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CHARACTERIZATION OF SOLUTIONS TO DISSIPATIVE SYSTEMS WITH
SHARP ALGEBRAIC DECAY

LORENZO BRANDOLESE

ABSTRACT. We characterize the set of functions ug € L*(R™) such that the solution of the
problem u; = Lu in R™ x (0, 00) starting from wug satisfy upper and lower bounds of the form
c(1+6)77 < Ju(t)|l2 < (1 +¢)7". Here L is in a large class of linear pseudo-differential
operator with homogeneous symbol (including the Laplacian, the fractional Laplacian, etc.).
Applications to nonlinear PDEs will be discussed: in particular our characterization provides
necessary and sufficient conditions on wuo for a solution of the Navier—Stokes system to satisfy
sharp upper-lower decay estimates as above.

In doing so, we will revisit and improve the theory of decay characters by C. Bjorland,
C. Niche, and M.E. Schonbek, by getting advantage of the insight provided by the Littlewood—
Paley analysis and the use of Besov spaces.

1. INTRODUCTION

The theory of decay characters was first introduced by C. Bjorland and M.E. Schonbek in [2]
and further developped by C. Niche and M.E. Schonbek in [6], with the motivation of obtaining
sharp upper and lower bound estimates for the L?-norm of solutions to a large class of lin-
ear or semilinear parabolic systems: so far, this theory has been successfully applied, e.g., to
the heat equation, the Navier—Stokes equations [2], the quasi-geostrophic equations [6], several
compressible approximations of Navier—Stokes [6,7] and to the Navier—Stokes—Voigt equation [5].

The first issue of the present paper is that a slight modification of the original definition of
decay character makes the theory more powerful and more widely applicable: our modification
allows in particular to get necessary and sufficient conditions on ug for the validity of L2-
estimates of the form

(1.1) c(1+1)77 < |le“ugl p2gny < (1 +8)77,

(where L is a suitable linear pseudo-differential operator, such as the Laplacian, a fractional
Laplacian, etc.), whereas the original approach [2, 6] only gave sufficient conditions on wug for
the validity of (1.1). We also characterize the class of initial data up such that estimates (1.1)
hold in terms of suitable subsets of Besov spaces.

Applications of our analysis to nonlinear problems include the complete characterization of
divergence-free vector fields vy € L2(R?)3 such that the corresponding weak solutions of the
Navier—Stokes equations satisfy two-side bounds for the energy of the form

(1.2) c(1+1)77 < o)l p2@ny < (1 41)77, 0<~vy<5/4.
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One of our main results, Theorem 5.1, will provide three different equivalent conditions on v for
the vality of (1.2). Our characterization does not go through when v = 5/4, because the lower
bound of the nonlinear problem in this borderline case is no longer driven by the corresponding
lower bound for heat kernel.

The other important results of this paper will be summarized by Eq. (7.2) in the last section.

Notation. We will often use the symbols < or 2 in chain of inequalities to avoid the proliferation
of different constants. For example, writing f(¢) < g(¢t) we mean that f(t) < Cg(t) for some
constant C' > 0 independent on ¢. When we have both f(¢) < g(t) and g(¢) < f(t) we will often

write f(t) ~ g(t).

2. REVISITING THE THEORY OF decay characters

2.1. Improvement of the basic definitions. The authors in [2] introduced the notion of De-
cay indicator. As the original definition looks somewhat too restrictive, we redefine it in the
following way:

Definition 2.1. Let ugp € L*(R"), B, = {¢£ € R": [¢| < p}. The lower and upper decay
indicators of ug are the two lower and upper limits

P.(up)— = liminf p_zr_"/ |20 (€)% dé and P.(up)4 = limsup p_zr_"/ |20 (€)% de.
p—0+ B, p—0+ B,
When P, (ug)— = P,(up)4+, then we can define the decay indicator of ug as Py(ug) = Pr(up)— =
PT’ (’LLO)+ .

This definition is interesting only for r € (—%, oo), as the decay indicator is always zero when
r<-—n/2.

Remark 2.2. Originally, the decay indicator was defined in [2] as the limit

(21) Pouo) = lim o7 [ ()P de
p—0t Y

implicitly assuming that the limit does exist. But this is not always the case for ug € L?(R™).
When the above limit does not exist, the lower and upper decay indicators are convenient
substitutes for obtaining some relevant estimates, as we will see below. Of course, P, (up)— and
P, (up)+ are always well defined in [0, +0c]. An example of vg € L?(R"™) such that P, (vp) is not
well defined by the limit (2.1) can be constructed putting fast oscillations for |vp(§)| near the
origin. See the following Example 6.1.

On the other hand, if ug € L?(R") is such that ug(¢) ~ |£|" as [¢] — 0, with 7 € (—n/2,00),
then P,(ug)— = Pr(up)+ = r and so P,(up) is well defined in this case and P, (ug) = r as well.

Definition 2.3. The upper and lower decay characters of ug € L?(R™) are respectively defined
by

r(up)4+ = sup{r € R: P.(up)+ < oo},

r(up)— = inf{r € R: P.(up)- > 0}.
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Remark 2.4. For any ug € L?(R"™), the upper and lower decay characters are always well defined
(adopting the usual convention that inf ) = +00) and satisfy the inequality

(2.4) —n/2 < r(ug)+ < r(ug)- < 0.

Indeed, for all » < —n/2, we have P.(up)+ = 0, so the first inequality is immediate. Let us
now prove the inequality in the middle of (2.4). If, by contradiction, r(ug)— < r(ug)+, then we
could choose two real numbers r < r’ such that P.(ug)— > 0 and P (up);+ < co. But the last
inequality implies Pr(ug)+ = limsup,_,, p2lr' =) p=2r'=n pr [t (€)|? d¢ = 0. On the other hand,
0 < P.(up)- < Pr(ug)+ = 0, that contredics the inequality P, (ug)— > 0.

The upper decay character r(ug)+ will play a role in obtaining decay estimates from above for
et®ug, and the lower decay character r(ug) will be useful for obtaining estimates from below.
This is the reason of our terminology.

Depending on ug € L?(R"™), the sup and the inf in the definition of 7(ug); and r(ug)_ can
be achieved or not. This observation motivates next definition. Our definition below is an

improvement of that of [2].
Definition 2.5. If ug € L?(R") is such that there exists r* € (—n/2, 00) such that
(2.5) r*(up) = max{r € R: P,(up)+ < oo} = min{r € R: P.(up)— > 0}.

then we call this number r* = r*(ug) the decay character of ug. We define also the decay
character of ug in the two limit situations as follows:

r*(up) = +00, if r(ug)+ = r(ug)- = +o0,

r*(ug) = —n/2, if r(uo)+ =r(ug)- = —n/2.

Remark 2.6. For ug € L2(R™) the decay character r*(ug) does not always exist. One reason for
this is that it can happen that r(ug)+ < 7(ug)—. See Example 6.3. Another reason is that one
could have r(ug)4+ = r(ug)—, but the supremum or the infimum appearing in the definition of
r(ug)+ and r(ug)— are nor achieved. See Example 6.2.

In fact, 7*(ug) does exist and belongs to (—n /2, 00) if and only if there exists r* € (—n /2, c0)
such that 0 < Pp«(ug)— < Py(ug)+ < oco. The “only if” part of this claim is clear. The “if”
part holds because, if r* < r/ then P.(ug)+ = oo (otherwise we would get the contradiction
P« (up)4+ = 0, as already observed right after (2.4)) and so r* = max{r € R: P.(ug)+ < co}. In
the same way one sees that 7* = min{r € R: P.(ug)_- > 0}.

Remark 2.7. Let us illustrate the difference between our improved definition of decay character
and the original definition in [2]. The main motivation of such an improvement is the validity
of the second assertion of Theorem 2.9 below. Our discussion concerns here only the case
*(ug) € (—n/2,00), but it could be adapted also to the limit situations r*(ug) = +00 or —n/2.

Originally, the decay character r*(ug) was defined in [2] implicitly assuming that, for all r € R,
Pr(up)— = P.(up)+ = Pr(up) and also assuming that, for some r* € (—n/2,00), 0 < P« (ug) <
0o. Under such two conditions, we see that 7* = max{r € R: 0 < P,(up) < oo} = min{r €
R: 0 < P,(up) < oco}. For this reason, if uy admits a decay character in the sense of [2] then ug
admits a decay character in the sense of our definition and these are the same. The converse is
not true, so the original definition in [2] is indeed more restrictive than ours: for example, the
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function vg € L?(R"), constructed in Example 6.1 admits a decay character only in the sense of
our definition.

2.2. Applications to upper and lower decay estimates. We start with an application of
the notions of upper and lower decay indicators. As in [6], we consider the class of (matricial)
pseudo-differential operators £ with symbol

M(&) = P()T'D()P(),  forae £€R",

where D(£) and P(&) are respectively diagonal and orthogonal matrices of order m, with D(§);; =
—¢;|€]**6; 4, and ¢; > ¢ > 0, for all i = 1,...,m and a > 0. We also assume that P(£);; are
homogeneous functions smooth outside £ = 0.

We are interested in establishing L?-estimates from above and below for solutions of the linear

problem
up = Lu t>0, x e R",
(2.6) ! ’
ult=0 = U,
where u = (uy,...,uy) and up = (ug1,...,um). Basic examples include the heat equation

vy = Av (in this case P(¢) = I,,, and D(¢) = —|¢|21,,) or the evolution problem for the fractional
Laplacian (P(¢) = I,, and D(€) = —|¢|**1,,,). Examples of physical interest with P # I,,, arise,
e.g., in fluid mechanics, see [6].

We will typically assume ug € (L?(R™))™. However, from now on we will not distinguish in
our notations between scalar and vector-valued function spaces and write abusively ug € L?(R™)
also in the vector-valued case.

Proposition 2.8. Let ug € L%(R"), let £ be a pseudo-differential operator as above. Let u be
the solution of the linear problem (2.6).

- If P.(ug)— > 0 then there is a constant C1 > 0 such that, for all t > 0,
Cr(1+10)7= 0% < Ju(n)]3.
- If P.(ug)+ < oo, then there is a constant Cy > 0 such that, for all t > 0,
a3 < Ca(1 + 67w/,

Proof. The proof below is a minor modification to that of [2, Theorem 5.7] (for the particular
case L = A) or that of [6, Theorem 2.10] (for the general case).
We have

MO ()] = [P(&) PO P©)T ()] Z e o ()]

Hence, for any function p = p(t),

mw@z/ MG ()2 de
[€]<p(t)

z/ fWW%mW%ZfMMM/ To(6)? de.
[€]<p(t) 13

|<p(t)
Let ®,.(p) = p~ 2" €1<p |o(€)[?dé. Under the assumption of the first assertion and by the
definition of liminf, we have 0 < P.(ug)— = lim._,o+ inf,c(q ®,(p). Hence, for some ¢y, pp > 0
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and all 0 < p < pg, we have ®,.(p) > ¢y. The choice p(t) = po(1 +t)~1/(2*) then leads to
lu()[3 2 =20 p()> "D, (p(1)) Z p(t)* "

and the first claim follows.
Let us prove the second assertion, following again the steps of [6]. First of all, the assumption
on the symbol M(&) allows us to write

L \w@li3 = @ P~ DPR) = —((~D) " Pai, (~D) " Pa)

— - [ 1Dy 2 Pata

This insures the validity of the energy inequality
d
Sl < —c [ il P ae.

The classical Fourier splitting idea [8] is then used to deduce the estimate
d ~
Sz + p@®* u@)5 < p(t)* / [a (¢, )]* de.
€1<p(t)
Our assumption now reads Pr(ug)+ = lim,_,q+ suppe(o q ®r(p) < oo. It implies that for some

p0,C >0 and all 0 < p < pg, we have ®,.(p) = p~ 2" " €1<p(t) [ (€)]? d¢ < C. Hence,

p(t)2 / (e, )2 dE < ()2,
1€1<p(t)

Combining the two last estimates, choosing now p(t)?® = M (1 +t)~! with M > r + n/2, and
multiplying by the integrating factor (1 4+ ¢)™ we arrive at

d —1—=(4r-n (63
S+ OV uOIR) S (14 M Cram/ee),
The upper bound follows by integration. O
The following theorem clearly illustrates the importance of the notion of decay character.

Theorem 2.9.

(1) Let up € L*(R™) be such that the decay character v* = r*(ug) € (—n/2,+00) does exist.
Let L as in Proposition 2.8, and u be the solution of the problem (2.6). Then for some
C1,Cy > 0, and all positive t,

(2.7) Cr(1+ )7l < lu(t) 3 < Co(1 4 1) 7w 72,

(2) Conversely, if ug € L*(R™) is such that the solution u of the problem (2.6) satisfies
estimates (2.7) with r* € (—n/2,00) then ug possess a decay character and r*(ug) = r*.

Assertion (1) appears also in [2, 6], but with their more restrictive definition of r*(ug). This
first assertion is an immediate consequence of the estimates obtained in Proposition 2.8. On the
other hand, the validity of assertion (2) is made possible by the fact that, compared to [2,6], in
our definition we relaxed a little bit the requirements for the existence of the decay character.
The proof of the converse part of Theorem 2.9 will be postponed in Remark 4.4, after the
characterization of decay characters in terms of subsets of Besov spaces.
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3. BESOV SPACE APPROACH TO TWO-SIDE BOUNDS FOR LINEAR DISSIPATIVE SYSTEMS

Let us recall the definition of the homogeneous Besov spaces via the Littlewood-Paley analysis.
Let ¢ be a smooth radial function with support contained in the annulus {£ € R™: 3/4 < [¢| <
8/3}, such that >, ©(€/277) =1 for all £ € R™\{0}. Let A; be the usual Littlewood—Paley

localization operator around the frequency || ~ 27, j € Z, namely, A/j\f = (/27 )f, see [1]. In
this paper we will only need to consider the case s < n/p, 1 < p,q < +00. In this case, the
elements of B,? can be realized as tempered distributions:

B;,q = {f eS'R"): f= Z A, f, the series being convergent in S'(R"), (2js||Aijp)j € Eq(Z)},
JEZ

normed by

17155, = | @ 18551) |,

The classical characterization of Besov spaces with negative regularity in terms of the heat
kernel reads (see, e.g., [1, Theorem 3.4]):

(3.1) f€ B2 < 17| fl|, € LYRT, dt/t), >0, 1<p,q<oo,

with equivalence of the corresponding norms. In particular, for ug € L?(R"), we have ug € B; gg
if and only if ||e*®ugllz < (14 1)7°.

3.1. Two useful subsets of Besov spaces. We now introduce two subsets of BQ_ o

1872 < €277 Vi ez
|A;fll2 > 299 for at least one j € Z in
any interval of lenght M

Ay, ={feBy:3c,CM >OS.t.{

and

Aigoz {fEB;,go de¢,C > 0, A(Jr)ken C Z 8.t jr — —00,

(Jk — Jr+1) € £°°(N), and { 1A fll2 < C2 VjeZ }

HA]kaQ > €207k Vk € N

These sets are not closed under summation and do not have a linear structure. We point out
the inclusions
Ayl C A, C Byl
It is worth observing that the intersection L?(R™) N A; oo is empty, since dyadic blocks of
L? functions satisfy [|A;f|l2 < ||fll2 for all j € Z. On the other hand, A;% has a nontrivial

intersection with L2(R"™), which we will characterize below.
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3.2. Two-side bounds for the heat kernel. Our first applications of the sets A; ig and .A; gg
is the following theorem.

Theorem 3.1. Let o > 0 and f be a tempered distribution.
(1) Then, f € A;% if and only if

2,00

(3.2 Jer,e0 >0 such that eyt < || flla < eat™, for allt > 0.

2)
(2) Moreover, f € Az_gg if and only if
3)

(3.3 7|2 fll2 € L®(RT), and liminf ¢ |[e® f]jz > 0.
t——4o00

(3) In addition, f € L>(R™) N Aigg if and only if
(3.4) Je,d >0 such that c(1+1)77 < |l flla < (1+1)77, for allt > 0.

Proof. The property t7 ||e!® f|la € L®(R*) and the upper bound in (3.2), are equivalent to
fe Bigg, as noticed in (3.1). In the same way, the upper bound in (3.4) is equivalent to the
condition f € L2(R") N Bizg For this reason, in the proof of Theorem 3.1 we need to focus
only on the lower bound properties.

Let us start with a simple preliminary computation. For ¢ > 0, let p = p(t) € Z such that
4P <t < 4PFL Letting dj = ||A; f3 2749 we have (the positive constant ¢ is not the same from

line to line):

[E7et A 113~ > 27e 27 | A £

JEL

65) = Yo ating,
JEL

~ Z 42jae—c4jdj_p7
JEL

where in the last step was obtained by shifting the summation index.
Assume now f € A; ig Then, for some constant M > 0 as in the definition of A

some constant ¢ > 0 independent on p we have (c is not the same from line to line),

e E ) S A
l7|<M

—20

200y and

Z max d;_, 2 1,

S A
where in the last inequality we used max;;<y 274U=P)|A;_,flI3 > ¢, that follows from the
definition of A2_7 27 This proves the lower bound in (3.2).

If we assume instead the weaker .condition fe Aigg, then take M = ||(jx — jk+1)|leoo, Where
Jk — —00 is as in the definition of A; gg Then, there exist an integer pg and ¢ > 0 such that for
all p > po we have max i<y dj—p = maxjj<p 274U=P)||A;_,fI3 > ¢ > 0. As c is independent
on p, and hence on ¢, at least in some interval [tg, +00), we get now

[7eFIB 2 1 on [to, ).
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This in turn gives
liminf ¢ || f|j2 > 0.
t—+o00

Conversely, if we assume (3.2), then the lower bound in (3.2) and the computation at the
beginning of the proof imply

(3.6) S arree Vg, > >0,

JEZ
with 4? ~ t and ¢ independent on p. On the other hand, the upper bound (3.2) imply that
up € By 2%, hence (d;) € (2(Z). As (4%7¢=¥) € £'(Z), we can find M > 0 such that

2,00
S a2t < (2]|dyl ).
l7|>M

Combining the two last estimates we get

Z 4o~ g, > 2.
l7l<M

On the other hand, z\jISM 4250 g=cd? dj—p < Cmax|jj< dj—p for some C' > 0 independent on p.
It then follows that, for some ¢ > 0 independent on p,
max d;_, > c.
FES
This insures that f € Az_ ig
If, instead of estimates (3.2) we have the weaker conditions (3.3), then (3.6) holds true only
for all p > pg, for some pg € Z large enough. Applying the above argument to p = pg + kM,
k € N, we get, for some ¢ > 0 independent on k,
max dj—(po+kM) = C-
Therefore, we can then construct a sequence of integers (ji) such that jp — —o0, |jk+1 — Ji| <
3M, and d;, > ¢ > 0 for all kK € N. This implies f € Az_,ig
It only remains to prove the last claim of Theorem 3.1. If f € L?(R™)N .A; 27 then ||e!® |3 <
| £1 and the upper bound estimate (3.4) immediately follows from the first of (3.3). The lower-
bound estimate in (3.4) follows combining the fact that ||e!® f||2 > ¢t~7, valid in [tg, +00) for
some large enough to > 0, by the second of (3.3), with the inequality ||e!® f||3 > [|e°? f||3, valid
in the interval [0, #o].
Conversely, if estimates (3.4) hold then f € Ay gg by the previous part of the Theorem.
Moreover, by Fatou’s lemma, || f||3 < liminf, o+ ([ e_Qt‘f‘Qf(g)) d¢ < ()? < o0, 50 f € L2(R").
O

3.3. A Besov space characterization through e'“. In order establish the natural general-
ization of Theorem 3.1 to the solutions of the linear problem (2.6), we first need to extend the
classical heat kernel characterization of Besov space (3.1) to the setting of the operator et~.

Specifically, we establish the following theorem.
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Theorem 3.2. Let 0 > 0, 1 < p,q < oo. Then for any u € 8'(R™) such that the Littlewood-
Paley seriesu =737 Aju converges in S'(R™), we have f € B, 27 (R™) if and only if ||t/ > £,
LY(R*, dt/t). Moreover, the two norms

L
Wllgze and | el e ]|

La(R+,dt/t)

are equivalent.

Proof. The proof is an adaptation of that in [1, Theorem 2.34] for the special case £L = A. Recall
that

F( (€)= PE)ePOP© (),
where D(£) = —|¢|?*D, where D = diag(cy, ..., c,), with a,¢; > 0, and P(£) is an orthogonal
matrix. The entries P(§); (j,k =1,...,m) are assumed to be homogeneous functions smooth

for £ # 0.

Lemma 3.3. Let p € [1,00], and f be a tempered distribution with support in the annulus AC,
where C ={{ e R": 0 <1y <|{] <r2} and A > 0. Then, for allt > 0.

_ 2a
e fllp < Cem | £y,

for some ¢,C > 0 independent on \ and t.

Proof. The operator e** is a convolution operator of the form e** f = G(-,t) * f. By the homo-
geneity assumptions on P and D, the symbol @(g,t) = P(&)1etPO P(€) satisfies the scaling
relation G(&,t) = G(£6Y/29 1), and so G(Az,t) = A"G(x, tA~2%).

Replacing fwith its dilate ]?()\) we can reduce to the case A = 1. So assume now A = 1
and consider a smooth cut-off function ¢(§) identically equal to one on C with compact support
bounded away from £ = 0. As f = ¢ * f, we have

1 fllp = 1G G 1) * @l £l

and it only remains to show that |G (-, t) x ¢||; < Ce .
Indeed, computing the inverse Fourier transform and integrating by parts,

Gt) + (o) = (20) ™ [ €€56(6) PO 1P O P(e) dg
= W) [ (= B )s() P TP OP(E) de
= @) [ (1 A (GO P POP(E) de

But (I — Ag)” (¢(£)P(£)_1etD(§)P(£)) can be bounded by a linear combination of functions of

the form |1)g(€)] |6§etD(f)|, with 1g(£) smooth with support contained in that of ¢(§), 8 € N”
and |8] < 2n. Hence, for all &,

_ _ —c 2«
(1= 20" (6(€)P(&) e POP()] < C(L+ 1> (¢),
for some smooth y with compact support contained in that of ¢. It follows,
IG( 1) * ol < Ce™

and the assertion of the Lemma follows. O
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Now assume that u € Bz; 3". Then, by Lemma 3.3,
(3.7) /et e f L, < St Aye E fl, S Y AT e
JEZ JEZ
with (n;) € ¢4 and ||(n;)]|ee = HfHB;gf" But, for all o,¢,a > 0,
(3.8) supZt”/aélj”e_CMja < 00,
t>0 527

as one can easily check splitting the summation in two terms corresponding to j such that
49 < t=Ve pext 47 > Ve,
In the case ¢ = oo, we readily deduce

L
1677 Fllp S N mpllese < 120

that agrees with (3.14).

In the case 1 < ¢ < oo, we need to estimate the integral below first applying (3.7), next
Holder inequality to the summation with weight 437e=ct ¥ and (3.8), next Fubini’s theorem
and the definition of the Gamma function:

00 t . . q
/ toQ/aHetllfHIq)dtrs/ <§ :to/a4jaefct4ﬂ "7j> dt/t
0 0 N\jez
t .
o/ajo —ctdI* q
S/o (E t7/%47% ¢ nj> dt/t

jez
ST(o/a) Y nt Sl
JEZ ’

To prove the reverse estimate, let us first establish the following identity:
o0
/ to/a(—D(&))lJrg/aetD(g)ﬁ(f) dt
0
— /OO t1+o/a|£|2a(1+o/a) diag(c}w/ae—clt\&\%‘, s C}L+o/ae—cnt|£|2“)@(£) dt/t
0

o
:/ t1+(’/adiag(c}+0/ae_clt,...,c,lf"/o‘e_%t)@(g)dt/t
0

=T(1+o/a)v(§)

Applying this to v(¢§) = P({)A/j\f(g) we obtain
— 1

A;f(8) = T+ o/a)
1

T T(1+o/a)

/ "ol p(e) T (- D(€) PO Pe) Aule)
0
/ooo t7/°P(&) 7 (=D(€)) T PO F (! Aju) (&) dt

We now make use of the homogeneity properties of P(£) and D(&) and apply a classical Fourier
multiplier theorem (see, e.g. [1, Lemma 2.2]), next the identity e!4 = e*4/2¢!£/2 with Lemma 3.3
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to get
N A e BN Y
(3.9) S /O ta/a4aj(1+0/a)6—ct4ja Hetﬁ/ZAijp dt

o .
< / ta/a4aj(1+0/a)e—2ct41a HethHp dt

0
When ¢ = oo we just have to observe that
(3.10) 14 fllp < 27 sup(¢7/* [ £]],)

t>0

to conclude that

1£1l 25 < sup (€7 [l f1l,)-

’ t>0

When 1 < ¢ < 0o, we argue as follow:

o .
19120 = 228 S i ([ aeleaeatorereat il g )
' JEL

q

JEZ
oo ) q-1 o0 .
e [T} ([T )
jEz 0 0
o0 .
SOIE ( | e e dt)
jEL 0
oo ) .
/ g (Zt4o¢]e—ct4J )tqa/aHetﬁngdt/t
0 jez

o0
< [ eelet s
0

Here we used first (3.9), next Holder inequality, and in the last inequality a particular case of
Eq. (3.8). The proof of Theorem 3.2 is now complete. O

We are now in a position of generalizing Theorem 3.1 to the case of the operator L.

Theorem 3.4. Let ¢ > 0 and f be a tempered distribution. Let also L a pseudo-differential
operator as at the beginning of Section 2.2

(1) Then, f € A3 if and only if

(3.11) Jer, 0 >0 such that ¢ t77/% < || (t)]2 < eat™/?, for all t > 0.
(2) Moreover, f € Aigg if and only if

(3.12) o e ()| € L°(RY),  and lim inf 77 ||t~ £l > 0,
(3) In addition, f € L*(R™) N A;fg if and only if

(313)  Je,d >0 such that c(141)77/* < |l (t)||lo < ¢ (1 +1)77/, for allt > 0.
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Proof. Recalling that the multiplication by P(£) and P(¢)~! conserve the euclidean norm of a
vector and that D(£) and e*P(©) are diagonal matrices, we can write

It A2 = / P€) PO P(e) o) de
~ / el Fle))2 de,

By our previous theorem, we have the analogue of the characterization to (3.1) for the operator
L, namely,

(3.14) feBY «— t7 e flly € LYRT, dt/t),

with the equivalence of the respective norms.
We now argue as in (3.5): We set as before d;j = ||A;f||327%7. For t > 0, let p = p(t) € Z
such that 4P% < ¢t < 4P+ Then we have

[t/ E f3 = 37 127/ e =2 A £ |12

JEZ
~ 20/, —ctdI® odjo ;.
(3.15) ~ Y e gling,
JEZ
~ Z42j"e_64jadj,p,
JEZL
The proof can now be carried on making obvious modification to that of Theorem 3.1. U

4. CHARACTERIZATION OF LQ—FUNCTIONS ADMITTING A DECAY CHARACTER
For any ug € L?(R"™), we introduce the quantity o(ug) € [0, +00] given by
(4.1) o(up) = sup{o > 0: ug € B;go}

Notice that, for ug € L2(R"), o(ug) is always well defined in [0, +occ]. Indeed, by the Plancherel
theorem, L*(R") = By, C BY .

The relation between the decay character r*(ug) and o(ug) is given by the following simple
result.

Proposition 4.1. Let ug € L3(R"). When the decay character of ug does exist, it is given by

the formula (valid also in the limit cases r*(ug) = —n/2 or 00):
(4.2) " (up) +n/2 = o(ugp).
Proof. In the case r*(ug) = —n/2, we have +00 = P,(up)— > 0 for all r > —n/2, and so

et ugl|3 > ce(14t)~¢ for all € > 0 by the first part of Proposition 2.8. Applying the characteri-
zation (3.1) of Besov spaces with negative regularity in terms of the heat kernel we get o(ug) = 0.
In the case r*(ug) = +o00, we have P,(ug)y < oo for all € R and so ||/ ug||2 < Ci(1 +t)7*
for all k& > 0 by the second part of Proposition 2.8. We apply again (3.1) to conclude that
o(up) = +o00. In the case —n/2 < r*(up) < oo the conclusion follows immediately combining
both parts of Proposition 2.8 with (3.1). O
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Remark 4.2. C. Niche and M.E. Schonbek generalized the notion of decay character by intro-
ducing, for s > 0 and uy € H*(R"), the notation

75 (uo) = r*(A°up), where A = v —A.

The condition vy € H*(R"™) insures that both ug and A®ug belong to L?(R™). They proved
in [6, Theorem 2.11] that, for ug € H*(R"), ri(up) = r*(up) + s (this formula being valid
also in the limit cases). Proposition 4.1 provides a one-sentence proof for this formula to hold:

(7%%) and therefore o*(Aug) =

indeed, A® is known to be an isomorphism between B, 7 and B,

o*(ug) + s.

One can ask if it is possible to give a Besov space characterization of the existence of the
decay character of an L?-function. Proposition 4.3 below will provide a positive answer.

Proposition 4.3. Let ug € L?>(R"). Then the decay character of ug does exist and r* = r*(ug) €
(=n/2,00) if and only if there is o* > 0 such that uy € Aigo* In this case, 0* = o(up) and
formula (4.2) holds.

Proof. Let us start assuming ug € A;go, with o* € (0,00). For any p > 0, take j € Z such that
271 < p < 27, Then,

7 [ ePacs 2@ [ jaeRas
1€1<p €]<279
S27H7 Y [lAkuoll3
—oo<k<j
5 2—2jo’* ( Z 22k)a*> Hu0||2 .
—oo<k<j Hoe
< 2 .
S luol?_..
Letting r* 4+ n/2 = o*, such estimates imply P« (ugp)4+ < +00.

Moreover, from our assumption we can take (ji) as in the definition of AZ g:; Let pg = 27
and M = ||(jk - Jk+1)||eee. For any 0 < p < po, let jr be the largest integer of the sequence
(jx) such that 2% < p. Then we must have 2/+*M > p otherwise we would find another integer
Jn € x> Jr + M] such that 2/» < p, thus contredicting the maximality of j,. Then we have

“3) a /If|< GO de 2 272057 A, w3 3 ¢ > 0,
<p

with ¢ independent on p € (0, po). This implies, Py« (ug)— > 0. By Remark 2.6 we conclude that
the decay character does exist and r*(ug) = * € (—n/2, +00).

Conversely, assume that the decay character of uy does exist and 7*(ug) € (—n/2,4+00). Then
we know by the first assertion of Theorem 2.9, that the solution of the heat equation e‘®uq
is bounded from below and above by C(1 + t)fé(rqn/ 2). We conclude by the last claim of

Theorem 3.1 that ug € A;go and that o* = r* +n/2. O

Remark 4.4 (Proof of Theorem 2.9). This first assertion of Theorem 2.9 follows immediately from
the estimates obtained in Proposition 2.8. We can now prove the last assertion of Theorem 2.9.
If ug € L?(R") satisfies the estimates (2.7), then by Theorem 3.4-(3), we obtain ug € A; % "

2,00
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and the decay character of ug does exist and equals r* by Proposition 4.3. Theorem 2.9 is now
completely proved. O

5. APPLICATION TO NONLINEAR DISSIPATIVE SYSTEMS: THE NAVIER—STOKES EQUATION

As an application of our analysis to nonlinear dissipative systems, let us consider the Navier—
Stokes equations in R3:

u+u-Vu+Vp=~Au, zcR3 t>0
(NS) V-u=0
u(z,0) = uo(),

where u = u(x,t) = (uy,ug,us)(z,t) is the velocity field of an incompressible viscous fluid flow,
p = p(z,t) is the pressure, and ug = (ug,1,uo 2, up3) is the initial datum. For any ug € L?(R3),
with V - ug = 0, we know since J. Leray’s classical paper [3] that there is at least one solution
u € Cy([0,00), L*(R™))NLE (RT, HY(R?)) solving (NS) in the distributional sense and satisfying
the strong energy inequality

(5.1) I8 +2 [ 17ur)Bdr < u(s) B

for s = 0, almost s > 0 and all ¢ > s. The uniqueness and the regularity of such solutions are
well known open problems.

The following theorem completely characterize the solutions satisfying sharp two-side decay
estimates. It completes well known Wiegner’s Theorem by giving several necessary and sufficient
conditions for the validity of bounds from below for the decay of the energy. It improves [2,
Theorem 6.5], and completes an earlier study by Skaldk [9] where only the upper bounds were
discussed.

Theorem 5.1. Let ug € L?(R?) and o > 0. The three following properties are equivalent:

(i) liminf p~2° / [Up(&)*dé >0 and limsupp / [t (€)% d€ < oo,
I€1<p p—0 1€1<p

(ii)) (1+8)77 Slle®uollz S (1+1)77.
If, moreover, ug is a divergence-free vector-field, if u is a weak solution of (NS) as above and
0 < o < 5/4, then the three previous properties are equivalent to

(V) 1+677 < Ju®)l2 S 1+

Proof. The equivalence (i) <= (ii) is just a reformulation of Proposition 4.3. Indeed, as ex-
plained in Remark 2.6, the decay character r*(ug) does exist and belongs to (—n/2,00) if and
only if there exists r* € (—n/2,00) such that 0 < P« (ug)— < P+ (ug)y < 0.

The equivalence (ii) <= (iii) was established in Theorem 3.1.

The implication (iii) = (iv) relies on classical Wiegner’s theorem [10]: in the 3D case and in
the absence of external forces, the Theorem in [10] can restated as follows: if ug € L?(R") is a
divergence-free vector field such that |[e®ugllz < (1 +¢)~7, and if u is a weak solution of (NS)
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as above, then the difference w(t) = u(t) — e*®uy satisfies the decay estimates

(1+t)" V4o, if0<o<l,
Jw(t)ll2 < < In(e +t)(1+ )54, ifo =1,
(1+1)=%/4, if o > 1.

Notice in particular that, for 0 < o < 5/4, one gets t7||w(t)||2 — 0 as ¢t — oco. Therefore, under
the same restrictions on ¢ and the conditions of item (iii), it easily follows that u = e'®ug + w
satisfies the estimates as in (5.1).

The proof of the implication (iv)=-(iii) relies on the so-called inverse Wiegner’s theorem
recently established by Z. Skaldk [9]: his results asserts (among other things) that if u is a
weak solution of the Navier—Stokes equation as above, satisfying ||u(t)||2 < (1 + ¢)~7 (with
0 < o < 5/4) then [[e®ugllz < (1 +1)~7. Hence, Wiegner’s theorem applies and decomposing

e ug = u — w property (iii) follows in the range 0 < o < 5/4. O

In the borderline case ¢ = 5/4, the implication (iii)=(iv) still holds. But the converse
implication is no longer true. Indeed, it is possible to construct examples of Navier—Stokes
flows such that lim;_, o t/4||e®®ugllz = 0 and (1 +#)~%/* < JJu(t)|l2 < (1 4 t)~3/%. This can
be achieved as follows: one starts with a divergence-free initial datum ug € L?(R®) such that
o vanishes in a neighborhood of the origin. This insures a fast (exponential) L2-decay of the

tAug. Generically (i.e. in the absence of special symmetries),

solution of the heat equation e
the matrix fooof(u ® u)(y, s)dy dt will not be a scalar multiple of the identity matrix. By a
theorem of T. Miyakawa and M.E. Schonbek [4], one obtains a solution u of the Navier—Stokes
equations that satisfies the lower bound estimate |lu(t)|2 > (1 + ¢)~°/4, and, by Wiegner’s

theorem, |lu(t)|l2 < (1 +t)~%/4.

6. EXAMPLES

Example 6.1 (Construction of vg € L?(R") such that the limit P,(vg) is not well defined).
Let 7 € (—n/2,00). Decompose the unit ball By = {£: |{] < 1} in concentric dyadic annuli:
By =ToUTI_jUT _U. .., with T'; = {€: 2771 < [¢] < 27}. Then set 0p(£) = [£]" on ToUT 5 U. ..
and 9p(§) = 0 elsewhere. A direct computation shows that 0 < P,(vg)— < P,(vg)+ < co. Indeed,
passing to spherical coordinates in the computation of P,.(vg)+ and P,(vp)—,
[e.e]
Po(vg)y = wy, lim 27%@r+n) / AN, U, A
j—)—OO 0 J
and
. oo
Pr(vg)_ = wy lim 2(2J+1)(2r+n)/ )\2r+n7111“2ju1“2(-_1 U d),
j*)*OO 0 i=1

where w, is the surface of the unit sphere of R™ and 14 denotes the indicator function of
the set A. Both limits could be easily computed, but in fact it is simpler to observe that
% = 2=("1) < 1 to conclude that P,(vp) is not well defined by formula (2.1). In fact,
0 < Pr(up)- < Pr(ug)+ < oo and by Remark 2.6 vy admits a decay character in the sense of
Definition 2.5 and 7*(vg) = 7.

Example 6.2. It can happen that r(ug)+ = r(ug)—, yet the decay character r*(ug) does not
exist. The example is elementary. Let uy € L?(R"™) be such that wp(¢) = [£]" log|¢| in a
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neighborhood of £ = 0, for some 9 > —n/2. Then by a simple computation r(ug)4+ = r(ug)— =
ro. But the decay character r*(ug) is not well defined, because the sup and the inf in the
definition of r(ug)4+ and r(ug)— (see Eq: (2.2)-(2.3)) are not achieved. For this specific initial
datum, the corresponding solution of the linear problem (2.6) satisfies estimates similar to those
in (2.7), but with a corrective time-dependent logarithmic factor. Notice that for this example
there is no 7 such that 0 < P.(ug) < oo (the existence of such an r was needed in the original
definition of decay character [2]).

Example 6.3. Let us construct an example of wy € L?(R") verifying 7(wg), < r(wp)_. Fix
r € (—n/2,+00). Let (ax) and (bg) two real decreasing sequences such that 0 < byy1 < ap < by
and by — 0 for all £ € N, and consider two more positive sequences (7y), (hx) to be chosen later.
We define wg through its Fourier transform:

o0
@o(€) =Y MLy <e|<by
k=0

The condition insuring wy € L2(R™) is Y22 b (b} —a}?) < co. It is then convenient to set ny, =
h2 (b} —a}), and the first condition is that (n;) is summable. Let ®,.(p) = p~2 " f\&\ﬁp | (€)% d€.
Then,

o
P.(wp)+ = limsup @,.(p) = lim ®,(bx) = lim wnb,;(2r+n) an,
p—0 k—o0 k—o0 ik
and
o
. . . —(2
P.(wp)- = 1121;151f D,.(p) = klgrgo D, (ar) = kli)ngownak( rn) Z nj,
j=k+1
where w,, is the measure of the unit sphere. Now, we choose,
R S
Then, > 222, n; = by" ™. These choices insure that wo € L?(R™) as (1) is indeed summable and
determine (hy). Moreover, we get 0 < P.(wp)+ = wy, < 0o and we conclude that
r(wo)y =1

Let us now study r(wg)—. First observe that > 22, ;1 n; = bifl" = (b2"7")2. Then,

a];(2r+n) Z nj = [bk(l _ bz)fn]f2rfn(bir+n)2 =0 as k — 0o,
j=k+1
so that
Pr(wp)- = liminf ®,(ax) = 0.
k—ro00

For this reason, r(wp)— # r and r*(wp) does not exist. In fact r(wp)_ is given by r’ € (—n /2, c0),
such that the limit

o0
- 1 _ —(2r'+n)
1121;151f D,.(p) = klgr;o . (a) = wnay, Z urs
Jj=k+1
is a strictly positive real: we need 2’ + n = 2(2r + n). In conclusion,

r(wp)— =2r+n/2, r(wg)y = 1.
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7. CONCLUSIONS

Let 0 > 0 and f € L?*(R"). In [2] C. Bjorland and M.E. Schonbek, proved that:

p—0t

(71a)  0< lim p% /5 _W@ras<es = (1407 SIS 0407
<p

where e denotes the heat kernel in R” and the symbol < means that the inequality < holds up
to a multiplicative constant independent on time. In [6] C. Niche and M.E. Schonbek extended
this to a large class of pseudo-differential operator £, with homogeneous symbol of degree 2a,
proving that

(1) o< lmp [ [fOPdE <o = (1T S S (40
p=0* léI<p

In the present paper, we showed that the reverse implications in (7.1a)-(7.1b) do not hold, as

the limit on the LHS might not exist. Next, suitably relaxing the condition on the LHS, we

got the following characterization of the class of L?-functions satisfying sharp two-side decay

estimates. Namely, we established that:

(7.2)
e I GI
p—0 1€1<p R — fe A2—7C2>g7 — (1+t)—0/oz < Hetﬁf”z < (1+t)_0/a,
lim sup p~27 |F(&))? g < o0
p—0t 1€1<p

where Ai ig is the subset of the Besov space Bi gg(R") introduced in Section 3.1.

Moreover, if f is a divergence-free vector field, then in the special case n = 3, £L = A and
0 < o < 5/4, we proved in Theorem 5.1 that the three previous conditions are in turn equivalent
to the two-side energy estimate of weak solutions of the Navier—Stokes equation starting from f:

(7.3) T+ S fu®ll2 S T+

When an L? function satisfy any of the above equivalent conditions (7.2), the exponent o €
(0,00) is uniquely determined. We coin this exponent o = o(f) the Besov character of f. It
is related to (a suitable improvement of) Bjorland—Schonbek’s [2] notion of “decay character”,
denoted 7*(f), by the relation o(f) = r*(f) + n/2.
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