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Assessment of tissue optical parameters in a spherical geometry using 

three different optical spectroscopy methods: comparison based on a 

theoretical approach 
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PRES LUNAM, Arts-et-Métiers ParisTech, LAMPA, 2 Boulevard du Ronceray 49035 Angers Cedex, France 
 

 

ABSTRACT 

 
The non-invasive research of information inside the biological tissues can be made by means of continuous, time-

dependent or frequency modulated light source, emitting in the visible or infrared range. Moreover, the biological 

structures such as brain, breast or fruits, can be seen as closer to a spherical shape than a slab. This paper focus on the 

retrieval of tissue optical parameters in a spherical geometry using fittings with an analytical solution adapted for semi-

infinite geometry. The data were generated using three different optical spetroscopy methods: frequency-resolved, 

spatially-resolved, and time-resolved. Simulations based on a  Monte Carlo code were performed on a homogeneous 

sphere, with 18 spaced detectors located at the periphery. First, data are examinated in the frequency domain, then, they 

are treated with optimization algorithms to assess the optical coefficients. The computations show that the spatially-

resolved measurements are often more robust than those obtained by the frequency-resolved mode. In the temporal 

domain, errors on the estimates are also exhibited with the fitting by the Fourier transform of a solution based on the 

semi-infinite geometry. Furthermore, when the analytical solution is modified to take into account the sphere geometry, 

the retrieval of the coefficients is improved. 

 

 

Keywords: turbid media, optical coefficients, diffusion solutions, retrieval algorithm, spherical geometry, frequency or 

spatially-resolved spectroscopies, time-resolved spectroscopy, Monte Carlo code. 

 

 

1. INTRODUCTION 
 
In the visible and near-infrared range, the processus of light-tissue interaction permits to develop non-invasive devices 

such as the bio-medical imaging and systems to measure features of human tissues
1,2

 or agricultural products
3,4

. The 

source of light can be continuous
4,5

, impulsive
3,6

 or modulated
7-9

. But those systems must be adapted to variable shapes, 

and furthermore, the problems of the turbidity and of the absorption of photons are going to involve difficulties to probe 

deep tissue and to interpret the measures.  

 

From that, the building of the mathematical models becomes important in order to understand or to plan the propagation 

of the light in turbid media. Two physical parameters are needed to use the mathematical tool: the coefficient of 

scattering µs' and the coefficient of absorption µa. These data can be estimated by the optimization of the fitting with the 

measurement data, and this one is valid depending on mathematical solution. The case of the plane model is usually used 

to define the optical coefficients, even as regards systems with curved surfaces
3,4

. 

 

We are interested to the cases of homogeneous modelling, either plane or spherical. The spherical shape allows to be 

closer to biological structures, for instance the brain of baby, the breast or fruits (apple). Through a simulation based on 

Monte Carlo code, a homogeneous sphere is considered here in the aim to obtain a series of measurement data
10

. Its 

diameter is 70mm and its refractive index n has the value 1.4.  

 

The type of source is also going to have an impact on the choice of modelling.  The model fitting will thus be made 

according to the source-detector distance, the duration or the frequency. From the data, that are obtained in a spherical 

geometry, we use algorithms of optimization to find the optical coefficients but with the usual semi-infinite function and 

for three spectroscopy methods: for a modulated source with a fixed frequency, for the one at zero frequency, i.e the 

continuous case, and in the temporal mode. 
 



2. METHODS 
 2.1 Frequency mode 
  

The semi-infinite solutions was well described by Kienle et al 
11

. In frequency mode its equation is: 
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D  and 
D= 1 /3(µs '+ µa) . The 

radial source-detector distance is SD and the frequency is f. A is linked to the Fresnel reflection, while c is the speed of 

light. The coefficients C1 and C2 will be either respectively 0.118 and 0.306 
11

, or 0 and 1 
12

. Far from the source, the 

computed reflectance value is less sensitive to the choice of these two parameter sets (C1,C2). 

 

This function can be compared to the data obtained from the spherical Monte Carlo code, where the statistical account of 

the exit photons according to the time was made on 18 points at the surface. So, the equation (1) can be compared to the 

Monte Carlo data owing to a Fourier transform, with the phase-shift  and the intensity modulation M: 

 
Φ(S D , f )= arctan[R(S D , f )]

                   (2) 

 
M (S D , f )=∣R(S D , f )∣ /R(SD , 0)

         (3) 

 

The Figure 1 shows the phase-shifts and the modulations related to the radial source-detector distance, when two sets of 

optical coefficients (µs'0; µa0) are fixed, i.e  (1.1mm
-1

; 0.005mm
-1

) and (0.8mm
-1

; 0.001mm
-1

). Several symbol (data) and 

curves (analytical solution) are drawn according to 6 frequency values.  

      

Figure1. Phaseshift and Modulation according to the source-detector distances plotted from the Monte Carlo simulation, with a 

sphere radius rs=35mm, (symbols) and from the equation (1) (lines), with C1= 0.118 and C2=0.306.  

 

 

We observe that for distances ranging from 7 to 11mm the analytical curves and the data are alike for small values of 

frequency (f<50Mhz). The data phase-shifts related to larger optical parameter set (1.1mm
-1

; 0.005mm
-1

) are close to 

those obtained to the semi-infinite solution even for large distances. That confirms the comparison, well described by 

Arridge et al 
13

, between the phase-shifts of analytical solutions defined with a sphere or a slab geometry, when the 

values of the set of  optical coefficients were high (2mm
-1

; 0.025mm
-1

). But with the rise of the frequency, the 

discrepancy increases between the two systems (Figure 1). As suggested by Pogue and Patterson
14

, low frequencies 



minimize the influence of the upper surface, i.e. the geometry of the system, owing to the high penetration in tissue.  

 

Nevertheless, the sensitivity of curve with the parameters increases in the same manner according to the frequency, than 

the error previously cited. These two opposite effects, error fitting and parameters sensitivity, are dependent on the 

frequency value. These facts suggest different behaviours in the retrieval of the optical-parameters by the frequency 

method. Owing to the levenberg-marquardt function of scilab (lsqrsolve), the retrieved optical coefficients are found 

from the best fittings of the phaseshift and modulation, with the solutions obtained from the Eq. (1). The coefficients 

C1=0 and C2=1 were chosen for all the manuscript. The retrieval of µa and µs' are performed for the set used in the 

Figure 1 and for a range of frequency starting from 48MHz up to 257MHz.  The Figure 2(a) shows the ratio µa/µa0 and 

µs'/µs'0 related the frequency. The error on µs' rise slightly with the frequency for both cases. The error on µa decreases 

slowly for the set (1.1mm
-1

; 0.005mm
-1

). For the case (0.8mm
-1

; 0.001mm
-1

), the mimimum error is near 150MHz, and 

after that the error rise with the frequency.  

 

The same behaviour is obtained for this weak optical parameters, when the radii is moved to 30 mm and 50 mm (Figure 

2(b)). The overestimation of µa is smaller with the larger radius. This effect was previously studied by Pogue and 

Patterson
14

. Moreover, in the same conditions we see that the high optical coefficients (1.7mm
-1

; 0.03mm
-1

) leads to a 

small and almost constant error. The normalized fitting errors, which results of the addition of the fitting errors computed 

for the phasehift and modulation, are plotted according to the frequency in the Figure 2(c). The relative magnitudes of 

the fitting error increase with the frequency, but are very small in the high diffusive and absorbing case. 

 

 

Figure 2. (a) Normalized optical coefficients, µ's/µ's0 (line) and µa/µa0 (dashed), obtained with a sphere radius rs of 35 mm; (b) 

Normalized optical coefficients, µ's/µ's0 (line) and µa/µa0 (dashed), obtained with a sphere radius rs of 30 mm (square and round 

symbols) and 50 mm (triangle and diamond symbols); (c) Normalized fitting errors corresponding to the symbols of (b). 
 

The level of error in the assessment of the optical coefficients from a spherical geometry, in using the phasehift and 

modulation solutions of the Eq. (1), are often more important concerning the absorption coefficient µa. It is probably 

linked to the gap between the semi-infinte solution and the features obtained from a sphere, whatever the level of 

frequency f >0. 

 

 2.2 Continuous mode  
 

The method of the steady-state (f=0) and the one of the highly modulated source, previously described,  

(continuous+sinusoïd with high f) could have different efficiencies to make a fitting with the use of the usual equation 

(1). Indeed, the comparizon between the semi-infinte solution for f=0, Eq. (1), and the Monte Carlo data exhibits closed 

curves (Figure 3), when the distance range is greater than a few milimiter and smaller than 25-29 mm.  

 

An optimisation of the fitting by means of Levenberg-Marquardt algorithm is made for the two methods, i.e the ones of 



frequency and steady-state. The values of the frequency were set to f=0  and 178MHz. The retrieval algorithm could use 

up to 18 time-resolved data corresponding to different source-detector distances, SD, ranging from 1mm to 29.5mm (see 

the symbols in Figure1). To resolve more easily the assessment of the coefficients from the reflectance R according to 

SD, a transformation of R(SD) to the function ln[SD²R(SD)] is performed, and its slope, computed between 13 and 20 mm, 

is interpreted as µeff=[3µa(µa+µ's)]
1/2

. The results of the retrieval,  obtained from the two methods, are shown in Table1.  
 

Figure 3. Normalized reflectances R(SD)/R(1 mm) obtained from the Monte Carlo simulation, with a sphere radius rs=35mm, 

(symbols) and from the equation (1), with C1= 0.118 and C2=0.306, (lines) in the continuous mode (f=0Hz) for 3 set of optical 

coefficients: round symbols or whole line (0.8mm-1; 0.001mm-1), square symbols or dash-dotted line(1.3mm-1; 0.001mm-1), 

and black dot symbols or dashed line (1.1mm-1; 0.005mm-1).  
 

 
Table1 

    µaf    -  µsf'  

[mm-1-  mm-1] 

Method A 

(C1=0,C2=1) 

Retrieved µa Retrieved µs' Method B  

(C1=0,C2=1) 

Retrieved µa Retrieved µs' 

0.0225  -  1.45  Continuous 0.0255330 1.3520817 Frequency 178MHz 0.0224038 1.5622084 

0.003    -  1.45 Continuous 0.0030737 1.4627461 Frequency 178MHz 0.0035968 1.389302 

0.001    -  1.3 Continuous 0.0009952 1.3730456 Frequency 178MHz 0.0027222 1.3231257 

0.0075  -  1.25 Continuous 0.0077480 1.2355632 Frequency 178MHz 0.0099701 1.2486994 

0.003    -  1.25 Continuous 0.0032991 1.2252735 Frequency 178MHz 0.0036331 1.1107564 

0.005    -  1.1 Continuous 0.0049750 1.0633026 Frequency 178MHz 0.0062535 1.0752154 

0.001    -  0.8 Continuous 0.0012464 0.7548334 Frequency 178MHz 0.0025876 0.7302197 
 

 

As expected, the errors with the true values are often greater with the frequency method, especially for the retrieved 

absorption coefficient. The computations show that the spatially-resolved measurements are often more robust than those 

obtained by the frequency-resolved mode. However, in high absorbing case (0.0225mm
-1

; 1.45mm
-1

), the steady-state 

method yeilds less accurate retrieved values. The limited number of source-detector distance considered inside a large 

range (29.5mm) is not adapted when the reflectance decreases rapidly.  

To characterize more specifically the spatially-resolved mode by the way of the reflectance imaging, the scale of the 

continuous procedure was reduced to 0.1mm and extended until 20mm. Those mimic the difference in the use of a CCD 

camera or of a set of fiber, i.e configurations related respectively to the continuous or the frequency methods. In the 

Table 2, we observe a slight decrease of the values, but also an improved retrieval in the previously cited case where 

µa=0.025mm
-1

.  
 

Table2 

µaf  [mm-1]  -  µsf' [mm-1]   Method A'   (C1=0,C2=1)     scale  and  range modified Retrieved µa Retrieved µs' 



0.0225  -  1.45  Continuous  SD=0.1mm, 0.1<SD<20mm 0.0226729 1.3708264   

0.003    -  1.45 Continuous SD=0.1mm, 0.1<SD<20mm 0.0028329 1.421806 

0.0075  -  1.25 Continuous SD=0.1mm, 0.1<SD<20mm 0.0070964 1.2103049 

0.003    -  1.25 Continuous SD=0.1mm, 0.1<SD<20mm 0.0032727 1.1703029 

 

From these various results, only those exhibiting a weak absorption parameter can be seen as inadequate. But without 

absorbtion, the reflectance measurement are going far away from the source position, and the smaller the scale is, the 

lesser important is the probleme of the curvature. That means to take into account the difference of estimates according 

to the distance range. For a detection distance used up to 27 mm, i.e largely above the one usually used in hyperspectral 

imaging
4,5

, the Fig. 4 shows that the errors occur more rapidly with the decrease of the spherical radius for the case of 

weak absorption and scattering (µa0 =0.001mm
-1 

and µ's0 =0.8mm
-1

) than for the case of high absorption and scattering 

(µa0 =0.03mm
-1 

and µ's0 =1.7mm
-1

).    

 

 
Figure 4. Normalized optical coefficients, µ's/µ's(1000mm) (line) and µa/µa(1000mm) (dashed), obtained according to the 

sphere radius rs; (i) and (ii) correspond to the sets (µ's0 =0.8mm-1; µa0=0.001mm-1), and (µ's0 =1.7mm-1; µa0=0.03mm-1), 

respectively. The source-detector distances, used in the assessment of the optical properties, are extended up to 27 mm.  

 

Furthermore, the frequency modulated mode or the spatially-resolve mode don't use the same kind of mathematical 

expressions (single intensity or the set phashift and intensity) of the equation (1). So, the optimization algorithms have 

not the same efficiency. To see the influence of the curved surface on the reference equation (1) in the high frequency 

domain, another type of comparison is needed.  

 

 2.3. Time-resolved methods 
 

The high frequency in a spectral domain corresponds to a weak range in the time domain. So, the assumption of a greater 

influence of the curvature in the retrieval of optical coefficients for high frequency leads to the idea of a curvature effect 

in the retrieval with the time-resolved for the close source-detector distances. In order to weigh the efficiency of the 

retrieval by the time-resolved expression of the equation (1) (i.e its Fourier transform), another retrieval by a time-

resolved method will be made : the Fourier transform is also made on the mathematical solution of the diffusion equation 

with spherical boundary 
13,14

, 
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with 
r '= rs− 1/µs ' ,a= rs+ 4A D

, and where Jl is a Bessel function of the first order and ln one of its roots. The 



time-resolved solution corresponding to a spherical geometry is thus obtained.  

 

From the Monte Carlo simulation, the Figure 5 shows an example of the account of photons according to to the time 

delay, when the optical coefficients  (µ's
th

=1.25mm
-1

; µa
th

=0.0075mm
-1

) are considered. The time-resolved solutions 

computed from the Eqs. (1) and (4) are plotted with the fixed set of parameters (µ's
th

; µa
th

). Between the peaks and the 

zero time, the values of the time-resolved related to the Eq. (4) are not considered as available. Despite that, the solution 

obtained with the spherical boundary, Eq. (4), is from the peak position closer to the data than the one obtained with the 

semi-infinite geometry, Eq. (1).     

 

 
Figure 5. Plot of a time-resolved reflectance obtained from the Monte Carlo simulation, with a sphere radius rs=35mm, and 

from : (a) the Fourier transform of Rsph[asin(SD/rs),f] ;  (b)  the Fourier transform of R(SD,f). 
 

The same code of Levenberg-Marquardt algorithm was applied for the two retrieval time-resolved methods. The radial 

source-detector distance was fixed at 11mm. The limit of the time range, needed in order to have a sufficient efficiency, 

depends on the chosen set of optical coefficients, but we have taken always a maximal time-shift that does not exceed 

1.1ns , i.e 20% of the period linked to 178MHz. We are situated on the range corresponding to the weak range in the time 

domain that was  previously mentioned. 
   

Table3 

µaf  -  µsf'  

[mm-1-  mm-1] 

Method C (plane) 

(C1=0,C2=1) 

Retrieved µa Retrieved µs' Method D (sphere) 

(C1=0,C2=1) 

Retrieved µa Retrieved µs' 

0.0225 -  1.45  Time-resolved 0.0256660 1.4006437     Time-resolved 0.0232297 1.4417957 

0.003   -  1.45 Time-resolved 0.0048315  1.3729379  Time-resolved 0.0030057 1.3895091   

0.0075 -  1.25 Time-resolved 0.0099419 1.2144671 Time-resolved 0.0073518 1.2695102  

0.003   -  1.25 Time-resolved 0.0045985 1.1814145 Time-resolved 0.0029032 1.2252245  

 

The Table 3 depicts the retrieved coefficients. We see a clear difference between the values found in using the equation 

(1) or (4). The error is more important when the semi-infinite solution (1) is considered. On the contrary, the retrieval of 

the coefficients is more precise than the Table1 when the sphere geometry is taken into account.    

 

3. CONCLUSION 
 
We have emphasised the idea that a model based on the plane-geometry of a turbid medium is more or less sensitive to 

its application to curved surfaces depending on the range of time or frequency spectra. The steady-state considered as the 

case of zero frequency seems to have the ability to support correctly the effect of the boundary curvature. Whatever, the 

algorithms of the retrieval of tissue optical parameters may be modified by the change of the modelling, as we made here 

for the time-resolved procedure. Moreover in order to probe the heterogeneity and the multilayered tissues, this 



sensitivity to the geometry of the methods of frequency
9,15

 or of time-resolved
16

 is needed.  
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