for the frequency spectrum when time

goes to infinity. We also obtain CLT for the population counting process. To this end, we use

classical renewal theory and recent works [18, 6, 5] on this model to obtain the moments of the

error. Then, we can precisely study the asymptotic behaviour of these moments thanks to Lévy

processes theory. These results in conjunction with a new decomposition of the splitting tree

allow us to obtain the wanted Theorems.

MSC 2000 subject classifications: Primary 60J80; secondary 92D10, 60J85, 60G51, 60K15, 60F05.

Key words and phrases. branching process – coalescent point process – splitting tree – Crump–

Mode–Jagers process – linear birth–death process – allelic partition – frequency spectrum – infinite
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1 Introduction

In this work, we consider a general branching population where individuals live and reproduce inde-

pendently from each other. Their lifetimes follow an arbitrary distribution PV and the births occur

at Poisson times with rate b. The genealogical tree induced by this population is called a splitting

tree [12, 11, 18] and is of main importance in the study of the model.

The population counting processNt (giving the number of living individuals at time t) is known as

binary homogeneous Crump-Mode-Jagers process. In [19], Nerman shows very general conditions for

the a.s. convergence of general CMJ processes. In the supercritical case, it is known that the quantity

e−αtNt, where α is the Malthusian parameter of the population, converges almost surely. This result

has been proved in [20] using the Jagers-Nerman’s theory of general branching processes counted by
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random characteristics. Another proof can be found in [5], using only elementary probabilistic tools,

relying on fluctuation analysis of the process.

Our purpose in this work is to investigate the behaviour of the error in the aforementioned

convergence. Many works studied the second order behaviour of converging branching processes.

Early works investigate the Galton-Watson case. In [14] and [15], Heyde obtained rates of convergence

and get central limit Theorems in the case of supercritical Galton-Watson when the limit has finite

variance. Later, in [1], Asmussen obtained the polynomial convergence rates in the general case. In

our model, the particular case when the individuals never die (PV = δ∞) means that the population

counting process is a Markovian Yule process for which such study has already been made. More

precisely, Athreya showed in [3], for a Markovian branching process Z with appropriate conditions,

and such that e−αtZt converges to some random variable W a.s., that the error

Zt − eαtW√
Zt

,

converge in distribution to some Gaussian random variable.

In the case of CMJ processes, very recent work of Iksanov and Meiners [16] gives sufficient

conditions for the error terms in the convergence of supercritical general branching processes to be

o(tδ) in a very general background (arbitrary birth point process). Although our model is more

specific, we give slightly more precise results. Indeed, we give the exact rate of convergence, e
α
2
t, and

obtain a central limit Theorems for a binary homogeneous CMJ processes.

We suppose, moreover, that mutations occur on individuals and that each new mutation confers

to its holder a brand new type (i.e. never seen in the population): this is the infinitely many allele

assumption. This allows modelling the occurrence of a new type in a population (such as a new

species or a new phenotype in a given species). We also suppose that every individual inherits

the type of its parent. This model leads to a partition of the population by types. The frequency

spectrum of the population alive at time t is defined as the sequence of number (A(k, t))k≥1 where,

for each k, A(k, t) is the number of families of size k in the population. The famous example of

Ewens sampling formula gives explicit expression for the law of the frequency spectrum [9] when the

genealogy is given by the Kingman’s coalescent. Other works studied similar quantities in the case

of Galton-Waston branching processes (see [4] or [13]). In our model, the frequency spectrum has

also been widely studied in the past [6, 7, 8, 5].

As for e−αtNt, it is also known that the quantities e−αtA(k, t) converge almost surely. These

results can be easily obtained by conjunction of the works of [6] and [20] using the theory of general

branching processes counted by random characteristics (a complete statement can be found in [8]).

An alternative proof avoiding the use of the general branching processes theory can be found in [5].

In this work, we also obtain central limit Theorems for the convergence of the frequency spectrum.

Moreover, we believe that our method could apply to other general branching processes counted

by random characteristics, as soon as the birth point process is Poissonian. Finally, we study the

Markovian case (when PV is exponential) where we can obtain more informations on the limit

distribution.

To obtain these results we use a decomposition of the splitting tree at a fixed time. Then, using

classical renewal theory and recent works on the moments of the frequency spectrum [5], we are able
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to compute the moments of the error in the convergence of the aforementioned branching processes.

The precise asymptotic behaviour of these moments is then obtained thanks to the theory of Lévy

processes and their links with the splitting trees (see [18]).

The first section is devoted to the introduction of main tools used in this work. The first part

recall the basic facts on splitting trees which are essentially borrowed from [18, 6, 7, 8, 5]. The second

part recall some classical facts on renewal equations and the last part gives a useful Lemma on the

expectation of a random integral. Section 3 is devoted to the statement of our Theorems. Theorem

3.1 is the CLT for the population counting process Nt. Theorems 3.2 and 3.4 give the corresponding

results for the frequency spectrum. Finally, Theorem 3.6 concerns the error made by approximating

A(k, t) with ckNt, where ck is some explicit constant. Section 4 gives the main lines of the proof of

Theorem 3.1 which is finally given in Section 6. The proofs of Theorems 3.2, 3.6 and 3.4 are the

subject of Sections 7, 8, and 9 respectively.

2 Model and preliminary results

This section is devoted to the statement of results which are constantly used in the sequel. The first

subsection presents the model and states results on splitting trees coming from [18, 6, 7, 20, 5]. The

second subsection recalls some well-known results on renewal equations. Finally, the last subsection

is devoted to the statement and the proof of a Lemma for the expectation of random integrals, which

is constantly used in the sequel.

2.1 Splitting trees

In this paper, we study a model of population dynamics called a splitting tree. We consider a

branching tree (see Figure 1), where individuals live and reproduce independently from each other.

Their lifetimes are i.i.d. following an arbitrary distribution PV . Given the lifetime of an individual,

he gives birth to new individuals at Poisson times with positive constant rate b until his death

independently from the other individuals. We also suppose that the population starts with a single

individual called the root.

The finite measure Λ := bPV is called the lifespan measure, and plays an important role in the

study of the model.

Moreover, we assume that individuals undergo mutations at Poisson times with rate θ during

their lifetimes independently from each other and from their reproduction processes. Each new

mutation leads to a brand new type replacing the preceding type of the individual (infinitely many

alleles model). Parents yield their current type to their children.

A family at given time t is a set of alive individuals carrying the same type. Our purpose is to

study the distribution of the sizes of families in the population at time t.

For our study, it is easier to work with the genealogical tree of the population alive at time t.

Indeed, the difference between two individuals in term of type lies on the time past since their lineages

has diverged. Hence, the CPP contains the essential informations to study the allelic partition. In

order to derive the law of that genealogical tree, we need to characterize the joint law of the times of
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Figure 1: Graphical representation of a Splitting tree. The vertical axis represents the biological time

and the horizontal axis has no biological meaning. The vertical lines represent the individuals, their

lengths correspond to their lifetimes. The dashed lines denote the filiations between individuals.

coalescence between pairs of individuals in the population, which are the times since their lineages

have split.

In [18], Lambert introduces a contour process Y , which codes for the tree, and hence its genealogy.

Suppose we are given a tree T, seen as a subset of R×
(
∪k≥0N

k
)
with some compatibility conditions

(see [18]). On this object, Lambert constructs a Lebesgue measure λ and a total order relation �
which can be roughly summarized as follows: let x, y in T, the point of birth of the lineage of x

during the lifetime of the root split the tree in two connected components, then y � x if y belong to

the same component as x but is not an ancestor of x.

Then the application,
ϕ : T → [0, λ (T)],

x → λ ({y | y � x}) ,
is a bijection. Moreover, in a graphical sens (see figure 2), ϕ(x) measures the length of the part of

the tree which is above the lineage of x. The contour process is then defined, for all s, by,

Y (t)
s := ΠR

(
ϕ−1 (s)

)
,

where ΠR is the projection from R×
(
∪k≥0N

k
)
to R.

In a more graphical way, the contour process can be seen as the graph of an exploration process

of the tree: it begins at the top of the root, decreasing with rate 1 while running back along the

life of the root until it meets a birth. The contour process then jumps at the top of the life interval

of the child born at this time and continues its exploration as before. If the exploration process

do not encounter birth when exploring the life interval of an individual, it goes back to its parent

and continues the exploration from the birth-date of the just left individual, the exploration process

continues then as before (see Figure 3). It is then readily seen that the intersections of the contour

process with the line of ordinate t are in one-to-one correspondence with the individuals in the tree

alive at time t.
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Figure 2: In gray, the set {y ∈ T | y � x}

In [18], Lambert shows that the contour process of the splitting tree which has been pruned from

every part above t (called truncated tree above t), has the law of a spectrally positive Lévy process

started at the lifespan V of the root, reflected below t and killed at 0, with Laplace exponent ψ given

by,

ψ(x) = x−
∫

(0,∞]

(
1− e−rx

)
Λ(dr), x ∈ R+. (2.1)

In particular, the Laplace transform of PV can be expressed in terms of ψ,

∫

R+

e−λvPV (dv) = 1 +
ψ(λ) − λ

b
. (2.2)

The largest root of ψ, denoted α, characterizes the way the population expend. In this paper, we

only investigate the behavior of the population in the supercritical case, when α > 0. In this case,

the population grows exponentially fast on the survival event with rate α. In this case, it is easily

seen that ∫

R+

e−αvPV (dv) = 1− α

b
. (2.3)

Moreover, the time of coalescence between an individual alive at time t and the next one visited

by the contour, is exactly the depth of the excursion of the contour process below t between these

two individuals (see Figure 3). The genealogy of the population is then described by the sequence of

coalescence times, where lineages coalesce with the first deeper branch on their left (see Figure 4).

It is well known that such spectrally positive Lévy process has nice fluctuations properties (see

[17]). In particular, Theorem 8.1 of [17] tells us that the law of the depth H of an excursions below

t is given by,

P (H > s) =
1

W (s)
, s ∈ R+,
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Figure 3: Construction of the contour process and link between the excursions of the contour process

and the times of coalescence in the tree. There are 4 individuals alive at t, labeled from 0 to 3

according their order of exploration by the exploration process. The coalescence time between 0 and

1 is given by H1, etc

where W is the scale function of the Levy process characterized by its Laplace transform,

TLW (t) =

∫

(0,∞)
e−rtW (r)dr =

1

ψ(t)
, t > α. (2.4)

Since, the contour process is strongly Markov, this sequence of excursion depths is i.i.d.

To summarize, given the population is still alive at time t, one can forget about the details of the

splitting tree and code the genealogy by a new object called the coalescent point process (CPP). Its

law is the law of a sequence (Hi)0≤i≤Nt−1, where the family (Hi)i≥1 is i.i.d. with the same law as H,

stopped before its first value HNt greater than t, and H0 is deterministic equal to t (see Figure 4).

Remark 2.1. Let N be a integer valued random variable. In the sequel we said that a random vector

with random size (Xi)1≤i≤N form an i.i.d. family of random variables independent of N , if and only

if

(X1, . . . ,XN )
d
=
(
X̃1, . . . , X̃N

)
,
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where
(
X̃i

)
i≥1

is a sequence of i.i.d. random variables distributed as X1 independent of N .

0 1 2 3 4 5 6 7 8 9 10 12 13 14 15

Figure 4: A coalescent point process for 16 individuals, hence 15 branches.

We denote by Nt the number of alive individuals at time t in the splitting tree, which is given in

the CPP by

Nt = inf{i ≥ 1 | Hi > t}.

From the discussion above, we see that Nt is a geometric random variable conditionally on {Nt > 0}.
More precisely, for a positive integer k,

P (Nt = k | Nt > 0) =
1

W (t)

(
1− 1

W (t)

)k−1

, k ≥ 1. (2.5)

In particular,

E [Nt | Nt > 0] =W (t). (2.6)

Moreover, it can be showed (see [20]), that

ENt =W (t)−W ⋆ PV (t), (2.7)

and

P (Nt > 0) = 1− W ⋆ PV (t)

W (t)
, (2.8)

where

W ⋆ PV (t) :=

∫

[0,t]
W (t− s)PV (ds).

Finally, since only the mutations occurring on the lineages of living individuals at time t can be

observed, it follows from standard properties on Poisson random measures, that the mutation process

can be defined directly on the CPP. So, let P be a Poisson random measure on (0, t)×N with intensity
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measure θλ⊗ C, where C is the counting measure on N, then the mutation random measure N on

the CPP is defined by

N (da, di) = 1Hi>t−a1i<NtP (di, da) ,

where an atom at (a, i) means that the ith branch experiences a mutation at time t−a. We suppose

that each individual inherits the type of its parent. This rule yields a partition of the population by

types. The distribution of the frequency of types in the population is called the frequency spectrum

and is defined as the sequence (A(k, t))k≥1 where A(k, t) is the number of types carried by exactly k

individuals in the alive population at time t, excluding the family holding the ancestral type of the

population (i.e. individuals holding the same type as the root at time 0). This last family is called

clonal, as the ancestral type.

In the study of the frequency spectrum, an important role is played by the clonal family. We

denote by Z0(t) its size at time t.

To study this family, it is easier to consider the clonal splitting tree constructed from the original

splitting tree by cutting every branches beyond mutations. This clonal splitting tree is a standard

splitting tree without mutations, where individuals are killed as soon as they die or experience a

mutation. The new lifespan law is therefore the minimum between an exponential random variable

of parameter θ and an independent copy of V . It is straightforward by simple manipulation of

Laplace transform that the Laplace exponent of the corresponding contour process is

ψθ(x) = x−
∫

(0,∞]

(
1− e−rx

)
Λθ(dr) =

xψ(x+ θ)

x+ θ
.

We denote by Wθ the corresponding scale function. This leads to,

P (Z0(t) = k | Z0(t) > 0) =
1

Wθ(t)

(
1− 1

Wθ(t)

)k−1

.

When α > θ (resp. α = θ, α < θ), this new tree is supercritical and we talk about clonal supercritical

case (resp. critical, sub-critical case).

Moreover, the law of Z0 conditionally on the event {Nt > 0} can be obtained, and is given by

P (Z0(t) = k | Nt > 0) =
e−θtW (t)

Wθ(t)2

(
1− 1

Wθ(t)

)k−1

, ∀k ≥ 1. (2.9)

For the rest of this paper, unless otherwise stated, the notation Pt refers to P (. | Nt > 0) whereas

P∞ refers to the probability measure conditioned on the non-extinction event (which has positive

probability in the supercritical case).

Finally, we recall the asymptotic behaviour of the scale functionsW (t) andWθ(t) which is widely

used in the sequel,

Lemma 2.2. ([6, Thm. 3.21]) There exist a positive constant γ such that,

e−αtψ′(α)W (t) − 1 = O
(
e−γt

)
.

8



In the case that θ < α (clonal supercritical case),

Wθ(t) ∼
t→∞

e(α−θ)t

ψθ(α− θ)
.

In the case that θ > α (clonal sub-critical case),

Wθ(t) =
θ

ψ(θ)
+O

(
e−(θ−α)t

)
.

In the case where θ = α (clonal critical case),

Wθ(t) ∼
t→∞

θt

ψ′(α)
.

From this Lemma and (2.8), one can easily deduce that

P (NonEx) = lim
t→∞

P (Nt > 0) =
α

b
, (2.10)

where NonEx refer to the non-extinction event. In [5], we show that a CPP stopped at time t with

scale function W can be constructed by grafting independent CPP at stopped at any fixed time

a ≤ t on a CPP stopped at time t− a with an explicit scale function different of W (see Figure 5).

Moreover, we showed that the frequency spectrum can be expressed as an integral with respect to

t

t-a

P(1) P(2) P(3) P(4)

Figure 5: Adjunction of trees.

the random measure N along the CPP, that is,

l∏

i=1

A(ki, t) =

l∑

i=1

∫

[0,t]×N

1
Z

(u)
0 (a)=ki

N
(t)
t−a∑

u1:l−1=1

l−1∏

j=1
i6=j

A(uj)(kj , a) N (da, du) , (2.11)

where A(u)(k, a) (resp. Z
(u)
0 ) refers to the frequency spectrum (resp. clonal family) of the uth grafted

sub-CPP, and
∑N

(t)
t−a

u1:l−1=1 denotes for the multi-sum

N
(t)
t−a∑

u1=1

· · ·
N

(t)
t−a∑

ul−1=1

.
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Moreover, in [5, Thm, 3.1] we show that the expectation of such integral can be computed easily

when the integrand presents local independence properties with the random measure as in formula

(2.11). Equation (2.11) is used later to obtain some moments estimates useful to prove our theorems.

In particular, this allows to prove that (see [5]) for any positive integer k and l (see [5]),

EtA(k, t) =W (t)

∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds, (2.12)

and

EA(k, t)A(l, t) = 2W (t)2
∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

∫ t

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)l−1

ds

−W (t)

∫ t

0
2θ

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)l−1 ∫ s

0

e−θs

Wθ(s)2

(
1− 1

Wθ(a)

)k−1

dsda

−W (t)

∫ t

0
2θ

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)k−1 ∫ s

0

e−θs

Wθ(s)2

(
1− 1

Wθ(a)

)l−1

dsda

+W (t)E

∫ t

0
θW (a)−1

(
E
[
A(k, t)1Z0(a)=l

]
+ E

[
A(l, t)1Z0(a)=k

])
da. (2.13)

These tools also allow us to show in [5] the next two results.

Theorem 2.3. There exists a random variable E, such that

lim
t→∞

e−αtNt =
E

ψ′(α)
, a.s. and in L2.

Moreover, under P∞, E is exponentially distributed with parameter one.

Theorem 2.4. For any positive integer k,

lim
t→∞

e−αtA(k, t) =
ckE
ψ′(α)

, a.s. and in L2,

where E is the random variable of the Theorem 2.3 and

ck =

∫ ∞

0

θe−θa

Wθ(a)

(
1− 1

Wθ(a)

)k−1

da. (2.14)

2.2 A bit of renewal theory

The purpose of this part is to recall some facts on renewal equations borrowed from [10]. Let

h : R → R be a function bounded on finite intervals with support in R+ and Γ a probability measure

on R+. The equation

F (t) =

∫

R+

F (t− s)Γ(ds) + h(t),

called a renewal equation, is known to admit a unique solution finite on bounded interval.
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Here, our interest is focused on the asymptotic behavior of F . We said that the function h is

DRI (directly Riemann integrable) if for any δ > 0, the quantities

δ

n∑

i=0

sup
t∈[δi,δ(i+1))

f(t)

and

δ

n∑

i=0

inf
t∈[δi,δ(i+1))

f(t)

converge as n goes to infinity respectively to some real number Iδs and Iδi , and

lim
δ→0

Iδs = lim
δ→0

Iδi <∞.

In the sequel, we use the two following criteria for the DRI property:

Lemma 2.5. Let h a function as defined previously. If h satisfies one of the next two conditions,

then h is DRI:

1. h is non-negative decreasing and classically Riemann integrable on R+,

2. h is càdlàg and bounded by a DRI function.

We can now state the next result, which is constantly used in the sequel.

Theorem 2.6. Suppose that Γ is non-lattice, and h is DRI, then

lim
t→∞

F (t) = γ

∫

R+

h(s)ds,

with

γ :=

(∫

R+

s Γ(ds)

)−1

,

if the above integral is finite, and zero otherwise.

Remark 2.7. In particular, if we suppose that Γ is a measure with mass lower than 1, and that

there exists a constant α ≥ 0 such that
∫

R+

eαtΓ(dt) = 1,

then, one can perform the change a measure

Γ̃(dt) = eαtΓ(dt),

in order to apply Theorem 2.6 to a new renewal equation to obtain the asymptotic behavior of F .

(See [10] for details). This method is also used in the sequel.
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2.3 A lemma on the expectation of a random integral with respect to a Poisson

random measure

Lemma 2.8. Let ξ a Poisson random measure on R+ with intensity θλ(da) where θ is a positive

real number and λ the Lebesgue measure. Let also
(
X

(i)
s , s ∈ R+

)
i≥1

be an i.i.d. sequence of non-

negative càdlàg random processes independent of ξ. Let also Y be a random variable independent of

ξ and from the family
(
X

(i)
s , s ∈ R+

)

i≥1
. If ξs denotes ξ ([0, s]), then, for any t ≥ 0,

E

∫

[0,t]
X(ξs)
s 1Y >s ξ(ds) =

∫ t

0
P (Y > s) θEXsds,

where (Xs, s ∈ R+) =
(
X

(1)
s , s ∈ R+

)
, and

E

[∫

[0,t]
X(ξv)
v 1Y >v ξ(dv)

∫

[0,s]
X(ξu)
u 1Y >u ξ(du)

]
=

∫ t

0
θE
[
X2
u

]
P (Y > u) du

+

∫ t

0

∫ s

0
θ2EXuEXvP (Y > u, Y > v) dudv.

Proof. Since the proof the two formulas lies on the same ideas, we only give the proof of the second

equation.

First of all, let f : R2
+ → R+ be a positive measurable deterministic function. We recall that, for

a Poisson random measure, the measures of two disjoint measurable sets are independent random

variables. That is, for A,B in the Borel σ-field of R+, ξ(A∩Bc) is independent of ξ(B), which leads

to

E [ξ(A)ξ(B)] = Eξ(A)Eξ(B) + Varξ(A ∩B).

Using the approximation of f by an increasing sequence of simple function, as in the construction of

Lebesgue’s integral, it follows from the Fubini-Tonelli and the monotone convergence theorem that,

E

∫

[0,t]×[0,s]
f(u, v) ξ(du)ξ(dv) =

∫ t

0
θf(u, u) du+

∫ t

0

∫ s

0
θ2f(u, v) dudv.

Since the desired relation only depends on the law of our random objects, we can assume without

loss of generality that ξ is defined on a probability space (Ω,F ,P) and the family
(
X

(i)
s , s ∈ R+

)
i≥1

is defined on an other probability space
(
Ω̃, F̃ , P̃

)
. Then, using a slight abuse of notation, we define

ξ on Ω× Ω̃ by ξ(ω,ω̃) = ξω, and similarly for the family X.

Then, by Fubini-Tonneli Theorem, with the notation ξvω = ξω ([0, v]),

E

[∫

[0,t]×[0,s]
X(ξv)
v X(ξu)

u ξ(ds)

]
=

∫

Ω×Ω̃

∫

[0,t]×[0,s]
X(ξvω)
v (ω̃)X(ξuω)

u (ω̃) ξω(ds) P⊗ P̃ (dω, dω̃)

=

∫

Ω

∫

[0,t]×[0,s]

∫

Ω̃
X(ξvω)
v (ω̃)X(ξuω)

u (ω̃)P̃ (dω̃) ξω(ds) P(dω).

12



But since the X(i) are identically distributed and ξ is a simple measure (purely atomic with mass

one for each atom) we deduce that, if u and v are two atoms of ξω, ξ
v
ω = ξuω if and only if u = v,

which imply that

∫

Ω̃
X(ξvω)
v (ω̃)X(ξuω)

u (ω̃)P̃ (dω̃) =

{
EXuEXv, u 6= v,

EX2
u, u = v,

ξω − a.e.

The result follows readily, and the case with the indicator function of Y is left to the reader.

3 Statement of results

The a.s. convergence stated in section 2.1 suggests to study the second order properties to get central

limit theorems for these convergences.

3.1 CLT for the convergence of Theorem 2.3

We recall that the Laplace distribution with mean µ ∈ R
n and covariance matrix K is the probability

distribution whose characteristic function is given, for all λ ∈ R
n by

1

1 + 1
2λ

′Kλ− iµ′λ

We denote this law by L (µ,K). We also recall that, if G is a Gaussian random vector with mean µ

and covariance matrix K and E is an exponential random variable with parameter 1 independent of

G, then
√
EG is Laplace L (µ,K).

Theorem 3.1. Under P∞,

lim
t→∞

e
α
2
t
(
ψ′(α)Nt − eαtE

) d
= L

(
0, 2 − ψ′(α)

)
.

The proof of this Theorem is the subject of Section 6.

3.2 CLT for the convergence of Theorem 2.4

Theorem 3.2. Suppose that θ > α and
∫
[0,∞) e

(θ−α)v
PV (dv) > 1 . Then, we have, under P∞,

lim
t→∞

(
eα

t
2
(
ψ′(α)A(k, t) − eαtckE

))
k∈N

d
= L (0,K) ,

where K is some covariance matrix and the constants ck are defined in (2.14).

The proof of this result can be found in Section 7.

Remark 3.3. We are not able to compute explicitly the covariance matrix K in the general case due

to our method of demonstration. However, all our other results give explicit formulas. In particular,

the case where PV is exponential is given by the next theorem. The Yule case is also covered in the

following theorem for d = 0 although it does not satisfy the hypothesis of Theorem 3.2.
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Theorem 3.4. Suppose that V is exponentially distributed with parameter d ∈ [0, b). In this case,

α = b− d. We still suppose that α < θ, then

lim
t→∞

(
eα

t
2
(
ψ′(α)A(k, t) − eαtckE

))

k∈N

d
= L (0,K) , w.r.t P∞,

where K is given by

Kl,k =Ml,k + ckcl
α

b

(
1− 6

d

α

)
,

and

Ml,k =

2ψ′(α)

∫ ∞

0

θe−θa

Wθ(a)2

((
1− 1

Wθ(a)

)l−1

(Ea [A(k, a)] − ckW (a)) +

(
1− 1

Wθ(a)

)k−1

(Ea [A(l, a)]− clW (a))

)
da

− ψ′(α)

∫ ∞

0
θW (a)−1

Ea

[
(A(k, a) − ckNa)1Z0(a)=l + (A(l, a) − clNa)1Z0(a)=k

]
, (3.1)

where W , Wθ, ψ
′(α) are defined in the Section 2.1.

The proof of this result can be found in Section 9. Note that an explicit formula for EtA(k, t) is

given by (2.12). Explicit formulas for Et
[
A(k, t)1Z0(t)=l

]
can also be found in Proposition 4.5 of [5],

and a formula for Et
[
Na1Z0(t)=k

]
can be found in Proposition 4.1 of [6].

Remark 3.5. The condition on V in Theorem 3.2 is required only to ensure controls of the moments

of the considered quantities. However, although the Yule case does not satisfy this condition (V = ∞
p.s.) it is included in this last theorem (d=0). This suggests that the condition on V may not be

needed.

3.3 CLT for the error between A(k, t) and ckNt

The next theorem concerns the error between A(k, t) and ckNt. This case is easier to treat and we

have an explicit expression of the covariance matrix of the limit.

Theorem 3.6. Suppose that θ > α, then, for any multi-integer N ,

lim
t→∞

ψ′(α)
(
eα

t
2 (A(k, t) − ckNt)

)
k∈N

d
= L (0,M) , w.r.t. P∞,

where M is defined in relation (3.1).

The proof of this result can be found in Section 8.

Remark 3.7. We do not known yet if the exponential random variable appearing the Gaussian

mixing leading to a Laplace distribution is the same as the exponential limit of e−αtA(k, t). However,

the CLT for Markov branching processes in [2] suggest that it is, actually, the case. If, this is true

in our case, it would be enough to know the correlations between the limits involved in Theorem 3.2

and 3.6 to obtain an explicit expression for the covariance matrix in Theorem 3.2.

Remark 3.8. Although, we only prove CLT for the frequency spectrum, we are convince that our

method of proof may apply to many other general branching processes counted by random character-

istics as soon as the birth point process is Poissonian. A more general result may be the subject of

further works.
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4 Strategy of proof

Let (Gn)n≥1 be a sequence of geometric random variables with respective parameter 1
n , and (Xi)i≥1

a L2 family of i.i.d. random variables with zero mean independent of (Gn)n≥1. It is easy to show

that the characteristic function of

Zn :=
1√
n

Gn∑

i=1

Xi, (4.1)

is given by

EeiλZn =
1 + on(1)

1 + λ2EX2
1 + on(1)

, (4.2)

from which we deduce that Zn converges in distribution to L(0,EX2
1 ).

If we suppose that the population counting process N is a Yule Markov process, it clearly follows

from the branching property that, for s < t,

Nt =

Ns∑

i=1

N i
t−s, (4.3)

where the family
(
N i
t−s

)
i≥1

is an i.i.d. sequence of random variables distributed as Nt−s and inde-

pendent of Ns. Moreover, since Ns is geometrically distributed with parameter e−αs, taking the

renormalized limit leads to,

lim
t→∞

e−αtNt =: E = e−αs
Ns∑

i=1

Ei,

where E1, . . . , ENs is an i.i.d. family of exponential random variables with parameter one, and inde-

pendent of Ns. Hence,

Nt − eαtE =

Ns∑

i=1

(
N i
t−s − eα(t−s)Ei

)
,

is a geometric sum of centered i.i.d. random variables. This remark and (4.1) suggest the desired

CLT in the Yule case.

However, in the general case, we need to overcome some important difficulties. First of all,

equation (4.3) is wrong in general. Nevertheless, a much weaker version of (4.3) can be obtained in

the general case. To make this clear, if u < t are two positive real numbers, then the number of alive

individuals at time t is the sum of the contributions of each subtrees T (Oi) induced by each alive

individuals at time u (see Figure 6). Provided there are individuals alive at time u, we denote by

(Oi)1≤i≤Nu the residual lifetimes (see Figure 6) of the alive individuals at time u indexed using the

canonical order on ∪n≥0N
n. Hence,

Nt =
Nu∑

i=1

N i
t−u (Oi) , (4.4)

where
(
N i
t−u (Oi)

)
i≤Nu

denote the population counting processes of the subtrees T(Oi) induced by

each individual. The notation refers to the fact that each subtree has the law of a standard split-

ting tree with the only difference that the lifelength of the root is given by Oi. More precisly, we

15



u
O1

T(O1)

O2

T(O2) T(O3)

O3

T(O4)

O4

t

Figure 6: Residual lifetimes with subtrees associated to living individuals at time u.

define, for all i ≥ 1 and o ∈ R+, N
i
t−u(o) the population counting process of the splitting tree con-

structed from the same random objects as the ith subtree of Figure 6, where the life duration of

the first individual is equal to o. Hence, from the independence properties between each individuals,(
N i
t−u (o) , t ≥ u, o ≥ 0

)
i≥1

is a family of independent processes, independent of (Oi)1≤i≤Nu , and(
N i
t−u(o), t ≥ u

)
has the law of the population counting process of a splitting tree but where the

lifespan of the ancestor is o. Note that the lifespans of the other individuals are still distributed

as V . From the discussion above, it follows that the family of processes
(
N i
t−u, t ≥ u

)
1≤i≤Nu

are

dependent only through the residual lifetimes (Oi)1≤i≤Nu . Respectively, we define, for 1 ≤ i ≤ Nu,

by (A(k, t,Oi))k≥1 (resp. Z0(t − u,Oi) the frequency spectrum (resp. the size of the clonal family)

of the ith subtree.

Unfortunately, the computation of (4.2) does not apply to (4.4). This issue is solved by the

following lemma, whose proof is very similar to the Proposition 5.5 of [18].

t

O1
O2 O3 O4

O5

Figure 7: Reflected JCCP with overshoot over t. Independence is provided by the Markov property.
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Lemma 4.1. Let u in R+, we denote by Oi for i an integer between 1 and Nu the residual lifetime

of the ith individuals alive at time u indexed following the classical order on
⋃
n≥0 N

n. Then under

Pu, the family (Oi, i ∈ J1, NuK) form a family of independent random variables, independent of Nu,

and, expect O1, having the same distribution, given by, for 2 ≤ i ≤ Nt,

Pu(Oi ∈ dx) =

∫

R+

W (u− y)

W (u)− 1
bP (V − y ∈ dx) dy. (4.5)

Moreover, it follows that the family (Ns(Oi), s ∈ R+)1≤i≤Nu is an independent family of process, i.i.d.

for i ≥ 2, and independent of Nu.

Proof. Let
(
Y (i)

)
0≤i≤Nu

a family of independent Lévy processes with Laplace exponent

ψ(x) = x−
∫

(0,∞]

(
1− e−rx

)
Λ(dr), x ∈ R+,

conditioned to hit (t,∞) before hitting 0, for i ∈ {0, . . . , Nu − 1}, and conditioned to hit 0 first for

i = Nu. We also assume that,

Y
(0)
0 = u ∧ V,

and

Y
(i)
0 = u, i ∈ {1, . . . , Nu} .

Now, denote by τi the exit time of the ith process out of (0, u) and

Tn =

n−1∑

i=0

τi, n ∈ {0, . . . , Nu + 1} .

Then, the process defined, for all s, by

Ys =

Nu∑

i=0

Y
(i)
s−Ti

1Ti≤s<Ti+1 ,

has the law of the contour process of a splitting tree cut above t. Moreover, the quantity Yτi−Yτi− is

the lifetime of the ith alive individual at time t. The family of residual lifetimes (Oi)1≤i≤Nu has then

the same distribution as the sequence of the overshoots of the Y above u. Thus, the Markov property

ensures us that (Oi, i ∈ J2, NuK) is an i.i.d. family of random variables. The Markov property also

ensures that O1 is independent of the other Oi’s.

It remains to derive the law of Oi. Let Y be a Lévy process with Laplace exponent ψ. We denote

by τ+u the time of first passage of −Y above u and τ−0 the time of first passage of −Y below 0. Then,

for all i ≥ 2,

Pu (Oi ∈ dx) = P0

(
−Yτ−0 ∈ dx | τ−0 < τ+u

)
.

On the other hand, Theorem 8.7 of [17] gives for any measurable subsets A ⊂ [0, u], B ⊂ (0,−∞),

P0

(
−Yτ−0 ∈ B,−Yτ−0 − ∈ A

)
=

∫

A
P−V (B − y)

W (u− y)

W (u)
dy.
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The result follows easily from

P
(
τ−0 < τ+u

)
= 1− 1

W (u)
.

Remark 4.2. It is important to note that the law of the residual lifetimes of the individuals considered

above depends on the particular time u we choose to cut the tree. That is why in the sequel, we may

denote O
(u)
i for Oi when we want to underline the dependence in time of the law of the residual

lifetimes.

In addition, as suggested by (4.2), we need to compute the expected quadratic error in the

convergence of Nt,

E

[(
ψ′(α)Nt − eαtE

)2]
,

which implies to compute ENtE .
Although, this moment is easy to obtain in the Markovian case, the method does not extend

easily to the general case. One idea is to characterize it as a solution of a renewal equation in the

spirit of the theory of general CMJ processes theory.

To make this, we use the renewal structure of a splitting tree: the splitting trees can be constructed

(see [18]) by grafting i.i.d. splitting tree on a branch (a tree with a single individual) of length V∅

distributed as V . Therefore, there exists a family
(
N

(i)
t , t ∈ R+

)
i≥1

of i.i.d. population counting

processes, and a Poisson random measure ξ on R+ with intensity b da such that

Nt =

∫

[0,t]
N

(ξu)
t−u 1V∅>u ξ(du) + 1V∅>t, a.s., (4.6)

where ξu = ξ ([0, u]).

It is worth noting that any functional of the tree may have a similar decomposition (see Section

7 for A(k, t)).

Another difficulty comes from the fact that unlike (4.1), the quantities summed in (4.4) are

time-dependent, which requires a careful analysis of the asymptotic behaviour of their moments.

The calculus and the asymptotic analysis of these moments is made in Section 6.1.1: In Lemma

6.1, we compute ENtE , and then with Lemmas 6.2 and 6.4, we study the asymptotic behaviour of

the error of order 2 and 3 respectively. Section 6.1.2 is devoted to the study of the same questions

for the population counting processes of the subtrees described in Figure 6 (when the lifetime of the

root is not distributed as V ). Finally, Section 6.2 is devoted to the proof of Theorem 3.1. A similar

plan is followed for the proof of Theorem 3.2 in Section 7, and the proof of Theorem 3.6 is much

shorter and makes use of the previous moments estimates.

One of the difficulties in studying the behaviour of the moments is to get better estimates on the

scale function W than those of Lemma 2.2. This is the subject of the next section.

5 Precise estimates on W using Lévy processes

Before stating and proving the result of this section, we need to recall some facts about Lévy processes.

We follow the presentation of [17]. First, we recall that the law of a spectrally positive Lévy process
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(Yt, t ∈ R+) is uniquely characterized by its Laplace exponent ψ,

ψY (λ) = logE
[
e−λY1

]
, λ ∈ R+,

which in our case take the form of (2.1):

ψY (λ) = x−
∫

(0,∞]

(
1− e−rx

)
bPV (dr), λ ∈ R+.

In this section, we suppose that Y0 = 0. For a such Lévy process, 0 is irregular for (0,∞) and in this

case the local time at the maximum (Lt, t ∈ R) can be defined as

Lt =

nt∑

i=0

ei, t ∈ R+,

where
(
ei
)
i≥0

is a family of i.i.d. exponential random variables with parameter 1, and

nt := Card{0 < s ≤ t | Ys = sup
u≤s

Yu},

is the number of times Y reaches its maximum up to time t. Finally, the ascending ladder process

associated to Y is defined as

Ht = YL−1
t
, t ∈ R+,

where
(
L−1
t , t ∈ R+

)
is the right-inverse of L. It is easily seen that H is a subordinator whose values

are the successive new maxima of Y . Conversely, in our case, the process (infs≤t Ys, t ∈ R+) is a

local time at the minimum, denoted
(
L̂t, t ∈ R+

)
. The descending ladder process Ĥ is then defined

from L̂ as H was defined from L.

We can now state, the celebrated Wiener-Hopf factorization which allows us to connect the

characteristic exponent ψY of Y with the characteristic exponents of the bivariate Lévy processes

((Lt,Ht) , t ∈ R+) and
((
L̂t, Ĥt

)
, t ∈ R+

)
, respectively denoted by κ and κ̂. In our particular case,

where Y is spectrally negative, we have
{
κ(α, β) = α−ψY (β)

φY (α)−β , α, β ∈ R+,

κ̂(α, β) = φY (α) + β, α, β ∈ R+,

where φY is the right-inverse of ψY . Taking α = 0 allows us to recover the Laplace exponent ψH of

H from which we obtain the relation,

ψY (λ) = (λ− φY (0))ψH(λ). (5.1)

We have now all the notation to state and prove the main result of this section.

Proposition 5.1 (Behavior of W ). There exists a positive non-increasing càdlàg function F such

that

W (t) =
eαt

ψ′(α)
− eαtF (t), t ≥ 0,

and

lim
t→∞

eαtF (t) =

{
1

bEV −1 if EV <∞,

0 otherwise.
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Proof. Let Y ♯ be a spectrally negative Lévy process with Laplace exponent given by

ψ♯(λ) = λ−
∫

R+

(
1− e−λx

)
e−αxb PV (dx).

It is known that Y ♯ has the law of the contour process of the supercritical splitting tree with lifespan

measure PV conditioned to extinction (see [18]). In this case the largest root of ψ♯ is zero, meaning

that the process Y ♯ does not go to infinity and that φY ♯(0) = 0. Elementary manipulations on

Laplace transform show that the scale function W ♯ of Y ♯ is related to W by

W ♯(t) = e−αtW (t), t ∈ R+.

Let H♯ be the ascending ladder subordinator associated to the Lévy process Y ♯. In the case

where φY ♯(0) = 0, and in this case only, the scale function W ♯ can be rewritten as (see [17] or use

Laplace transform),

W ♯(t) =

∫ ∞

0
P

(
H♯
x ≤ t

)
dx. (5.2)

In other words, if we denote by U the potential measure of H♯,

W ♯(t) = U [0, t].

Now, it is easily seen from (5.1) that the Laplace exponent ψH♯ of H♯ takes the form,

ψH♯ (λ) = ψ′(α)−
∫

[0,∞]

(
1− e−λr

)
Υ(dr),

where

Υ(dr) =

∫

(r,∞)
e−αvbPV (dv)dr = E

[
e−αV 1V >r

]
bdr.

Moreover,

Υ(R+) = 1− ψ′(α),

which mean that H♯ is a compound Poisson process with jump rate 1 − ψ′(α), jump distribution

J(dr) :=
E[e−αV 1V >r]

1−ψ′(α) dr, and killed at rate ψ′(α). It is well known (or elementary by conditioning on

the number of jumps at time x), that

P
H♯
x
(dt) = e−ψ

′(α)x
∑

k≥0

e−(1−ψ′(α))x ((1− ψ′(α)) x)k

k!
J⋆k(dt).

Some calculations now lead to,

U(dx) =
∑

k≥0

Υ⋆k(dx).

From this point, since Υ is a sub-probability, U(x) := U [0, x] satisfies the following defective renewal

equation,

U(x) =

∫

R+

U(x− u)Υ(du) + 1R+(x).
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Finally, since ∫

R+

eαxΥ(dx) = 1,

and since, from Lemma 2.5,

t→ U(t,∞),

is clearly a directly Riemann integrable function as a positive decreasing integrable function. Hence,

as suggested in Remark 2.7,

eαx (U(R+)− U(x)) −→
x→∞

1

αµ
,

with

µ =

∫

R+

reαrΥ(dr) =
1

α
(bEV − 1) ,

if V is integrable. In the case where V is not integrable, the limit is 0.

To end the proof, note using relation (5.2) and the fact that H♯ is killed at rate ψ′(α) that,

W ♯(t) =
1

ψ′(α)
− U(t,∞).

6 Proof of Theorem 3.1

We begin the proof of Theorem 3.1 by computing moments, and analysing their asymptotic behaviour.

A first part is devoted to the case of a splitting tree where the lifetime of the root is distributed as

V whereas a second part study the case where the lifespan of the root is arbitrary (for instance, as

the subtrees described by Figure 6 ).

6.1 Preliminary moments estimates

This section is devoted to the calculus of the expectation of
(
Nt − eαtE

)2
. We start with the simple

case where the initial individual has life-length distributed as V . Secondly, we study the asymp-

totic behavior of these moments. In Subsection 6.1.2, we prove similar result for arbitrary initial

distributions.

6.1.1 Case V∅
L
= V

We start with the computation of ENtE .

Lemma 6.1 (Join moment of E and Nt). The function t → E [NtE ] is the unique solution bounded

on finite intervals of the renewal equation,

f(t) =

∫

R+

f(t− u)be−αuP (V > u) du

+ αbE [N·] ⋆

(∫

R+

e−αvP (V > ·, V > v) dv

)
(t)

+ α

∫

R+

e−αvP (V > t, V > v) dv, (6.1)
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and its solution is given by
(
1 +

α

b
− e−αt

)
W (t)−

(
1− e−αt

)
W ⋆ PV (t).

Proof. As explained in Section 4,

Nt =

∫

[0,t]
N

(ξu)
t−u 1V∅ > u ξ(du) + 1V∅>t,

where ξ a Poisson point process with rate b on the real line,
(
N (i)

)
i≥1

is a family of independent

CMJ process with the same law as N and V∅ is the lifespan of the root. Moreover the three objects

N (u), ξ and V∅ are independent.

It follows that, for s > t

NtNs =

∫

[0,t]×[0,s]
N

(ξu)
t−uN

(ξv)
s−v1V∅ > u1V∅ > v ξ(du)ξ(dv)

+

∫

[0,t]
N

(ξu)
t−u 1V∅ > u ξ(du)1V∅>s +

∫

[0,s]
N

(ξu)
s−u1V∅ > u ξ(du)1V∅>t + 1V∅>t1V∅>s,

and, using Lemma 2.8,

ENtNs =

∫

[0,t]
bE [Nt−uNs−u] P (V > u) du

+

∫

[0,t]×[0,s]
b2E [Nt−u]E [Ns−v]P (V > u, V > v) du dv

+ P (V > s)

∫

[0,t]
bE [Nt−u] du+

∫

[0,s]
bE [Ns−u]P (V > u, V > t) du+ P (V > s) .

Then, thanks to the estimate W (t) = O
(
eαt
)
(see Lemma 2.2 or 5.1) and the L1 convergence of

W (s)−1NtNs to NtE as s goes to infinity (since, by Theorem 2.3, Ns
W (s) converge in L2 and using

Cauchy-Schwarz inequality), we can exchange limit and integrals to obtain,

lim
s→∞

ENt
Ns

W (s)
= ENtE︸ ︷︷ ︸

:=f(t)

=

∫

[0,t]
E [Nt−uE ] e−αu P (V > u) b du

︸ ︷︷ ︸
=:f⋆G(t)

+

∫

[0,t]×[0,∞)
αbE [Nt−u] e

−αv
P (V > u, V > v) du dv

︸ ︷︷ ︸
=:ζ1(t)

+

∫

[0,∞]
αe−αvP (V > v, V > t) dv

︸ ︷︷ ︸
=:ζ2(t)

,

where we used that lim
t→∞

W (t)−1
ENt =

α
b .

Now, we need to solve the last equation to obtain the last part of the lemma. To do that, we

compute the Laplace transform of each part of the equation. Note that, since W (t) = O
(
eαt
)
, it is
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easy to see that the Laplace transform of each term of (6.1) is well-defined as soon as λ > α (using

Cauchy-Schwarz inequality for the first term). Now, using (2.2),

TLe
α·G(λ) = b

∫

R+

e−λtP (V > t) dt = b

∫

R+

e−λt
∫

(t,∞)
PV (dv) dt

=
1

λ

∫

R+

(
1− e−λv

)
bPV (dv) = 1− ψ(λ)

λ
. (6.2)

So,

TLG(λ) = 1− ψ(λ+ α)

λ+ α
.

Then,

TLζ1(λ) = αTLEN.(λ)TL

(
b

∫

R+

e−αvP (V > ·, V > v) dv

)
(λ)

=

(
λ

ψ(λ)
− 1

)
TL

(
α

∫

R+

e−αvP (V > ·, V > v) dv

)
(λ)

︸ ︷︷ ︸
=Lζ2(λ)

.

and, using (6.2), we get

TLζ2(λ) = α

∫

R+

e−λt
∫

R+

e−αvP (V > t, V > v) dv dt =
1

b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
.

Finally, we obtain,

TLf(λ) = TLf(λ)

(
1− ψ(λ+ α)

λ+ α

)
+

(
λ

ψ(λ)
− 1

)
1

b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
+

1

b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
.

Hence,

TLf(λ) =
λ

b

(
1

ψ(λ)
− 1

ψ(λ+ α)

)
.

Finally, using (2.4) and

bTL (W ⋆ PV ) (λ) =
(ψ(λ) − b+ λ)

ψ(λ)
,

allows to inverse the Laplace transform of f and get the result.

Lemma 6.1 allows us to compute the expected quadratic error.

Lemma 6.2 (Quadratic error in the convergence of Nt). Let E the a.s. limit of ψ′(α)e−αtNt. Then,

lim
t→∞

e−αtE
(
ψ′(α)Nt − eαtE

)2
=
α

b

(
2− ψ′(α)

)
.

Proof. Let

µ := lim
t→∞

eαtF (t),
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where F is defined in Proposition 5.1. Since, using Proposition 5.1 and (2.3),

∫

[0,t]
W (t− u)PV (du) =

eαt

ψ′(α)

(
1− α

b

)
− µ− eαt

ψ′(α)

∫

(t,∞)
e−αuPV (du) +

∫

[0,t]

(
µ− eα(t−u)F (t− u)

)
PV (du)

=
eαt

ψ′(α)

(
1− α

b

)
− µ+ o(1).

Hence, the expression of ENtE given by Lemma 6.1 can be rewritten, thanks to Lemmas 5.1, as

ENtE =
2αeαt

bψ′(α)
− α

b

(
1

ψ′(α)
+ µ

)
+ o(1), (6.3)

Using (2.5) and (2.8) in conjunction with Proposition 5.1, we also have

e−αtEN2
t = 2

αeαt

bψ′(α)2
− 2αµ

bψ′(α)
− α

bψ′(α)
+ o(1). (6.4)

Hence, it finally follows from (6.3) and (6.4) that

e−αtE
(
ψ′(α)Nt − eαtE

)2
= ψ′(α)2e−αtEN2

t − 2ψ′(α)ENtE +
2αeαt

b

= −2
αµ

b
ψ′(α)− αψ′(α)

b
+ 2

α

b

(
1 + ψ′(α)µ

)
+ o(1)

=
α

b

(
2− ψ′(α)

)
+ o(1).

It is worth noting that, using (2.8) and the method above, we have the following result.

Corollary 6.3. We have

1

P (Nt > 0)
=
b

α
− bµψ′(α)

α
e−αt + o(e−αt), (6.5)

which leads to

EtNtE =
2eαt

ψ′(α)
− 1

ψ′(α)
− 3µ+ o(1). (6.6)

Our last estimate is the boundedness of the third moments.

Lemma 6.4 (Boundedness of the third moment). The third moment of the error is asymptotically

bounded, that is

E

[∣∣e−αt
(
ψ′(α)Nt − eαtE

)∣∣3
]
= O (1) .

Proof. We define for all t ≥ 0, N∞
t as the number of individuals alive at time t which have an infinite

descent. According to Proposition 6.1 of [5], N∞ is a Yule process under P∞.

We have

E

[∣∣∣∣
ψ′(α)Nt − eαtE

e
α
2
t

∣∣∣∣
3
]
≤ 8E

[∣∣∣∣
ψ′(α)Nt −N∞

t

e
α
2
t

∣∣∣∣
3
]
+ 8E

[∣∣∣∣
N∞
t − eαtE
e
α
2
t

∣∣∣∣
3
]
.
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Now, we know according to the proof of Theorem 6.2 of [5] (and this is easy to prove using the

decomposition of Figure 6) that N∞ can be decomposed as

N∞
t =

Nt∑

i=1

B
(t)
i ,

where
(
B

(t)
i

)
i≥1

is a family of independent Bernoulli random variables, which is i.i.d. for i ≥ 2, under

Pt. Hence,

Et

[∣∣∣∣
ψ′(α)Nt −N∞

t

e
α
2
t

∣∣∣∣
3
]
≤ e−

3
2
αt
Et



(

Nt∑

i=1

(
ψ′(α)−B

(t)
i

))4



3
4

.

Since, it is known from the proof of Theorem 6.2 of [5] that

EB
(t)
2 = ψ′(α) +O

(
e−αt

)
,

it is straightforward that

Et

[∣∣∣∣
ψ′(α)Nt −N∞

t

e
α
2
t

∣∣∣∣
3
]

is bounded.

On the other hand, we know that a Yule process is a time-changed Poisson process (see for

instance [2], Theorem III.11.2), that is, if Pt is a Poisson process independent of E under P∞,

E

[∣∣∣∣
N∞
t − eαtE
e
α
2
t

∣∣∣∣
3
]
= E∞



∣∣∣∣∣
PE(eαt−1) − eαtE

e
α
2
t

∣∣∣∣∣

3

P(NonEx).

Now, using Hölder inequality, it remains to bound

E∞



(
PE(eαt−1) − eαtE

e
α
2
t

)4

 = e−2αt

∫

R+

E∞

[(
Px(eαt−1) − eαtx

)4]
e−xdx.

Finally, for a Poissonian random variable X with parameter ν, straightforward computations give

that E
[
(X − ν)4

]
= 3ν2 + ν, which allows us to end the proof.

6.1.2 Case with arbitrary initial distribution PV∅

In order to study the behavior of the sub-splitting trees involved in the decomposition described

in Figure 6, we investigate the behaviour of a splitting tree where the ancestor lifelength is not

distributed as V , but follows an arbitrary distribution. Let Ξ be a random variable in (0,∞], giving

to the life-length of the ancestor and by N(Ξ) the associated population counting process.
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Using the decomposition of N(Ξ) over the lifespan of the ancestor, as described in Section 4, we

have

Nt(Ξ) =

∫

R+

N
(ξu)
t−u 1Ξ>u ξ(du) + 1Ξ>t, (6.7)

where
(
N i
)
i≥1

is a family of i.i.d. CMJ processes with the same law as N independent of Ξ and ξ,

as described in section 4. Let, for all i ≥ 1, Ei be

Ei := lim
t→∞

ψ′(α)e−αtN i
t , a.s, (6.8)

and, let E (Ξ) be the random variable defined by

E (Ξ) :=

∫

[0,∞]
E(ξu)e−αu1Ξ>u ξ(du). (6.9)

Lemma 6.5 (First moment). The first moment is asymptotically bounded, that is

E
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)
= O(1),

uniformly with respect to the random variable Ξ.

Proof. Using Lemma 2.8, (6.7) and (6.9) with have

E
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)
=

∫

[0,t]

(
ψ′(α)ENt−u − eα(t−u)EE

)
e−αuP (Ξ > u) bdu,

which leads using (2.7) and (2.10) to

E
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)
=

∫

[0,t]

(
ψ′(α)W (t− u)− ψ′(α)W ⋆ PV (t− u)− α

b
eα(t−u)

)

︸ ︷︷ ︸
=:It−u

e−αuP (Ξ > u) bdu.

(6.10)

We get using Proposition 5.1 and (2.3),

Is =e
αs − ψ′(α)eαsF (s)− eαs

(
1− α

b

)

+ ψ′(α)

∫

[0,s]
eα(s−v)F (s− v)PV (dv) + eαs

∫

(s,∞)
e−αvPV (dv)−

α

b
eαs

=eαs
∫

(s,∞)
e−αvPV (dv) + o(1).

Hence, (Is)s≥0 is bounded. The result, now, follows from (6.10).

Lemma 6.6 (L2 convergence in the general case). ψ′(α)e−αtNt(Ξ) converge a.s. and in L2 to E (Ξ),

and

lim
t→∞

e−αtE
(
ψ′(α)Nt(Ξ)− eαtE(Ξ)

)2
=
α

b

(
2− ψ′(α)

) ∫

R+

e−αsP (Ξ > s) bds,

where the convergence is uniform with respect to Ξ in (0,∞]. In the particular case when Ξ follows

the distribution of O
(βt)
2 given by (4.5), we have, for 0 < β < 1

2 ,

lim
t→∞

eαtE
(
e−αtψ′(α)Nt(O

(βt)
2 )− E(O(βt)

2 )
)2

=
(
2− ψ′(α)

)
ψ′(α).

26



Proof. From (6.7) and (6.9), we have

(
e−αtψ′(α)Nt(Ξ)− E(Ξ)

)2
=

[∫

R+

(
e−α(t−u)ψ′(α)N

(ξu)
t−u − E(u)

)
e−αu1Ξ>u ξ(du) + e−αt1Ξ>t

]2

(6.11)

and, using Lemma 2.8,

E
(
ψ′(α)e−αtNt(Ξ)− E(Ξ)

)2

=E

(∫

R+

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αu1Ξ>u ξ(du)

)2

+ e−2αt
P (Ξ > t) + 2e−αtE1Ξ>t

∫

R+

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αu1Ξ>u ξ(du),

=

∫

R+

E

[(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)2]
e−2αu

P (Ξ > u) bdu

+

∫

R+

E

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
E

(
ψ′(α)e−α(t−v)N

(ξv)
t−v − E(v)

)
e−α(u+v)P (Ξ > u,Ξ > v) bdu dv

+ e−2αt
P (Ξ > t) + 2e−αt

∫

R+

E

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αuP (Ξ > u,Ξ > t) bdu.

Moreover, since,

ψ′(α)Ee−αtNt − E = O
(
e−αt

)
,

this leads, using Lemma 6.5, to

lim
t→∞

eαtE
(
e−αtψ′(α)Nt(Ξ)− E(Ξ)

)2
=
α

b

(
2− ψ′(α)

) ∫

R+

e−αuP (Ξ > u) bdu.

Now, we have from (4.5) and Lemma 2.2,

lim
u→∞

Pu (O2 > s) = lim
u→∞

∫

R+

W (u− y)

W (u)− 1
P (V > s+ y) bdy =

∫

R+

e−αyP (V > s+ y) bdy.

It follows then from Lebesgue theorem that,

lim
t→∞

∫

R+

e−αsPβt (O2 > s) bds =
bψ′(α)

α
.

Lemma 6.7 (Boundedness in the general case.). The error of order 3 in asymptotically bounded,

that is

e−
3
2
αt
E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3 = O (1) ,

uniformly w.r.t. Ξ.

Proof. Rewriting N(Ξ) and E (Ξ) as in the proof of Lemma 6.6, we see that,

e−
3
2
t
E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3 = e−
3
2
t
E



∣∣∣∣∣

∫

[0,t]

(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)
1Ξ>u ξ(du) + ψ′(α)1Ξ>t

∣∣∣∣∣

3



≤ 8E

∣∣∣∣∣

∫

[0,t]
e−

3
2
(t−u)

(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)
e−

1
2
u
1Ξ>uξ(du)

∣∣∣∣∣

3

+ 8ψ′(α)e−
1
2
t
P (Ξ > t)3
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We denote by I the first term of the r.h.s. of the last inequality, leading to

I ≤ 8E

∫

[0,t]3

3∏

i=1

∣∣∣e−
1
2
(t−si)

(
ψ′(α)N

(ξsi )
t−si

− eα(t−si)E(si)
)∣∣∣ e−

1
2
si1Ξ>siξ(ds1)ξ(ds2)ξ(ds3)

≤ 8E

∫

[0,t]3

3∑

j=1

∣∣∣∣e
− 1

2
(t−sj)

(
ψ′(α)N

(ξsj )
t−sj

− eα(t−sj)E(sj)
)∣∣∣∣

3 3∏

i=1

e−
1
2
si1Ξ>siξ(ds1)ξ(ds2)ξ(ds3)

≤ 24E

∫

[0,t]

∣∣∣e−
1
2
(t−u)

(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)∣∣∣
3
e−

1
2
u
1Ξ>uξ(du)

(∫

[0,t]
e−

1
2
uξ(du)

)2

≤ 24E

∫

[0,t]

∣∣∣e−
1
2
(t−u)

(
ψ′(α)N

(ξu)
t−u − eα(t−u)E(u)

)∣∣∣
3
e−

1
2
u
1Ξ>u µ(du),

with

µ(du) =

(∫

[0,t]
e−

1
2
sξ(ds)

)2

ξ(du).

Now, since µ is independent from the family
(
N (i)

)
and

(
E(i)
)
, an easy adaptation of the proof of

Lemma 2.8, leads to

e−
3
2
t
E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3 ≤24E

∫

[0,t]
E

[∣∣∣e−
1
2
(t−u)

(
ψ′(α)Nt−u − eα(t−u)E

)∣∣∣
3
]
e−

1
2
u
1Ξ>u µ(du)

+ 8ψ′(α)e−
1
2
t
P (Ξ > t)

Using Lemma 6.4 to bound

E

∣∣∣e−
3
2
(t−u)

(
Nt−u − eα(t−u)E

)∣∣∣
3
,

in the previous expression, finally leads to

e−
3
2
t
E
∣∣ψ′(α)Nt(Ξ)− eαtE(Ξ)

∣∣3 ≤ C
(
E

(∫

R+

e−
1
2
uξ(du)

)3

+ 1

)
,

for some real positive constant C.

6.2 Proof of Theorem 3.1

We fix a positive real number u. From this point, we recall the decomposition of the splitting tree

as described in Section 4 (see also Figure 6). We also recall that, for all i in {1, . . . , Nu}, the process(
N i
s (Oi) , s ∈ R+

)
is the population counting process of the (sub-)splitting tree T (Oi).

As explained in Section 4, it follows from the construction of the splitting tree, that, for all i in

{1, . . . , Nu}, there exists an i.i.d. family of processes
(
N i,j

)
j≥1

with the same law as (Nt, t ∈ R+),

and an i.i.d. family
(
ξ(i)
)
1≤i≤Nu

of random measure with same law as ξ, such that

N i
t (Oi) =

∫

[0,t]
N
i,j
t−u1Oi>u ξ

(i)(du) + 1Oi>t, ∀t ∈ R+, ∀i ∈ {1, . . . , Nu} . (6.12)
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As in (6.9), we define, for all i in {1, . . . , Nu},

E (Oi) :=

∫

[0,t]
E
i,ξ

(i)
u
e−αu1Oi>u ξ

(i)(du), (6.13)

where Ei,j := lim
t→∞

ψ′(α)e−αtN i,j
t .

Hence, it follows from Lemma 6.6, that e−αtN i
t (Oi) converges to E (Oi) in L

2.

Note also that, from Lemma 4.1, the family
(
N i
t (Oi) , t ∈ R+

)
2≤i≤Nu

is i.i.d. and independent

from Nu, as well as the family (E (Oi))2≤i≤Nu (in the sens of Remark 2.1).

Lemma 6.8 (Decomposition of E). We have the following decomposition of E,

E = e−αu
Nu∑

i=1

Ei (Oi) , a.s.

Moreover, under Pu, the random variables (Ei (Oi))i≥1 (defined by (6.13)) are independent, indepen-

dent of Nu, and identically distributed for i ≥ 2.

Proof. Step 1: Decomposition of E.
For all t in R+, we denote by N

∞
t the number of individuals alive at time t which have an infinite

descent. For all i, we define, for all t ≥ 0, N∞
t (Oi) from T (Oi) as N

∞
t was defined from the whole

tree. Now, it is easily seen that

N∞
t =

Nu∑

i=1

N∞
t−u (Oi) .

Hence, if e−αtN∞
t (Oi) converges a.s. to E (Oi), then

lim
t→∞

e−αtN∞
t = lim

t→∞
e−αu

Nu∑

i=1

e−α(t−u)N∞
t−u (Oi) = e−αu

Nu∑

i=1

E (Oi) .

So, it just remains to prove the a.s. convergence to get the desired result.

Step 2: a.s. convergence of N∞ (Oi) to E (Oi).

For this step, we fix i ∈ {1, . . . , Nu}.
In the same spirit as (6.12) (see also Section 4), it follows from the construction of the splitting

tree T (Oi), that there exists, an i.i.d. sequence of processes
(
N
j,∞
s , s ∈ R+

)
j≥1

with the same law

as (N∞
t , t ∈ R+), such that

N∞
t (Oi) =

∫

[0,t]
N
ξ
(i)
u ,∞
t−u 1Oi>u ξ

(i)(du) + 1Oi=∞, ∀t ≥ 0.

Now, it follows from Theorem 6.2 of [5], that for all j,

lim
t→∞

e−αtN
j,∞
t = Ei,j, a.s.,

where Ei,j was defined in the begin of this section. Let

Cj := sup
t∈R+

e−αtN
j,∞
t , ∀j ≥ 1,
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and

C := sup
t∈R+

e−αtN∞
t .

Then, the family (Cj)j≥1 is i.i.d., since the processes
(
N j,∞

)
j≥1

are i.i.d, with the same law as C.
Hence, ∫

[0,t]
e−α(t−u)N

ξ
(i)
u ,∞
t−u e−αu1Oi>u ξ

(i)(du) ≤
∫

[0,t]
C
ξ
(i)
u
e−αu1Oi>u ξ

(i)(du). (6.14)

It is easily seen that E [C] = P (NonEx)E∞ [C]. Now, since, from Proposition 6.1 of [5], N∞
t is a

Yule process under P∞ (and hence e−αtN∞
t is a martingale), Doobs’s inequalities entails that the

random variable C is integrable. Hence, the right hand side of the (6.14) is a.s. finite, and we can

apply Lesbegue Theorem to get

lim
t→∞

e−αtN∞
t (Oi) =

∫

[0,t]
E
i,ξ

(i)
u
e−αu1Oi>u Γ(du) = E (Oi) , a.s.,

where the last equality is just the definition of E (Oi).

We have now all the tools needed to prove the central limit theorem for Nt.

Proof of Theorem 3.1. Let u < t, two positive real numbers. From Lemma 6.8 and section 4, we

have

Nt =

Nu∑

i=1

N
(i)
t−u (Oi)

and

eαtE =

Nu∑

i=1

eα(t−u)Ei (Oi) .

Then,

ψ′(α)Nt − eαtE
e
α
2
t

=

Nu∑

i=1

ψ′(α)N
(i)
t−u (Oi)− eα(t−u)Ei (Oi)
e
α
2
(t−u)e

α
2
u

. (6.15)

Using Lemma 4.1, we know that, under Pu,
(
N i
t−u(Oi), t > u

)
1≤i≤Nu

are independent processes, i.i.d.

for i ≥ 2 and independent of Nu. Let us denote by ϕ and ϕ̃ the characteristic functions

ϕ(λ) := E

[
exp

(
iλ

(
ψ′(α)N2

t−u (O2)− eα(t−u)E2 (O2)

e
α
2
(t−u)

))]
, λ ∈ R

and

ϕ̃(λ) := E

[
exp

(
iλ

(
ψ′(α)N1

t−u (O1)− eα(t−u)E1 (O1)

e
α
2
(t−u)

))]
, λ ∈ R.

It follows from (6.15) and Lemma 4.1 that,

Eu

[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2
t

)]
=
ϕ̃
(

λ

e
α
2 u

)

ϕ
(

λ

e
α
2 u

)Eu

[
ϕ

(
λ

e
α
2
u

)Nu]
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Since Nu is geometric with parameter W (u)−1 under Pu,

Eu

[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2
t

)]
=
ϕ̃
(

λ

e
α
2 u

)

ϕ
(

λ

e
α
2 u

)
W (u)−1ϕ

(
λ

e
α
2 u

)

1− (1−W (u)−1)ϕ
(

λ

e
α
2 u

)

Using Taylor formula for ϕ, we obtain,

Eu

[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2
t

)]
= ϕ̃

(
λ

e
α
2
u

)
1

D(λ, t, u)

where,

D(λ, t, u) =W (u)

− (W (u)− 1)

(
1 + iλE

[
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2
(t−u)e

α
2
u

]

− λ2

2
E



(
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2
(t−u)e

α
2
u

)2

+R(λ, t, u)

)

= 1− iλ
W (u)− 1

e
α
2
u

E

[
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2
(t−u)

]

+
λ2

2

W (u)− 1

eαu
E



(
ψ′(α)

N i
t−u (O2)− eα(t−u)E2 (O2)

e
α
2
(t−u)

)2



− (W (u)− 1)R(λ, t, u),

with, for all ǫ > 0 and all λ in (−ǫ, ǫ),

|R(λ, t, u)| ≤ sup
λ∈(−ǫ,ǫ)

∣∣∣∣
∂3

∂λ3
ϕ(λ)

∣∣∣∣ ≤ E



∣∣∣∣∣

(
ψ′(α)N i

t−u (O2)− eα(t−u)E2 (O2)

e
α
2
(t−u)

)∣∣∣∣∣

3

 ǫ

3e−
3
2
αu

6
≤ Cǫ3e−

3
2
u,

(6.16)

for some real positive constant C obtained using Lemma 6.7.

From this point, we set u = βt with 0 < β < 1
2 . It follows then from the Lemmas 6.6 and 4.1,

that

lim
t→∞

Eβt



(
ψ′(α)N i

t−βt (O2)− eα(t−βt)E2 (O2)

e
α
2
(t−βt)

)2

 = ψ′(α)

(
2− ψ′(α)

)
. (6.17)

Moreover, we have from Lemma 6.5, and since β < 1
2 ,

lim
t→∞

W (βt)e−
α
2
t
E
[
ψ′(α)N i

t (O2)− eαtE2 (O2)
]
= 0. (6.18)

Finally, the relations (6.16), (6.17) and (6.18) lead to

lim
t→∞

Eβt

[
exp

(
iλ
Nt − eαtE

e
α
2
t

)]
=

1

1 + λ2

2 (2− ψ′(α))
.
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To conclude, note that,

∣∣∣∣Eβt
[
exp

(
iλ
Nt − eαtE

e
α
2
t

)]
− E∞

[
exp

(
iλ
Nt − eαtE

e
α
2
t

)]∣∣∣∣ =
∣∣∣∣∣E
[
e
iλ
ψ′(α)Nt−e

αtE

e
α
2 t

(
1Nβt>0

P (Nβt > 0)
− 1NonEx

P (NonEx)

)]∣∣∣∣∣

≤ E

[∣∣∣∣
1Nβt>0

P (Nβt > 0)
− 1NonEx

P (NonEx)

∣∣∣∣
]

goes to 0 as t goes to infinity. This ends the proof of Theorem 3.1.

7 Proof of Theorem 3.2

The proof of this theorem follows the same structure as in the preceding proof. It begins by some

estimate on moments.

7.1 Preliminary moments estimates

We start by computing the moment in the case of a standard splitting tree.

7.1.1 Case V∅
L
= V

One of the main difficulties to extend the preceding proof to the frequency spectrum is to get estimates

on

E
[(
ψ′(α)A(k, t) − eαtckE

)n]
, for n = 2 or 3.

We first study the renewal equation satisfied by EA(k, t)E similarly as in Lemma 6.1.

Lemma 7.1 (Joint moment of E and A(k, t)). E [A(k, t)E ] is the unique solution bounded on finite

intervals of the renewal equation,

f(t) =

∫

R+

f(t− u)be−αuP (V > u) du

+ αE [A(k, .)] ⋆ b

(∫

R+

e−αvP (V > ., V > v) dv

)
(t)

+ αE [EXt] , (7.1)

with Xt the number of families of size k alive at time t whose original mutation has taken place

during the lifetime of the ancestor individual.

Proof. We recall that A(k, t) is the number of non-ancestral families of size k at time t. Similarly as

for Nt, A(k, t) can be obtained as the sum of the contributions of all the trees grafted on the lifetime

of the ancestor individual in addition to the mutations which take place on the ancestral branch,

that is,

A(k, t) =

∫

[0,t]
A(k, t− u, ξu)1V∅>uξ(du) +Xt,
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where (A(k, t, i), t ∈ R+)i≥1 is a family of independent processes having the same law as A(k, t).

Now, taking the product A(k, t)Ns and using the same arguments as in the proof of lemma 6.1 to

take the limit in s leads to the result. In particular, the last term is obtained using that

lim
s→∞

E

[
Xt

Ns

W (s)

]
= E [XtE ] .

The result of Lemma 7.1 is quite disappointing since the presence of the mysterious process Xt

prevents any explicit resolution of equation (7.1). However, one may note that equation (7.1) is quite

similar to equation (6.1) driving ENtE , so if the contribution of Xt in the renewal structure of the

process is small enough, one can expect the same asymptotic behaviour for EA(k, t)E as for ENtE .
Moreover, we clearly have on Xt the following a.s. estimate,

Xt ≤
∫

[0,t]
1
Z

(u)
0 (t−u)>0

1V >uξ(du), (7.2)

where Z
(i)
0 denote for the ancestral families on the ith trees grafted on the ancestral branch. Hence,

if we take θ > α and we suppose V < ∞ a.s., one can expect that Xt decreases very fast. These

are the ideas the following Lemma is based on. Moreover, as it is seen in the proof of the following

lemma, the hypothesis V <∞ a.s. can be weakened.

Lemma 7.2. Under the hypothesis of Theorem 3.2, for all k ≥ 1, there exists a constant γk ∈ R

such that,

lim
t→∞

ENtEck − EA(k, t)E = γk. (7.3)

Proof. Combining equations (6.1) and (7.1), we get that,

ENtEck − EA(k, t)E =

∫

R+

(ENt−uEck − EA(k, t− u)E) be−αuP (V > u) du

+ αb (ckEN. − E [A(k, .)]) ⋆

(∫

R+

e−αvP (V > ., V > v) dv

)
(t)

︸ ︷︷ ︸
:=ξ

(k)
1 (t)

+ ckP (V > t)− αE [XtE ]︸ ︷︷ ︸
:=ξ

(k)
2 (t)

,

which is also a renewal equation. On one hand, using equations (2.6) and (2.12) imply that

Et [ckNt −A(k, t)] =W (t)

∫ ∞

t

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds,
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which leads using Lemma 2.2, to

ξ1(t) =α

∫

R+

(ckENt−u − E [A(k, t− u)])

∫

R+

e−αvP (V > u, V > v) dvdu

≤ C
∫

[0,t]
e(α−θ)t−uP (V > u) du

∫

[0,∞)
e−αudu

≤ C
α
e−(θ−α)t

∫ t

0
e(θ−α)uP (V > u) du, (7.4)

for some positive real constant C.
The derivative of the r.h.s. of (7.4) is given by

C
α
e−(θ−α)t

(
e(θ−α)tP (V > t)− (α− θ)

∫ t

0
e(θ−α)uP (V > u) du

)
, t > 0, (7.5)

which is equal to

C
α
e−(θ−α)t

(
1−

∫

[0,t]
e(θ−α)sPV (ds)

)
, t > 0,

using Stieljes integration by parts. Now, since,
∫

[0,∞)
e(θ−α)sPV (ds) > 1,

this shows that the right hand side of (7.4) is decreasing for t large enough. Moreover, it is straight-

forward to shows that the r.h.s. of (7.4) is also integrable. This implies that ξ
(k)
1 is DRI from the

same Lemma. On the other hand, it follows from (7.2) that

XtE ≤ E
∫

[0,t]
1
Z

(u)
0 (t−u)>0

1V >tξ(du). (7.6)

Then, we obtain using Cauchy-Schwarz inequality, that

E [XtE ] ≤
√

2α

b
E



(∫

[0,t]
1
Z

(u)
0 (t−u)>0

1V >tξ(du)

)2


1/2

.

It follows that we need to investigate the behavior of

E



(∫

(0,t)
1
Z

(u)
0 (t−u)>0

1V >tξ(du)

)2

 ,

which is equal to
∫ t

0
P (Z0(t− u) > 0)P (V > t) bdu+

∫

[0,t]2
P (Z0(t− v) > 0)P (Z0(t− u) > 0)P (V > u, V > v) b2du dv,

using Lemma 2.8. Then, since, from (2.9) and Lemma 2.2,

Pt−u (Z0(t− u) > 0) =
e−θ(t−u)W (t− u)

Wθ(t− u)
= O(e−(θ−α)(t−u)),
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it follows, using that the right hand side of (7.4) is DRI and Lemma 2.5, that ξ
(k)
2 is DRI. Finally, it

comes from Theorem 2.6, that

lim
t→∞

ENtEck − EA(k, t)E =
α

ψ′(α)

∫

R+

ξ
(k)
1 (s) + ξ

(k)
2 (s)ds. (7.7)

Using the preceding lemma, we can now get the quadratic error in the convergence of the frequency

spectrum.

Lemma 7.3 (Quadratic error for the convergence of A(k, t).). Let k and l two positive integers.

Then under the hypothesis of Theorem 3.2, there exists a family of real numbers (ak,l)l,k≥1 such that,

lim
t→∞

e−αtEt
[(
ψ′(α)A(k, t) − eαtEck

) (
ψ′(α)A(l, t) − eαtEcl

)]
= ak,l,

where the sequence (ck)k≥1 is defined by (2.14).

Proof. Now, noting

ck(t) :=

∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da, (7.8)

we have, from (2.13),

ψ′(α)2Et [A(k, t)A(l, t)] = 2W (t)2cl(t)ck(t) +W (t)R+ o(e−αt), (7.9)

with

R :=− ψ′(α)

∫ ∞

0
2θ

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)l−1 ∫ a

0

e−θs

Wθ(s)2

(
1− 1

Wθ(a)

)k−1

dsda

− ψ′(α)

∫ ∞

0
2θ

e−θaW (a)

Wθ(a)2

(
1− 1

Wθ(a)

)k−1 ∫ a

0

e−θs

Wθ(s)2

(
1− 1

Wθ(a)

)l−1

dsda

+ ψ′(α)

∫ ∞

0
θW (a)−1

(
Et

[
A(k, t)1Z0(a)=l

]
+ Et

[
A(l, t)1Z0(a)=k

])
da,

Now, using (6.5), we have

EtE2 − 2 = −2µψ′(α)e−αt + o(e−αt),

which leads to

Et

[(
e−αtψ′(α)A(k, t) − Eck

) (
e−αtψ′(α)A(l, t) − Ecl

)]

=Et

[
e−2αtψ′(α)2A(k, t)A(l, t)

]
− clEt

[
e−αtψ′(α)A(k, t)E

]
− ckEt

[
e−αtψ′(α)A(l, t)E

]

+ 2ckcl − 2ckclµψ
′(α)e−αt + o(e−αt),

=2 (ck(t)− ck) (cl(t)− cl)− 2µψ′(α)ckcle
−αt +Re−αt

−
(
2ck(t)cl + 2cl(t)ck − 2ckclψ

′(α)e−αtEtNtE
)

+ ψ′(α)cle
−αt

Et [(ckNt −A(k, t)) E ] + ψ′(α)cke
−αt

Et [(clNt −A(l, t)) E ] ,
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Since, by Lemma 2.2

ck(t) = ck +O(e−θt) = ck + o(e−αt),

the result follows combining (7.7) (6.6), and Lemma 7.2 that,

eαtEt
[(
e−αtψ′(α)A(k, t) − Eck

) (
e−αtψ′(α)A(l, t) − Ecl

)]

=ψ′(α) (ckγl + clγk) + ckcl
(
2eαt − 2ψ′(α)EtNtE

)
+R− 2µψ′(α)ckcl + o(1)

=ψ′(α) (ckγl + clγk) + ckcl

(
1

ψ′(α)
+ 3µ

)
+R− 2µψ′(α)ckcl + o(1).

The result follows readily.

Lemma 7.4 (Boundedness of the third moment). Let k1, k2, k3 three positive integers, then

E

[
3∏

i=1

∣∣∣e−
α
2
t
(
ψ′(α)A(ki, t)− eαtEcki

)∣∣∣
]
= O (1) .

Proof. We have,

E

[∣∣∣∣∣

3∏

i=1

(
ψ′(α)A(ki, t)− eαtEcki

)

e
α
2
t

∣∣∣∣∣

]
≤

3∏

i=1


E



∣∣∣∣∣

(
ψ′(α)A(ki, t)− eαtEcki

)

e
α
2
t

∣∣∣∣∣

3





1
3

.

Hence, we only have to prove the Lemma for k1 = k2 = k3 = k. Hence,

E



∣∣∣∣∣

(
ψ′(α)A(k, t) − eαtEck

)

e
α
2
t

∣∣∣∣∣

3

 ≤ 8E

[∣∣∣∣
ψ′(α)A(k, t) − ckNt

e
α
2
t

∣∣∣∣
3
]
+ 8ckE

[∣∣∣∣
ψ′(α)Nt −N∞

t

e
α
2
t

∣∣∣∣
3
]

+ 8ckE

[∣∣∣∣
N∞
t − eαtE
e
α
2
t

∣∣∣∣
3
]
.

The last two terms have been treated in the proof of Lemma 6.4, and the boundedness of

E

[∣∣∣∣
ψ′(α)A(k, t) − ckNt

e
α
2
t

∣∣∣∣
3
]
,

follows from the following Lemma 7.5 and Hölder’s inequality.

Lemma 7.5. For all k ≥ 1,

E

[(
A(k, t) − ckNt

e−
α
2
t

)4
]
,

is bounded.

Due to technicality, the proof of this lemma is postponed to the end in appendix.
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7.1.2 Arbitrary initial distribution case

The following Lemmas are the counter part of Lemmas 6.5, 6.6, and 6.7. They play the same role

as in the proof of Theorem 3.1. In the sequel, we denote by (A(k, t,Ξ))k≥1, the frequency spectrum

of the splitting tree where the lifetime of the ancestral individual is Ξ, in the same manner as for

Nt (Ξ) in the previous section.

Lemma 7.6 (L2 convergence in the general case). Consider the general frequency spectrum (A(k, t,Ξ))k≥1,

then, for all k, ψ′(α)e−αtA(k, t,Ξ) converge to E (Ξ) (see 6.9) in L2 as t goes to infinity and

lim
t→∞

e−αtE
[(
ψ′(α)A(k, t,Ξ) − eαtE(Ξ)ck

) (
ψ′(α)A(l, t,Ξ) − eαtE(Ξ)ck

)]
= ak,l

∫

R+

e−αuP (Ξ > u) bdu,

where the convergence is uniform w.r.t. the random variable Ξ. In the case where Ξ is distributed as

O
(βt)
2 , for 0 < β < 1

2 (see section 4), we get

lim
t→∞

e−αtE
[(
ψ′(α)A(k, t,O

(βt)
2 )− eαtE(O(βt)

2 )ck

)(
ψ′(α)A(l, t, Oβt2 )− eαtE(O(βt)

2 )ck

)]
=
bψ′(α)

α
ak,l.

Lemma 7.7 (First moment). The first moments are asymptotically bounded, that is, for all k ≥ 1,

E
(
ψ′(α)A(k, t)(Ξ) − eαtckE(Ξ)

)
≤ O(1),

uniformly with respect to the random variable Ξ.

Lemma 7.8 (Boundedness in the general case.). Let k1, k2, k3 three positive integers, then

E

[∣∣∣∣∣

3∏

i=1

(
ψ′(α)A(ki, t)− eαtEcki

)

e
α
2
t

∣∣∣∣∣

]
= O (1) ,

uniformly with respect to the random variable Ξ.

We do not detail the proofs of these results since they are direct adaptations of the proofs of

Lemmas 6.5, 6.6 and 6.7.

7.2 Proof of the result

The following result is based on the fact that, in the clonal sub-critical case, the lifetime of a family

is expected to be small. It follows that, in the decomposition of Figure 6, one can expect that all the

family of size k live in different subtrees as soon as t >> u. This is the point of the following lemma.

Lemma 7.9. Suppose that α < θ. If we denote by Γu,t the event,

Γu,t = {”there is no family in the population at time t which is older than u”} ,

then, for all β in (0, 1 − α
θ ), we have

lim
t→∞

Pβt (Γβt,t) = 1.
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Proof. The proof of this Lemma, as the calculation of the moments of A(k, t) relies on the represen-

tation of the genealogy of the living population at time t as a coalescent point process [5]. Moreover,

we denote by Ñ
(t)
u the number of living individuals at time u who have alive descent at time t. In

[5], we showed that, under Pt, Ñ
(t)
u is geometrically distributed with parameter W (t−u)

W (t) .

Now, 1Γu,t can be rewritten as

1Γu,t =

Ñ
(t)
u∏

i=1

1{Zi0(t−u)=0},

where Zi0(t− u) denotes the number of individuals descending from the ith individual alive at time

u having alive descent at time t and carrying the same type as their ancestor at time u. Moreover,

from Proposition 4.3 of [5], we know that that under Pt, the family Z
(i)
0 (t − u) is an i.i.d. family of

random variables distributed as Z0(t − u) under Pt−u, and Ñ
(t)
u is independent of Z

(i)
0 (t − u) (still

under Pt).

Then,

Pt (Γt,u) = Et

[
Pt−u (Z0(t− u) = 0)Ñ

(t)
u

]
=

Pt−u (Z0(t− u) = 0) W (t−u)
W (t)

1− Pt−u (Z0(t− u) = 0)
(
1− W (t−u)

W (t)

) .

Using (2.9), some calculus leads to,

Pt (Γt,u) = 1− 1

1 + Wθ(t−u)

e−θ(t−u)W (t)

(
1− e−θ(t−u)W (t−u)

Wθ(t−u)

) .

Now, since,

Pt (Γt,u) = Pu (Γt,u)
P (Nu > 0)

P (Nt > 0)
+

P (Γt,u, Nt = 0, Nu > 0)

P (Nt > 0)
,

taking u = βt, we obtain, using Lemma 2.2 and

P (Nt = 0, Nβt > 0) = P (Nβt > 0)− P (Nt > 0) →
t→∞

0,

the desired result.

Proof of Theorem 3.2. Fix 0 < u < t. Note that the event Γu,t of Lemma 7.9 can be rewritten as

1Γu,t =

Nu∏

i=1

1{Zi0(t−u,Oi)=0}, (7.10)

where Zi0(t−u,Oi) denote the number of individuals alive at time t carrying the same type as the ith

alive individual at time u, that is the ancestral family of the splitting constructed from the residual

lifetime of the ith individual (see Section 4).

Let K be a multi-integer, we denote by L(K) (resp. A(K, t)) the random vector
(
Lk1 , . . . ,LkN

)

(resp. (A(k1, t), . . . , A(kN , t))) with

Lkit =
ψ′(α)A(k, t) − cke

αtE
e
α
2
t

.
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On the event Γu,t, we have a.s.,

A(kl, t) =
Nu∑

i=1

A(i)(kl, t− u,Oi), ∀l = 1, . . . , N,

where the family
(
A(i) (kl, t− u,Oi)

)
i≥1

stand for the frequency spectrum for each subtree, which

are independent from Lemma 4.1 (see also Section 4 and Figure 6). Hence, using Lemma 6.8,

Lklt =

Nu∑

i=1

ψ′(α)A(i)(kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl
e
α
2
ue

α
2
(t−u)

.

By Lemma 4.1, that the family
(
Ai(kl, t− u,Oi)

)
2≤i≤Nu

is i.i.d. under Pu.

In the sequel, we denote, for all l and i ≥ 1,

Ã(i) (kl, t− u,Oi) =
ψ′(α)A(i) (kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl

e
α
2
(t−u)

.

As in the proof of Theorem 3.1, let

ϕK (ξ) := E

[
exp

(
i < Ã (K, t− u,O2) , ξ >

)
1Z2

0(t−u,O2)=0

]
,

ϕ̃K (ξ) := E

[
exp

(
i < Ã (K, t− u,O1) , ξ >

)
1Z1

0(t−u,O1)=0

]
.

From this point, following closely the proof of Theorem 3.1, with β in
(
0, 12 ∧ (1− α

θ )
)
, the only

difficulty is to handle the indicator function 1Z0(t−u,Oi)>0 in the Taylor development of ϕK . We show

how it can be done for one of the second order terms, and leave the rest of the details to the reader.

It follows from Hölder’s inequality that

E



(
ψ′(α)A(i) (kl, (1− β)t, Oi)− eα((1−β)t)Ei(Oi)ckl

e
α
2
((1−β)t)

)2

1Z2
0 ((1−β)t,O2)>0




≤ E



(
ψ′(α)A(i) (kl, (1 − β)t, Oi)− eα(1−β)tEi(Oi)ckl

e
α
2
(1−β)t

)3



2
3

P
(
Z2
0 ((1− β)t, O2) > 0

) 1
3 , (7.11)

from which it follows, using Lemma 7.8, that the l.h.s. of this last inequality isO
(
P
(
Z2
0 (t− u,O2) > 0

) 1
3

)
.

Now, using (7.10) and Lemma 7.9, it is easily seen that

lim
t→∞

P
(
Z2
0 ((1 − β)t, O2) > 0

)
= 0.

Finally, using Lemma 7.3, we get

lim
t→∞

E



(
ψ′(α)A(i) (kl, t− u,Oi)− eα(t−u)Ei(Oi)ckl

e
α
2
(t−u)

)2

1Z2
0 (t−u,O2)=0


 =

bψ′(α)ak,k
α

.
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These allow us to conclude that

lim
t→∞

Eβt

[
ei<L

(K)
t ,ξ>

1Γt

]
=

1

1 +
∑N

i,j=1Mi,j ξiξj
,

where Ki,j is given by

Mi,j :=
bψ′(α)

α
aKi,Kj ,

with K is the multi-integer (k1, . . . , kN ), and the al,ks are defined in Lemma 7.3.

To end the proof, note that,

∣∣∣E∞

[
ei<L

(K)
t ,ξ>

]
− Eβt

[
ei<L

(K)
t ,ξ>

1Γβt,t

]∣∣∣ ≤ E

[∣∣∣∣
1NonEx

P (NonEx)
−

1Nβt>01Γβt,t

P (Nβt > 0)

∣∣∣∣
]

→
t→∞

0,

thanks to Lemma 7.9.

8 Proof of Theorem 3.6

Since all the ideas of the proof of this theorem have been developed in the last two section, we do

not detail all the proof. The only step which needs clarification is the computation of the covariance

matrix of the Laplace limit law M. According to the proof of Theorem 3.2, it is given by

Mi,j := lim
t→∞

W (βt)

eαβt
E

[(
ψ′(α)A(i) (ki, (1 − β)t, Oi)− ψ′(α)ckiN(1−β)t

e
α
2
((1−β)t)

)

×
(
ψ′(α)A(i) (kj , (1− β)t, Oi)− ckjN(1−β)t

e
α
2
((1−β)t)

)
1Z2

0((1−β)t,O2)>0

]
,

which is equal, thanks to (7.11) and an easy adaptation of Lemma 6.6, to

Mi,j = lim
t→∞

bψ′(α)

α

W (βt)

eαβt
eαtE

[(
e−αtA(ki, t)− ckie

−αtNt

) (
e−αtA(kj , t)− ckje

−αtNt

)]
.

So it remains to get the limit of

eαtE
[(
e−αtψ′(α)A(k, t) − ψ′(α)cke

−αtNt

) (
e−αtψ′(α)A(l, t) − cle

−αtψ′(α)Nt

)]
,

as t goes to infinity. We recall that using the calculus made in the proof of Theorem 6.3 of [5], we

have

EtA(k, t)Nt = 2W (t)2ck(t)−2W (t)

∫

[0,t]
θPa (Z0(a) = k) da+W (t)

∫

[0,t]
θW (a)−1

Ea

[
Na1Z0(a)=k

]
da.

(8.1)

Moreover, (7.9) entails

ψ′(α)2EtA(k, t)A(l, t) = 2W (t)2ck(t)cl(t) +RW (t) + o(e−αt),
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with

R :=− ψ′(α)

∫ ∞

0
2θW (a)−1

Pa (Z0(a) = k)Ea [A(l, a)] da

+ ψ′(α)

∫ ∞

0
2θW (a)−1

Pa (Z0(a) = l)Ea [A(k, a)] da

+ ψ′(α)

∫ ∞

0
θW (a)−1

(
Et

[
A(k, t)1Z0(a)=l

]
+ Et

[
A(l, t)1Z0(a)=k

])
da.

These identities allow us to obtain

Et [(A(k, t) − ckNt) (A(l, t) − clNt)] = 2W (t)2ck(t)cl(t) + e−αtR+ o(e−αt),

− 2clck(t)W (t)2 + 2clW (t)

∫

[0,t]
θPa (Z0(a) = k) da− clW (t)

∫

[0,t]
θW (a)−1

Ea

[
Na1Z0(a)=k

]
da

− 2ckcl(t)W (t)2 + 2clW (t)

∫

[0,t]
θPa (Z0(a) = l) da− ckW (t)

∫

[0,t]
θW (a)−1

Ea

[
Na1Z0(a)=l

]
da

+ ckclW (t)2
(
2− 1

W (t)

)

= 2W (t)2 (ck(t)− cl) (cl(t)− ck) + e−αt
R

ψ′(α)
+ o(e−αt),

+ 2clW (t)

∫

[0,t]
θPa (Z0(a) = k) da− clW (t)

∫

[0,t]
θW (a)−1

Ea

[
Na1Z0(a)=k

]
da

+ 2clW (t)

∫

[0,t]
θPa (Z0(a) = l) da− ckW (t)

∫

[0,t]
θW (a)−1

Ea

[
Na1Z0(a)=l

]
da

− ckclW (t).

Taking the limit as t goes to infinity leads to

Mk,l := lim
t→∞

ψ′(α)2e−αtEt [(A(k, t) − ckNt) (A(l, t)− clNt)] = R

+ 2ψ′(α)cl

∫

[0,∞]
θPa (Z0(a) = k) da− ψ′(α)cl

∫

[0,∞]
θW (a)−1

Ea

[
Na1Z0(a)=k

]
da

+ 2ψ′(α)cl

∫

[0,∞]
θPa (Z0(a) = l) da− ψ′(α)ck

∫

[0,∞]
θW (a)−1

Ea

[
Na1Z0(a)=l

]
da

− ψ′(α)ckcl. (8.2)

Finally, since P (Nt > 0) ∼ α
b ,

Mi,j =Mki,kj .

9 Markovian cases

Theorem 3.1 for the Markovian case is already well known (see [2]), however the allelic partition for

such model has not been studied. We can get more information on the unknown covariance matrix

K in the case where the life duration distribution is exponential. Our study also cover the case
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PV = δ∞ (Yule case), although it does not fit the conditions required by the Theorem 3.2. The

reason comes from our method of calculation for E [A(k, t)E ]. Let us consider the filtration (Ft)t∈R+
,

where Ft is the σ-field generated by the tree truncated above t and the restriction of the mutation

measure on [0, t).

Then Nt is Markovian with respect to Ft and for all positive real numbers t ≤ s,

E [A(k, t)Ns | Ft] = A(k, t)NtE [Ns−t] .

So that,

E [A(k, t)Ns] = E [A(k, t)Nt] (W (s− t)− PV ⋆ W (s− t)) .

By making a renormalization by e−αs and taking the limit as s goes to infinity, we get,

E [A(k, t)E ] = ψ′(α)e−αtE [A(k, t)Nt] ,

since, in the Markovian case, it is known from [8] that

α

b
= ψ′(α).

Suppose first that d > 0. It follows that,

E
[(
ψ′(α)A(k, t) − eαtckE

) (
ψ′(α)A(l, t) − eαtclE

)]
= ψ′(α)2Et [A(k, t)A(l, t)] P (Nt > 0)

− ckψ
′(α)2Et [A(l, t)Nt]P (Nt > 0)− clψ

′(α)2Et [A(k, t)Nt]P (Nt > 0)

+ 2ψ′(α)e2αtckcl

By (6.5),

P (Nt > 0) = ψ′(α) + ψ′(α)2µe−αt + o(e−αt),

so

E
[(
ψ′(α)A(k, t) − eαtckE

) (
ψ′(α)A(l, t) − eαtclE

)]

= P (Nt > 0)ψ′(α)2Et [(A(k, t)− ckNt) (A(l, t)− clNt)]+ckclψ
′(α)

(
2e2αt − ψ′(α)Et

[
N2
t

]
P (Nt > 0)

)
.

Finally, since, using Proposition 5.1,

lim
t→∞

e−αt
(
2e2αt − ψ′(α)Et

[
N2
t

]
P (Nt > 0)

)
= ψ′(α) (1− 6µ) ,

it follows from (8.2),

lim
t→∞

E
[(
ψ′(α)A(k, t) − eαtckE

) (
ψ′(α)A(l, t) − eαtclE

)]

= ψ′(α)Mk,l + ckclψ
′(α)2 (1− 6µ) = ψ′(α)Mk,l + ckclψ

′(α)2
(
1− 6

d

α

)
,

using that µ = 1
bEV−1 . In the Yule case, an easy adaptation of the preceding proof leads to

lim
t→∞

E
[(
ψ′(α)A(k, t) − eαtckE

) (
ψ′(α)A(l, t) − eαtclE

)]
=Mk,l + ckcl.
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A Formula for the fourth moment of the error

Lemma A.1.

Et

[
(A(k, t) − ckNt)

4
]
= 4

∫

[0,t]
θ
W (t)

W (a)
Ea

[
1Z0(a)=k (A(k, a) − ckNa)

3
]
da

+ 48

∫

[0,t]
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea

[
1Z0(a)=kNaA(k, a)

]
Ea [(ckNa −A(k, a))] da

+ 24

∫

[0,t]
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea

[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da

+ 24

∫

[0,t]
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea

[
1Z0(a)=kA(k, a)

2
]
Ea [(A(k, a) − ckNa)] da

+ 8

∫

[0,t]
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)Ea

[
(A(k, a) − ckNa)

3
]
da

+ 48

∫

[0,t]
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Ea

[
1Z0(a)=kA(k, a)

]
Ea

[
(A(k, a)− ckNa)

2
]
da

+ 72

∫

[0,t]
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Ea

[
1Z0(a)=k (A(k, a) − ckNa)

]
Ea [(A(k, a) − ckNa)]

2 da

+ 72

∫

[0,t]
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)Ea

[
(A(k, a) − ckNa)

2
]
Ea [A(k, a) −Nack] da

+ 96

∫

[0,t]
θ
W (t)4

W (a)4

(
1− W (a)

W (t)

)3

Pa (Z0(a) = k)Ea [(A(k, a) − ckNa)]
3 da+ c4kEtN

4
t

Proof. The proof of this Lemma lies on the calculation of the expectation of each term in the

development of

(A(k, t) − ckNt)
4 .

To make this, we intensively use the relation (2.11) and the method developed in [5]. We begin by

computing

Et

[
A(k, t)4

]
.
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Formula (2.11) gives us,

A(k, t)4 =4

∫

[0,t]×N

1Zi0(a)=ki

N
(t)
t−a∑

u1:3=1

3∏

j=1
i6=j

A(uj)(k, a)N (da, di)

=4

∫

[0,t]×N

1Zi0(a)=k
Ai(k, a)Ai(k, a)Ai(k, a)N (da, di)

+ 4

∫

[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j1,j2,j3=1
j1 6=j2 6=j3 6=i

Aj1(k, a)Aj2(k, a)Aj3(k, a)N (da, di)

+ 12

∫

[0,t]×N

1Zi0(a)=k
Ai(k, a)Ai(k, a)

N
(t)
t−a∑

j=1,j 6=i

Aj(k, a)N (da, di)

+ 4

∫

[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j=1,j 6=i

Aj(k, a)3N (da, di)

+ 12

∫

[0,t]×N

1Zi0(a)=k
Ai(k, a)

N
(t)
t−a∑

j1,j2=1,j1 6=j2 6=i

Aj1(k, a)Aj2(k, a)N (da, di)

+ 24

∫

[0,t]×N

1Zi0(a)=k
Ai(k, a)

N
(t)
t−a∑

j1=1,j1 6=i

Aj1(k, a)Aj1(k, a)N (da, di)

+ 12

∫

[0,t]×N

1Zi0(a)=k

N
(t)
t−a∑

j1,j2=1,j1 6=j2 6=i

Aj1(k, a)2Aj2(k, a)N (da, di). (A.1)

The decomposition of the sum in form
N

(t)
t−a∑

u1:3=1

,

has then been made to distinguish independence properties in our calculation. Actually, as soon

as, i 6= j, Ai(k, a) is independent from Ai(k, a) (see [5] for details). It is essential to note that the

expectation of these integrals with respect to the random measure N are all calculated thanks to
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Theorem 3.1 of [5]. So, taking the expectation now leads to,

Et

[
A(k, t)4

]
=4

∫

[0,t]
θEa

[
N

(t)
t−a

]
Ea

[
1Z0(a)=kA(k, a)

3
]
θda

+ 4

∫

[0,t]
θPa (Z0(a) = k)Ea

[(
N

(t)
t−a

)
(4)

]
Ea [A(k, a)]

3 da

+ 12

∫

[0,t]
θEa

[
1Z0(a)=kA(k, a)

2
]
Ea

[(
N

(t)
t−a

)
(2)

]
Ea [A(k, a)] da

+ 4

∫

[0,t]
θPa (Z0(a) = k)Ea

[(
N

(t)
t−a

)
(2)

]
Ea

[
A(k, a)3

]
da

+ 12

∫

[0,t]
θEa

[
1Z0(a)=kA(k, a)

]
Ea

[(
N

(t)
t−a

)
(3)

]
Ea [A(k, a)]

2 da

+ 24

∫

[0,t]
θEa

[
1Z0(a)=kA(k, a)

]
Ea

[(
N

(t)
t−a

)

(2)

]
Ea

[
A(k, a)2

]
da

+ 12

∫

[0,t]
θPa (Z0(a) = k)Ea

[(
N

(t)
t−a

)

(3)

]
Ea

[
A(k, a)2

]
Ea [A(k, a)] da.

Using the same method for all the other terms and that, for any positive real number a lower than t,

Nt =

N
(t)
t−a∑

i=1

N (i)
a ,

we get Lemma A.1 by reassembling similar terms together. The last term is obtained using the

geometric distribution of Nt under Pt.

B Boundedness of the fourth moment

Lemma B.1. We begin the proof of the boundedness of the fourth moment by some estimates.

Et [(A(k, t) − ckNt)] = O
(
e−(θ−α)t

)
, (i)

Et

[
(A(k, t) − ckNt)

3
]
= O

(
W (t)2

)
, (ii)

Et

[
(A(k, t) − ckNt)

2
]
= O (W (t)) , (iii)

EtN
n
t = O(enαt), n ∈ N

∗, (iv)

Pt (Z0(t) = k) = O(e(α−θ)t). (v)

Proof. Relation (i) is easily obtained using the expectation of Nt and A(k, t) using (2.12), (2.14) and

the behaviour of W provided by Proposition 5.1. The relation (iii) has been obtained in the proof
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of Theorem 6.1 in [5]. The two last relations are easily obtained from (2.5), (2.9) and Lemma 2.2.

The relation (ii) is obtained using the following estimation,
∣∣∣Et
[
(A(k, a)− ckNa)

3
]∣∣∣ ≤ Et

[
Na (A(k, a)− ckNa)

2
]
.

We begin the proof by computing the r.h.s. of the previous inequality using the same techniques

as in Appendix A.

E
[
A(k, t)2Nt

]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
NaA(k, a)1Z0(a)=k

]
da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [A(k, a)] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
A(k, a)1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E [A(k, a)Na] da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [A(k, a)]E [Na] da.

2E
[
A(k, t)N2

t

]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
N2
a1Z0(a)=k

]
da

+8

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E

[
N2
a

]
da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [Na]
2 da.

Finally,

E

[
Nt (A(k, t)− ckNt)

2
]
= 2

∫ t

0
θ
W (t)

W (a)
E
[
Na (A(k, a) − ckNa)1Z0(a)=k

]
da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
Na1Z0(a)=k

]
E [A(k, a) − ckNa] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
E
[
(A(k, a)− ckNa)1Z0(a)=k

]
E [Na] da

+4

∫ t

0
θ
W (t)2

W (a)2

(
1− W (a)

W (t)

)
Pa (Z0(a) = k)E [Na (A(k, a)− ckNa)] da

+12

∫ t

0
θ
W (t)3

W (a)3

(
1− W (a)

W (t)

)2

Pa (Z0(a) = k)E [Na]E [A(k, a)− ckNa] da

+c2kEtN
3
t .

Now, an analysis similar to the one of Lemma 7.5 leads to the result.
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Proof of Lemma 7.5. The ideas of the proof, is to analyses one to one every terms of the expression

of

Et

[
(A(k, t) − ckNt)

4
]
,

given by Lemma A.1 using Lemma B.1 to show that they behave as O
(
W (t)2

)
. Since the ideas are

the same for every terms, we just give a few examples.

First of all, we consider
∫

[0,t]

W (t)

W (a)
Ea

[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da.

Using Lemma B.1 (ii), we have

∫

[0,t]

W (t)

W (a)
Ea

[
1Z0(a)=k (A(k, a)− ckNa)

3
]
da = O

(
W (t)2

)
.

Now take the term
∫

[0,t]

W (t)2

W (a)2
Ea

[
1Z0(a)=kN

2
a

]
Ea [(A(k, a)− ckNa)] da,

we have from Lemma B.1 (i) and (iv),

∫

[0,t]

W (t)2

W (a)2
Ea

[
1Z0(a)=kN

2
a

]
Ea [(A(k, a) − ckNa)] da ≤

∫

[0,t]

W (t)2

W (a)2
Ea

[
N2
a

]
e−(θ−α)ada = O

(
W (t)2

)
.

Every term in W (t) or W (t)2 are treated this way. Now, we consider the term in W (t)4 which is

I := 96

∫

[0,t]

W (t)4

W (a)4
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da+ 24W (t)4c4k,

since Nt is geometrically distributed under Pt, and that

EtN
4
t = 24W (t)4 − 36W (t)3 +O(W (t)2). (B.1)

On the other hand, using the law of Z0(t) given by (2.9) and the expectation of A(k, t) given by

(2.12) (under Pt), we have,

96

∫

[0,t]

W (t)4

W (a)4
Pa (Z0(a) = k)Ea [(A(k, a) − ckNa)]

3 da

= −96W (t)4
∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1
(∫ a

0

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)3

da

= −24W (t)4

(∫ t

0

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)4

.
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Finally,

I = 24W (t)4

(∫ ∞

t

θe−θa

Wθ(a)2

(
1− 1

Wθ(a)

)k−1

da

)4

= O
(
W (t)4e−4θt

)
= o(1).

The last example is the most technical and relies with the term in W (t)3, which is, using (B.1)

and Lemma A.1,

J :=72

∫

[0,t]

W (t)3

W (a)3
Ea

[
1Z0(a)=k (A(k, a) − ckNa)

]
Ea [(A(k, a)− ckNa)]

2 da

+ 72

∫

[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea

[
(A(k, a) − ckNa)

2
]
Ea [A(k, a)−Nack] da

− 288

∫

[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea [(A(k, a)− ckNa)]

3 da− 36c4kW (t)3.

On the other hand, using the calculus made in the proof of Theorem 6.3 of [5], we have

Ea

[
(A(k, a) − ckNa)

2
]

=4

∫

[0,a]

W (a)2

W (s)2

(
1− W (s)

W (a)

)
Ps (Z0(s) = k)Ea (A(k, s) − ckNs) ds

+ 2

∫

[0,a]

W (s)

W (a)
Ea

[
1Z0(s)=k (A(k, s)− ckNs)

]
ds + c2kW (a)2

(
2− 1

W (a)

)
.

Substituting this last expression in J leads to

J = −144

∫

[0,t]

W (t)3

W (a)3
Ea

[
1Z0(a)=k (A(k, a)− ckNa)

] ∫

[a,∞]

P (Z0(a) = k)

W (s)2
Ea [(A(k, s)− ckNs)] dsda

+ 144W (t)3
∫

[0,t]

1

W (a)
Ea

[
1Z0(a)=k (A(k, a) − ckNa)

] ∫

[a,t]

1

W (s)2
Ps (Z0(s) = k)Ea [A(k, s)−Nsck] da

− 144c2k

∫

[0,t]

W (t)3

W (a)
Pa (Z0(a) = k)Ea [A(k, a) −Nack] da

+ 144

∫

[0,t]

W (t)3

W (a)3
P (Z0(a) = k)Ea [A(k, a) −Nack]

3 da

− 288

∫

[0,t]

W (t)3

W (a)2
Pa (Z0(a) = k)

∫

[0,a]

1

W (s)
Ps (Z0(s) = k)Ea (A(k, s) − ckNs) dsEa [A(k, a) −Nack] da

+ 72

∫

[0,t]

W (t)3

W (a)
Pa (Z0(a) = k) c2k

(
2− 1

W (a)

)
Ea [A(k, a) −Nack] da

− 288

∫

[0,t]

W (t)3

W (a)3
Pa (Z0(a) = k)Ea [(A(k, a) − ckNa)]

3 da− 36c4kW (t)3.

48



Using many times that,
∫

[0,t]

θP (Z0(a) = k)

W (s)2
Ea [(A(k, s)− ckNs)] ds

=−
∫

[0,t]

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1 ∫

[s,∞]

θe−θu

Wθ(u)2

(
1− 1

Wθ(u)

)k−1

duds

=
c2k
2

− 1

2

(∫

[t,∞]

θe−θs

Wθ(s)2

(
1− 1

Wθ(s)

)k−1

ds

)2

,

thanks to (2.9), (2.12), and (2.7), we finally get

J =− 144
(
c2k − ck(t)

2
) ∫

[0,t]

W (t)3

W (a)3
Ea

[
1Z0(a)=k (A(k, a) − ckNa)

]
da

+ 36W (t)3


c2k

(∫

[t,∞]

W (t)3

W (a)3
Ea [A(k, a)−Nack]

3 da

)2

−
(∫

[t,∞]

W (t)3

W (a)3
Ea [A(k, a)−Nack]

3 da

)4



+ 144 (ck − ck(t))
2
∫

[0,t]

W (t)3

W (a)
Ea [A(k, a) −Nack] da

+ 36W (t)3 (ck − ck(t))
4 .

This shows that J is O
(
W (t)2

)
.
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