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Abstract: We consider random walks on a nonelementary hyperbolic group endowed
with a word distance. To a probability measure on the group are associated two numerical
quantities, the rate of escape and the entropy. On the set of admissible probability measures
whose support is contained in a given finite set, we show that both quantities depend in an
analytic way on the probability measure. Our spectral techniques also give a new proof of
the central limit theorem, and imply that the corresponding variance is analytic.

1 Introduction

Let Γ be a finitely generated group. Let µ be a finitely supported probability measure on Γ, whose
support generates Γ as a semigroup (we say that µ is admissible). It defines a random walk on Γ, by
Zn = g1 · · ·gn where g1,g2, . . . is a sequence of Γ-valued i.i.d. random variables with distribution µ . By
definition, Zn is distributed according to the convolution product µ∗n. Equivalently, Zn is a Markov chain
on Γ, starting from the identity e of Γ, whose transition probabilities are p(x → y) = µ(x−1y). These
probabilities are invariant under left multiplication, hence the Markov chain is homogeneous.

The behavior of the random walk is usually strongly related to the geometric properties of the group.
One can associate several numerical quantities to the random walk, including:

• The entropy, defined by
h(µ) =− lim

n→∞
log µ∗n({Zn})/n.

The almost sure convergence of this quantity follows from Kingman’s subadditive theorem. Es-
sentially, the walk at time n visits ehn points.
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SÉBASTIEN GOUËZEL

• The escape rate, or drift, defined by

ℓ(µ) = lim
n→∞

d(e,Zn)/n,

where d is a fixed (proper, left-invariant) distance on Γ. Again, the convergence follows from
Kingman’s theorem.

These quantities are always non-zero in non-amenable groups, and always zero in nilpotent groups for
symmetric walks. Our focus in this article will be on the former category, and especially on the subclass
of hyperbolic groups.

In hyperbolic groups, Erschler and Kaimanovich have proved in [EK13] that both the entropy and
the rate of escape depend continuously on the measure. If one concentrates on measures with a given
finite support, then the parameter space becomes a subset of Rd for some d, and one can investigate
further regularity properties. Our goal in this article is to show that the entropy, and the rate of escape
for a word distance, are analytic.

Let Γ be a nonelementary hyperbolic group, endowed with a word distance d. Let F be a finite subset
of Γ. Denote by P

+
1 (F) the set of admissible probability measures supported by F: this is a subset of

the finite-dimensional space P(F) = {µ : F → C}. Our main theorem is the following.

Theorem 1.1. In this setting, the functions µ 7→ ℓ(µ) and µ 7→ h(µ) are analytic on P
+
1 (F). More

precisely, there exists an open subset of P(F) containing P
+
1 (F) on which these two functions extend to

analytic functions.

The random walk converges almost surely to a point of the Gromov boundary of Γ. The distribution
of the limit is called the exit measure of the random walk. Its Hausdorff dimension is proportional to
h/ℓ [Haï13, Theorem 4.11]. Thus, it follows from the previous theorem that it also depends analytically
on µ .

This theorem extends several partial results in the literature. Here are some previous results in this
direction, we refer the reader to [GL13a] for more statements.

• For nearest neighbor random walks on the free group, one can obtain explicit formulas for h(µ)
and ℓ(µ), thereby proving analyticity. Similar results hold in free products, see [Gil07, Gil11].

• In a free group, for measures with a given finite support, both the rate of escape and the entropy
are analytic, see respectively [Gil08] and [Led12].

• In a general hyperbolic group, but for a restricted class of distances, Gilch and Ledrappier prove
in [GL13a] that the rate of escape is analytic. The condition on the distance is that its Busemann
boundary should coincide with the Gromov boundary (these terms are defined in Paragraph 2.1).
This is for instance the case if Γ acts cocompactly by isometries on a hyperbolic space H

n and the
distance is given by d(g,g′) = dHn(g ·O,g′ ·O) where O is a suitable basepoint. On the other hand,
if Γ is not virtually free, this is never the case for a word distance as the Busemann boundary is
totally disconnected, contrary to the Gromov boundary (see Paragraph 2.1).

• In surface groups, [HMM16] shows that the rate of escape is analytic.
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• In a general hyperbolic group, Ledrappier proves in [Led13] that both the rate of escape and the
entropy are Lipschitz continuous.

• This is improved to C1 by Mathieu in [Mat15].

Our approach to prove Theorem 1.1 is based on the strategy of Ledrappier in [Led13]: We express
the rate of escape and the entropy as integrals of objects living on a suitable boundary of the group, the
Busemann boundary ∂BΓ. What we have to show is that these objects (the stationary measure and the
Martin kernel) depend analytically on the measure µ .

More precisely, let νµ be a stationary measure for µ on ∂BΓ. Let Kµ be the Martin kernel for µ ,
and KB

µ its lift to ∂BΓ. Let cB be the Busemann cocycle on ∂BΓ. (All these terms will be defined in
Paragraph 2.1.) Then the following formulas are classical (see for instance [GMM15, Proposition 2.2]
for (1.1), and [KV83, Theorem 3.1] or the comments before (2.10) for (1.2)):

ℓ(µ) = ∑
g∈Γ

µ(g)

∫

∂BΓ
cB(g,ξ )dνµ (ξ ) (1.1)

and
h(µ) =− ∑

g∈Γ

µ(g)

∫

∂BΓ
logKB

µ (g
−1,ξ )dνµ(ξ ). (1.2)

There are two main difficulties to prove analyticity statements using these formulas.
First, to use (1.1), we need to know that µ 7→ νµ is analytic in some sense. This is well known

if the action of Γ on ∂BΓ has contraction properties, for instance if ∂BΓ coincides with the Gromov
boundary ∂Γ. However, if Γ is not virtually free, the projection πB : ∂BΓ → ∂Γ is not one-to-one (see
Paragraph 2.1), and points in the same fiber of πB do not feel contraction. As a consequence, we do not
know if there is a unique stationary measure on ∂BΓ. To work around this problem, we work on a subset
∂ ′

BΓ of ∂BΓ which is minimal for the Γ-action, and show using a non-constructive spectral argument
that there is some form of contraction there (more precisely, a spectral gap for the Markov operator
associated to the walk, on a suitable function space, with a simple dominating eigenvalue). Hence, there
is a unique stationary measure on ∂ ′

BΓ, depending analytically on µ . Together with (1.1), this shows that
ℓ(µ) depends analytically on µ .

Second, in (1.2), the cocycle log KB
µ (g

−1,ξ ) also depends on µ . This difficulty is serious, making the
entropy harder to study in general than the escape rate. To get the analyticity of the entropy, we need to
show that µ 7→ KB

µ is analytic in some sense. Ledrappier obtains in [Led13] the kernel KB
µ (·,ξ ) for each

ξ by applying a sequence of contracting operators depending on ξ . Choosing carefully the number of
contraction steps, he deduces a Lipschitz control on KB

µ , and thus that the entropy is Lipschitz. Instead,
we will exhibit the whole kernel (x,ξ ) 7→ KB

µ (x,ξ ) as the unique fixed point of a non-linear operator,
depending analytically on µ . The analyticity of µ 7→ KB

µ then follows from a suitable application of the
implicit function theorem.

This approach is reminiscent of the study of unstable foliations in hyperbolic dynamics. The usual
strategy is to apply a map called the graph transform, enjoying contraction properties, to obtain the unsta-
ble leaf at a point. Unstable leaves at nearby points are then compared by iterating the graph transform
a finite but carefully chosen number of times. Another approach, advocated by Hirsch, Pugh and Shub
in [HPS77], is to see the whole family of unstable manifolds as the fixed point of a single operator. The
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proper setting is more complicated to develop, but once this is done it is extremely powerful. We follow
essentially a similar strategy.

Remark 1.2. The kernel Kµ(x,ξ ) is initially defined on the (geometric) Gromov boundary. However,
to construct an operator of which it is a fixed point, it is convenient to have an underlying combinatorial
structure. This is more efficiently done using the Busemann boundary. Therefore, although the statement
on analyticity on the entropy does not depend on a distance choice, its proof relies on the tools we
develop to show that the escape rate is analytic for the word distance.

Remark 1.3. The escape rate ℓ(µ) depends on the measure µ , but also on the choice of a distance
on Γ. Theorem 1.1 is formulated for a word distance. Other natural distances can be constructed as
follows. Consider a free cocompact action of Γ by isometries on a Gromov-hyperbolic space X , take
a basepoint O ∈ X , and define d(g,g′) = dX (g ·O,g′ ·O). (The case of a word distance corresponds to
the natural action of Γ on its Cayley graph with the graph distance). We do not know if the escape rate
ℓ(µ) depends analytically on µ in this generality. Indeed, our proofs rely on some contraction properties
of the dynamics on the Busemann boundary, for some suitable distance, which are not clear in this
generality.

For the word distance, we prove below that these requirements are met (the distance on the Buse-
mann boundary is defined in (2.2), the contraction properties are proved in Lemma 3.5). The situation is
also well behaved if one considers an action of Γ by isometries on X =H

k (or a more general CAT(−1)
space) and defines a distance d on Γ using the X distance on an orbit as above. Indeed, in this case,
the Busemann boundary can be identified with a subset of the Gromov boundary of X . One thus gets a
distance with good contracting properties on the Busemann boundary, from which one can deduce that
the drift is analytic following (simplified versions of) the proofs below. This case is in fact easier than
the case of the word distance, and was already known, see Corollary 4.2 in [GL13a].

Remark 1.4. Theorem 1.1 only proves analyticity of the escape rate and the entropy on the set of
admissible measures. One may hope that these quantities are analytic on a larger set of measures, for
instance those that generate a nonelementary subgroup. However, there are considerable difficulties to
extend the proofs to this more general situation. For the escape rate, the problem is in Proposition 3.6:
we consider there the dominating eigenvalue of an operator Lµ associated to µ . If µ is not admissible,
this eigenvalue can have a nontrivial multiplicity, and perturbations of non-simple eigenvalues can be
non-analytic. The situation is even worse for the analyticity of the entropy: there, we make use of the
whole machinery of Ancona inequalities (see for instance Proposition 4.2), which are only known for
admissible measures.

Once the spectral gap is available, standard techniques due to Le Page [LP82] imply several results
on the behavior of the random walk, including the central limit theorem, the law of the iterated logarithm
and large deviations estimates. As an illustration, we prove the following statement:

Theorem 1.5. Under the assumptions of Theorem 1.1, there exists for all µ ∈ P
+
1 (F) a real number

σ 2(µ) > 0 such that (d(e,Zn)− nℓ(µ))/
√

n converges in distribution to N(0,σ 2(µ)) when n tends to

infinity. Moreover, µ 7→ σ 2(µ) is analytic on P
+
1 (F).

The central limit theorem is already known under much weaker assumptions on the measure µ :
it suffices that it has a second moment, it does not need to be admissible, and the distance can be
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more general than a word distance. This is proved in [BQ16]. Another approach (which works also
in acylindrically hyperbolic groups) has recently been developed by Mathieu and Sisto [MS16]. If one
replaces the word distance by a nicer distance (for which the Gromov boundary and the Busemann
boundary coincide), then the central limit theorem had been proved earlier by Björklund in [Bjö10].

The analyticity of µ 7→ σ 2(µ) is proved in [HMM16] for surface groups, but it is new in this gener-
ality.

Remark 1.6. The assumption of finite support can be somewhat weakened for the analyticity of µ 7→
ℓ(µ) and µ 7→ σ 2(µ). Indeed, it can be replaced by an exponential moment condition, of the form
∑|µ(g)|eα |g| < ∞, for any fixed α > 0. Denote by P(α) the set of measures satisfying this condition (it
is a Banach space for the corresponding norm), by P1(α) its elements with ∑ µ(g) = 1, and by P

+
1 (α)

its elements which, furthermore, are nonnegative and admissible. Then ℓ and σ 2 are analytic on P
+
1 (α),

i.e., they extend to analytic functions on a neighborhood of this set in P(α). The proofs are exactly the
same as for the finite support case, modulo some details on analytic functions on Banach spaces which
are explained in Paragraph 2.3.

On the other hand, for the entropy, finite support is essential to our argument. It is likely that it can
be weakened to exponential moment of some high enough order, using the techniques of [Gou15], at the
price of significant technical complications.

The paper is organized as follows: Section 2 recalls classical results for random walks on hyperbolic
groups. Then, the analyticity of the rate of escape is proved in Section 3, and the analyticity of the
entropy is proved in Section 4. Finally, Section 5 is devoted to the central limit theorem.

2 Preliminaries

In this paragraph, we recall classical results on random walks on hyperbolic groups that we will need
later on. See [GdlH90] for a general introduction to hyperbolic groups, and [Led13, Haï13, GMM15]
for properties of random walks there.

2.1 Hyperbolic groups

Let Γ be a finitely generated group, with a finite symmetric generating set S. The word distance d = dS

is given by

d(x,y) = inf{n ∈N : ∃s1, . . . ,sn ∈ S with x−1y = s1 · · · sn}.

This is the graph distance on the Cayley graph of (Γ,S).
The group Γ is hyperbolic if all geodesic triangles in its Cayley graph are thin, i.e., there exists δ > 0

such that each side of such a triangle is included in the δ -neighborhood of the union of the two other
sides. This geometric definition has a metric counterpart, as follows. For x,y,z ∈ Γ, define the Gromov
product of x and y with basepoint z as

(x|y)z = (d(x,z)+d(y,z)−d(x,y))/2.
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It is small if z is close to a geodesic from x to y. One should think of (x|y)z as the time during which
two geodesics from z to x and from z to y remain close. The group Γ is hyperbolic if and only, for some
δ > 0, and for all x1,x2,x3,z ∈ Γ,

(x1|x3)z > min((x1|x2)z,(x2|x3)z)−δ . (2.1)

A hyperbolic group Γ is nonelementary if it is not finite nor virtually Z. Equivalently, it is non-amenable.
Then it contains a free group on two generators.

The Gromov boundary of Γ, denoted by ∂Γ, is the set of equivalence classes of geodesic rays, where
two such rays are equivalent if they stay a bounded distance away. It has a canonical topology, for which
Γ∪ ∂Γ is a compact space. A sequence xn ∈ Γ converges to some point on the boundary if and only if
(xn|xm)z tends to infinity when n,m → ∞ for some, or equivalently all, basepoint z.

The group Γ acts on itself by left-multiplication. This action extends to a continuous action on
Γ∪∂Γ, and in particular on ∂Γ.

All the notions we have described up to now are invariant under quasi-isometry. Hence, they do not
depend on the choice of the generating set S or the word metric d (although the precise value of δ does).
We turn to a notion that depends on finer details of the distance (this is necessary to compute the escape
rate, which really depends on the distance).

To y ∈ Γ, we associate the corresponding normalized distance function hy(x) = d(x,y)− d(e,y). It
is 1-Lipschitz and satisfies hy(e) = 0. A horofunction h on Γ is a pointwise limit of a sequence hyn

where yn → ∞. It is still 1-Lipschitz, satisfies h(e) = 0, and h(Γ)⊆ Z. The map x 7→ hx is an embedding
Γ → C0(Γ,R). Identifying Γ with its image, and taking its closure in C0(Γ,R) for the topology of
pointwise convergence, we obtain a compactification Γ∪ ∂BΓ, where each ξ ∈ ∂BΓ corresponds to a
horofunction hξ obtained as above. The compact space ∂BΓ is called the Busemann boundary associated
to (Γ,d). It really depends on d, not just its quasi-isometry class.

If a sequence yn ∈ Γ converges in the Busemann compactification, it also converges in the Gromov
compactification. Hence, there is a canonical continuous projection πB : ∂BΓ → ∂Γ, which is onto but
not one-to-one in general. Indeed, the space ∂BΓ is made of Z-valued functions, hence it is totally
discontinuous, while ∂Γ is totally discontinuous if and only if Γ is virtually free, see [KB02, Theorem
8.1]. The projection πB is uniformly finite-to-one by [CP01].

The left-action of Γ on itself extends to a continuous action on Γ∪∂BΓ, and in particular on ∂BΓ. In
terms of horofunctions, it is given by the following formula:

hg·ξ (x) = hξ (g
−1x)−hξ (g

−1),

where the term −hξ (g
−1) ensures that the expression on the right vanishes for x = e, as it should.

We define a distance on the Busemann boundary by

d(ξ ,ξ ′) = e−n (2.2)

where n is the largest number such that the functions hξ and hξ ′ coincide on the ball B(e,n). It is
compatible with the topology of ∂BΓ.
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Consider a point ξ ∈ ∂BΓ, and a subset A ⊆ Γ such that πB(ξ ) does not belong to the closure of A in
the Gromov compactification. Then there exists C such that, for all x ∈ A,

|d(e,x)−hξ (x)|6C. (2.3)

Indeed, if yn tends to ξ , then for large enough n a geodesic from x ∈ A to yn intersects a fixed large
enough ball around e. This implies that d(e,x)− hyn

(x) remains uniformly bounded. Letting n tend to
infinity, we obtain the claim.

2.2 Random walks on hyperbolic groups

Let µ be an admissible probability measure on a nonelementary hyperbolic group Γ, endowed with a
word distance d. Almost surely, trajectories Zn of the corresponding random walk converge in the Gro-
mov compactification Γ∪∂Γ, towards a random point Z∞ ∈ ∂Γ [Kai00, Theorem 7.6]. The distribution
ν of Z∞ is a measure on ∂Γ, called the exit measure, or hitting measure, or harmonic measure.

An important property of ν is that it is µ-stationary, i.e., µ ∗ν = ν , i.e.,

ν = ∑
g∈Γ

µ(g)g∗ν . (2.4)

Indeed, consider the first jump g of the random walk, distributed according to µ , and then the subsequent
trajectories starting from g. By homogeneity, they are distributed like gZn−1, hence their exit distribution
is g∗ν . Averaging with respect to g, one obtains (2.4).

Using the contraction properties of the Γ-action on ∂Γ, one checks that ν is the unique µ-stationary
measure on ∂Γ [Kai00, Theorem 7.6]. Moreover, it is atomless and has full support.

On the other hand, the random walk does not always converge in the Busemann compactification
Γ∪ ∂BΓ. For instance, if Γ = Fd ×Z/2Z (where Fd is a free group), then the Busemann boundary is
made of two copies of ∂Fd, corresponding to the two elements of Z/2Z. As the random walk keeps
jumping between the two sheets Fd ×{0} and Fd ×{1}, it does not converge.

Nevertheless, by compactness of ∂BΓ, there are stationary measures on ∂BΓ. Such measures project
under πB to the unique stationary measure ν on ∂Γ. Since the projection πB is uniformly finite-to-
one, there are finitely many ergodic stationary measures on ∂BΓ, their number being bounded by the
cardinality of the fibers. Indeed, the disintegrations above ν of such ergodic measures give rise to
mutually singular measures on the fibers, and there are at most N mutually singular measures on a space
of cardinality N. Note however that there is no known example of a hyperbolic group with an admissible
measure for which there are more than one stationary measure on ∂BΓ.

One interest of these stationary measures is that they make it possible to express the escape rate of
the random walk. From this point on, we assume that µ has a moment of order 1. Define the Busemann
cocycle

cB : Γ×∂BΓ → R, cB(g,ξ ) = hξ (g
−1). (2.5)

It is an (action) cocycle, i.e., it satisfies the following equation:

cB(g1g2,ξ ) = cB(g1,g2ξ )+ cB(g2,ξ ). (2.6)
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Moreover, if νB is any stationary probability measure on ∂BΓ, one has

ℓ(µ) =

∫

Γ×∂BΓ
cB(g,ξ )dµ(g)dνB(ξ ), (2.7)

see for instance [GMM15, Proposition 2.2].

Assume now that µ has finite support. The Green function associated to µ is defined by

Gµ(x,y) = ∑
n

µ∗n(x−1y). (2.8)

It is the average time that the walk started from x spends at y. In general, the convergence of this series
has a simple probabilistic interpretation, the transience of the random walk. The Green function is
also equal to ∑n(Q

n
µδy)(x), where Qµ is the Markov operator of the random walk, given by Qµ f (x) =

∑µ(g) f (xg). Since Γ is non-amenable, the spectral radius of this operator acting on ℓ2(Γ) is < 1. Hence,
the series (2.8) is well defined as its general term tends to 0 exponentially fast. Moreover, if µ ′ is any
measure close enough to µ , then this series still makes sense, even if µ ′ is not a probability measure any
more.

One interest of the Green function is that it is harmonic away from the diagonal: if x 6= y, then
Gµ(x,y) = ∑g µ(g)Gµ(xg,y). This follows by considering the first jump of the random walk, from x to
xg, and then the trajectories from xg to y.

We will need some results on the Martin boundary of random walks on groups, as explained for
instance in [Saw97]. One says that a sequence yn ∈ Γ converges in the Martin boundary of (Γ,µ) if
Gµ(x,yn)/G(e,yn) converges to a limit for all x ∈ Γ. This defines a compactification of Γ by its Martin
boundary ∂MΓ, a compact topological space. By definition, when yn converges to a point ξ in the
Martin boundary, then Gµ(x,yn)/G(e,yn) converges to a limit denoted by Kµ(x,ξ ), the Martin kernel
associated to ξ . Moreover, the Martin kernel depends continuously on ξ ∈ ∂MΓ. A remarkable property
is that almost every trajectory of the random walk converges in the Martin boundary. The distribution of
the limit is a stationary measure νM on ∂MΓ. Moreover, the entropy satisfies the following formula:

h(µ) =−
∫

Γ×∂MΓ
logKµ(x

−1,ξ )dµ(x)dνM(ξ ). (2.9)

This follows from the fact that (∂MΓ,νM) is a realization of the Poisson boundary of the random walk,

from the general formula Kµ(x,ξ ) =
d(x∗νM)

dνM
(ξ ) on the Martin boundary, and from the integral formula

for the entropy on the Poisson boundary given in [KV83, Theorem 3.1]. Since we will not need these
notions in the remainder of the paper, readers may take the formula (2.9) as a black box.

In general, it is very difficult to describe explicitly the Martin boundary, i.e., to understand precisely
for which sequences yn one has for all x the convergence of Gµ(x,yn)/G(e,yn). In the specific case we
are considering, i.e., an admissible finitely supported measure on a hyperbolic group, Ancona has proved
in [Anc88] that the Martin boundary is exactly the Gromov boundary (and they coincide as topological
spaces). In other words, when yn ∈ Γ tends to ξ ∈ ∂Γ, then Gµ(x,yn)/G(e,yn) converges to a limit
Kµ(x,ξ ), which is harmonic in x and depends continuously on ξ . Thus, the formula (2.9) reads

h(µ) =−
∫

Γ×∂Γ
log Kµ(x

−1,ξ )dµ(x)dν(ξ ),
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where ν is the unique stationary measure on ∂Γ (it coincides with νM by uniqueness).
We will rather use this formula on the Busemann boundary. The Martin kernel lifts to Γ× ∂BΓ by

the formula KB
µ (x,ξ ) = Kµ(x,πB(ξ )). The projection (πB)∗νB of any stationary measure νB on ∂BΓ is

equal to ν . Hence, the previous formula yields

h(µ) =−
∫

Γ×∂BΓ
logKB

µ (x
−1,ξ )dµ(x)dνB(ξ ). (2.10)

2.3 Analytic maps between Banach spaces

To prove the analyticity of ℓ and h, we need to use analytic mappings between Banach spaces. Al-
though this is standard, we recall some details for the convenience of the reader. An excellent reference
is [Muj86].

Let E , F be real Banach spaces. A mapping f from an open subset U of E to F is real-analytic
(or simply analytic) if, for every a ∈ U , f has a Taylor expansion around a, of the form f (x) =

∑m Pm f (a)(x − a), where Pm f (a) is a homogeneous polynomial of degree m, i.e., a map of the form
y 7→ A(y, . . . ,y) where A is a continuous m-linear map from Em to F . We require that the above series
converges uniformly on some ball around a, i.e., ∑‖Pm f (a)‖rm < ∞ for some r > 0.

When the same property is satisfied in complex Banach spaces, we say that f is complex-analytic,
or analytic, or holomorphic.

Let f : U ⊆ E → F be a real-analytic map between real Banach spaces. Using its Taylor series,
one obtains an extension fC of f where fC : UC ⊆ EC → FC is holomorphic on a domain UC of the
complexification EC = E ⊗C, with U ⊆UC . One can choose to work either with f or fC, i.e., in real or
complex Banach spaces. However, holomorphic mappings enjoy several remarkable properties that are
not satisfied in the real case, hence we will mainly use the complex point of view. Notably:

• A mapping f is holomorphic if and only if it is everywhere differentiable over C (i.e., it is R-
differentiable and its differential is C-linear) [Muj86, Theorem 13.16]. For instance, this implies
without any computation that a composition of holomorphic maps is still holomorphic.

• A mapping f :UC ⊆EC→FC is holomorphic if and only if it is continuous and, for every a,b∈EC,
the map z 7→ f (a+ bz) from an open subset of C to FC is holomorphic where defined [Muj86,
Theorem 8.7].

• A mapping f :UC ⊆EC →FC is holomorphic if and only if it is continuous and, for every a,b∈EC

and every ψ ∈ F ′
C

, the map z 7→ ψ ◦ f (a+bz) from an open subset of C to C is holomorphic where
defined [Muj86, Theorem 8.12].

• A locally uniform pointwise limit of holomorphic mappings is still holomorphic, by [Muj86,
Proposition 9.13].

3 Analyticity of the escape rate

Let Γ be a nonelementary δ -hyperbolic group, endowed with a word distance. Increasing δ if necessary,
we may assume that it is an integer.
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In this section, we prove that the map µ 7→ ℓ(µ) is analytic on P
+
1 (F), as stated in Theorem 1.1. We

will even prove the stronger statement given in Remark 1.6. Let α > 0. Denote by P(α) the complex
Banach space of measures µ such that ∑|µ(g)|eα |g| < ∞, with the corresponding norm ‖µ‖α . We will
show that µ 7→ ℓ(µ) is analytic on a neighborhood of the set P+

1 (α) ⊆ P(α) of admissible probability
measures.

The idea is to use (2.7). Thus, we need to exhibit a family of stationary probability measures on the
Busemann boundary ∂BΓ, depending analytically on µ .

We recall that we have defined a distance d on ∂BΓ in (2.2). We write Cβ for the space of β -Hölder
continuous function on (∂BΓ,d), with the norm

‖u‖Cβ = ‖u‖C0 + sup
ξ 6=ξ ′

|u(ξ )−u(ξ ′)|/d(ξ ,ξ ′)β .

.
The main result of this section is the following.

Theorem 3.1. Let α > 0 and β > 0. Let µ0 ∈ P
+
1 (α) be an admissible probability measure with a finite

moment of order α . Then there exist a neighborhood U of µ0 in P(α) and an analytic map Φ :U → (Cβ )∗

such that, for µ ∈ U ∩P
+
1 (α), the linear form Φ(µ) is given by the integration against a µ-stationary

measure on ∂BΓ.

Before proving this theorem, let us see how it implies the analyticity of the escape rate.

Corollary 3.2. The map u 7→ ℓ(µ), associating to µ ∈P
+
1 (α) its escape rate, extends to an analytic map

on a neighborhood in P(α) of any µ0 ∈ P
+
1 (α).

Proof. Take β < α . Let Φ(µ) be the functional constructed in Theorem 3.1, on a neighborhood U ⊆
P(α) of µ0 ∈ P

+
1 (α). For µ ∈ U ∩P

+
1 (α), the linear form Φ(µ) corresponds to integration against a

µ-stationary measure. Hence, (2.7) shows that the escape rate ℓ(µ) is given by

ℓ(µ) = ∑
g∈Γ

µ(g)Φ(µ)(ξ 7→ cB(g,ξ )). (3.1)

We claim that the expression on the right defines an analytic function on U . Let us first show that
the sum converges absolutely. We need to estimate the Cβ norm of ug : ξ 7→ cB(g,ξ ). As cB(·,ξ )
is 1-Lipschitz and cB(e,ξ ) = 0, we get |cB(g,ξ )| 6 |g|, i.e., ug is bounded in sup norm by |g|. If
d(ξ ,ξ ′) 6 e−|g|, we have ug(ξ )− ug(ξ

′) = 0. On the other hand, if d(ξ ,ξ ′) > e−|g|, we use the sup
norm bound by |g| to write

|ug(ξ )−ug(ξ
′)|/d(ξ ,ξ ′)β

6 2|g|/e−β |g|
6Ceα |g|,

where the last inequality follows as β < α . Hence, ‖ug‖Cβ 6Ceα |g|. It follows that

∑
g∈Γ

|µ(g)Φ(µ)(ug)|6 ∑
g∈Γ

|µ(g)|Ceα |g|
6C‖µ‖α .

This shows that the right hand side of (3.1) is well defined. Moreover, each such sum, when restricted
to a finite subset of Γ, is analytic. Since analytic functions are closed under uniform convergence, as we
recalled in Paragraph 2.3, it follows that the sum over Γ is also analytic.
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The rest of this section is devoted to the proof of Theorem 3.1 .
To µ ∈ P(α) is associated a convolution operator on ∂BΓ, and consequently an operator acting on

continuous functions. It is given by

Lµu(ξ ) = ∑
g

µ(g)u(g ·ξ ).

The stationary measure Φ(µ) of Theorem 3.1 will be constructed as an eigenfunction for the dual op-
erator L∗

µ acting on (Cβ )∗, for the eigenvalue 1. Eigenfunctions corresponding to isolated eigenvalues
which are simple depend analytically on the operator, hence we should understand the spectral properties
of L∗

µ or, equivalently, of Lµ .
The usual strategy, dating back to Le Page [LP82], is to prove the following contraction estimate:

sup
ξ ,ξ ′∈∂BΓ

∫

(

d(gξ ,gξ ′)
d(ξ ,ξ ′)

)β

dµ∗n(g)< 1, (3.2)

for some n > 0 and some β > 0. Such an estimate implies that Lµ has a simple eigenvalue at 1 and no
other eigenvalue of modulus > 1, see for instance [Bjö10] or [BQ14]. Unfortunately, such an inequality
can not hold in general in our context. For instance, in Γ = Fd ×Z/2Z, consider two horofunctions ξ
and ξ ′ coming from the two sheets Fd ×{0} and Fd ×{1}. Then gξ and gξ ′ are at distance 1 for any
g ∈ Γ, since they differ on the element e×1, at distance 1 of the origin. Hence, (3.2) is always equal to 1.
In this example, one can nevertheless hope that Lµ has contraction properties due to another mechanism,
maybe matching for instance gξ with g′ξ ′ for another group element g′.

In general, we will not obtain the contraction from an explicit contraction estimate such as (3.2), but
rather from a less explicit spectral argument.

Proposition 3.3. For µ ∈ P(α), the operator Lµ acts continuously on C0, and on Cβ when β 6 α . Its

operator norm is bounded by ‖µ‖α .

Proof. If µ has finite support, then Lµu is the sum of the continuous functions ξ 7→ µ(g)u(g·ξ ), bounded
by |µ(g)|. Hence, Lµ acts continuously on C0 with norm at most ∑|µ(g)| 6 ‖µ‖α . The general case
follows by density.

Suppose now that two horofunctions hξ and hξ ′ coincide on the ball B(e,N). Then the horofunctions
hgξ and hgξ ′ coincide at least on the ball B(e,N −|g|). Therefore,

d(gξ ,gξ ′)6 e|g|d(ξ ,ξ ′). (3.3)

Let u ∈Cβ . We have

|Lµu(ξ )−Lµu(ξ ′)|6 ∑|µ(g)||u(gξ )−u(gξ ′)|6 ∑|µ(g)|‖u‖Cβ d(gξ ,gξ ′)β

6 ∑|µ(g)|‖u‖Cβ eβ |g|d(ξ ,ξ ′)β = ‖µ‖β‖u‖Cβ d(ξ ,ξ ′)β

6 ‖µ‖α‖u‖Cβ d(ξ ,ξ ′)β .

This shows that Lµu is again β -Hölder continuous, with Hölder constant at most ‖µ‖α‖u‖Cβ .
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This computation does not give any contraction. To get contraction, we should show that d(gξ ,gξ ′)
is smaller than d(ξ ,ξ ′) for most g. Starting from the fact that two horofunctions hξ and hξ ′ coincide on a
ball B(e,N), we thus need to show that they coincide on a bigger ball centered at g−1. This is essentially
the content of the following lemma.

Lemma 3.4. Let h1 and h2 be two horofunctions, which coincide on a ball B(e,N). Let x∈B(e,N−10δ ).
Then h1 and h2 coincide on the ball B(x,N +h1(x)−10δ ).

This lemma is trivial for x = e, or more generally when h1(x) = −d(e,x): in this case, the ball
B(x,N + h1(x)− 10δ ) is included in B(e,N), where we already know that h1 and h2 coincide. On
the other hand, it gives new and useful information for instance when h1(x) is positive. This lemma
follows easily from the arguments in [CP01], as we explain now. The idea is that geodesics from a point
y ∈ B(x,N +h1(x)−10δ ) to the point at infinity directed by h1 have to enter B(e,N), hence the value of
h1 on y is determined by its values on B(e,N). The reader should keep this geometric picture in mind,
although the rigorous formalization in terms of Gromov products is rather tedious.

Proof. We will use the following easy inequality on Gromov products. For any u, v and w, one has
d(w,v)> d(w,u)−d(u,v). Hence

(u|v)w = (d(w,u)+d(w,v)−d(u,v))/2 > d(w,u)−d(u,v).

Take x ∈ B(e,N − 10δ ). As h1 is a horofunction, it is a pointwise limit of normalized distance
functions. Hence, we may take z with d(e,z) > 2N such that h1(y) = hz(y) for all y ∈ B(e,2N), where
hz(y) = d(z,y)−d(z,e). Write d(e,z) = M+N with M > N. Then

(e|x)z > d(z,e)−d(e,x) > M+N − (N −10δ ) = M+10δ .

Consider y ∈ B(x,N +h1(x)−10δ ). As d(z,x) = d(z,e)+hz(x) = M+N +h1(x), we obtain

(x|y)z > d(z,x)−d(y,x) > M+N +h1(x)− (N +h1(x)−10δ ) = M+10δ .

The inequality (2.1) characterizing hyperbolic spaces entails

(e|y)z > M+9δ . (3.4)

Consider a and b the points on geodesics from z to e and from z to y, at distance M +9δ of z. They
belong to Γ since δ ∈ N by assumption. Moreover, d(e,a) = N − 9δ . We have (e|a)z = M + 9δ and
(y|b)z = M+9δ . Combining these two inequalities with hyperbolicity, and using (3.4), we get

(a|b)z > M+7δ .

Hence,
d(a,b) = d(a,z)+d(b,z)−2(a|b)z 6 2(M+9δ )−2(M+7δ ) = 4δ .

In particular, d(b,e) 6 d(a,e)+4δ 6 N −5δ . This implies that b ∈ B(e,N), so that h1(b) = h2(b).
As b is on a geodesic segment from z to y, we have

h1(y) = hz(y) = hz(b)+d(b,y) = h1(b)+d(b,y).
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Moreover, as h2 is 1-Lipschitz, h2(y)6 h2(b)+d(b,y). This shows that h2(y)6 h1(y).
We have proved that h2 6 h1 on B(x,N + h1(x)− 10δ ). Since everything is symmetric, the reverse

inequality and the equality follow.

A weak form of contraction of the convolution operator (called a Doeblin-Fortet inequality) follows
using the standard trick of Le Page [LP82], as explained for instance in [BQ14, Lemma 12.6].

Lemma 3.5. Let µ ∈ P
+
1 (α). There exist n > 0, β 6 α/2, C > 0 and ρ < 1 such that, for any u ∈Cβ ,

‖Ln
µu‖Cβ 6 ρ‖u‖Cβ +C‖u‖C0 . (3.5)

Proof. Let β 6α/2. Fix n ∈N, and N > 0. As the sup norm control ‖Lµnu‖C0 6 ‖u‖C0 is trivial, we just
have to estimate the β -Hölder constant of Ln

µu. Given ξ and ξ ′, we should bound |Ln
µu(ξ )−Ln

µu(ξ ′)|.
If d(ξ ,ξ ′)> e−N , we simply write

|Ln
µu(ξ )−Ln

µu(ξ ′)|6 2‖Ln
µu‖C0 6 2‖u‖C0 6 d(ξ ,ξ ′)β ·2 · eβN‖u‖C0 .

This is compatible with the inequality we seek, for a large C > 2eβN .
Assume now that d(ξ ,ξ ′) = e−M 6 e−N , i.e., the two horofunctions hξ and hξ ′ coincide on the ball

B(e,M) with M > N. When |g| 6 N − 10δ , Lemma 3.4 implies that hξ and hξ ′ coincide on the ball
B(g−1,M+hξ (g

−1)−10δ ). We recall that g ·ξ satisfies hgξ (x) = hξ (g
−1x)−hξ (g

−1). Hence, hgξ and

hgξ ′ coincide on the ball B(e,M + hξ (g
−1)− 10δ ). This yields d(gξ ,gξ ′) 6 e10δ−hξ (g

−1)d(ξ ,ξ ′). If
|g|> N −10δ , we simply use the trivial inequality d(gξ ,gξ ′)6 e|g|d(ξ ,ξ ′) proved in (3.3) instead.

We obtain

|Ln
µu(ξ )−Ln

µu(ξ ′)|6 ∑
g

µ∗n(g)|u(gξ )−u(gξ ′)|6 ∑
g

µ∗n(g)‖u‖Cβ d(gξ ,gξ ′)β

6 ‖u‖Cβ d(ξ ,ξ ′)β

(

∑
|g|6N−10δ

µ∗n(g)eβ(10δ−hξ (g
−1))+ ∑

|g|>N−10δ

µ∗n(g)eβ |g|
)

.

If the term between parenthesis on the last line is bounded by ρ < 1, uniformly in ξ ∈ ∂BΓ, then we get
|Ln

µu(ξ )−Ln
µu(ξ ′)|6 ρ‖u‖Cβ d(ξ ,ξ ′)β , which is the desired bound for the pair ξ ,ξ ′.

Hence, to conclude, it suffices to obtain such a bound by ρ < 1 as above. It is even sufficient to
obtain it for N = ∞, since the same bound (with a slightly larger ρ ′ ∈ (ρ ,1)) then follows for any large
enough finite N. Finally, it suffices to find β 6 α/2 and n such that, uniformly in ξ ∈ ∂BΓ,

∑
g

µ∗n(g)eβ(10δ−hξ (g
−1))

6 ρ < 1. (3.6)

We use the inequality et 6 1+ t + t2e|t|. Moreover, there exists C such that t2 6Ceα |t|/2 for all real
t. Hence, the sum in the above equation is bounded by

∑
g

µ∗n(g)
(

1+β (10δ −hξ (g
−1))+β 2(10δ −hξ (g

−1))2eβ(10δ+|g|)
)

6 1−β

(

∑
g

µ∗n(g)(hξ (g
−1)−10δ )

)

+β 2C

(

∑
g

µ∗n(g)e(β+α/2)(10δ+|g|)
)

.
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When β 6 α/2, the last sum is finite and bounded by e10αδ‖µ∗n‖α . Hence, when β tends to 0, the
last term is O(β 2), and is negligible with respect to the first one, of order β . If the first term is strictly
negative, (3.6) follows for small enough β . Therefore, it suffices to show that

∑
g

µ∗n(g)(hξ (g
−1)−10δ )> K > 0, (3.7)

uniformly in ξ ∈ ∂BΓ. The term on the left of this equation looks closely like the escape rate of the
random walk, which is strictly positive. The difficulty is that we want a pointwise uniform inequality,
not an averaged version.

This kind of situation has already been encountered several times in the literature, hence efficient
tools are available. We recall for instance Theorem 2.9 in [BQ14]. Let Γ be a countable group acting
continuously on a compact space X , let µ be a probability measure on Γ, and let c : Γ×X → R be
a continuous cocycle, i.e., a continuous function satisfying c(g1g2,x) = c(g1,g2x)+ c(g2,x). Assume
that ∑g∈Γ µ(g)supx∈X |c(g,x)| < ∞. Assume also that there exists ℓ ∈ R such that, for any µ-stationary
probability measure ν on X ,

∫

Γ×X c(g,x)dµ(g)dν(x) = ℓ. Then, as n → ∞,

1
n

∑
g∈Γ

µ∗n(g)c(g,x) → ℓ,

uniformly in x ∈ X .
We will apply this statement to the Busemann cocycle on X = ∂BΓ, given by cB(g,ξ ) = hξ (g

−1). In
this case, for any stationary measure ν on ∂BΓ, (2.7) states that

∫

X
cB(g,ξ )dµ(g)dν(ξ ) = ℓ.

Hence, we deduce from [BQ14, Theorem 2.9] that

1
n

∑
g∈Γ

µ∗n(g)cB(g,ξ )→ ℓ, uniformly in ξ ∈ ∂BΓ.

As µ is admissible and Γ is non-amenable, ℓ > 0. Hence, if n is large enough, we have for all ξ ∈ ∂BΓ

the inequality

∑
g

µ∗n(g)hξ (g
−1)> nℓ/2.

This implies (3.7) if n is large enough so that nℓ/2 > 10δ .

The group Γ acts continuously on the compact set ∂BΓ. By Zorn’s lemma, there exists a nonempty
compact invariant subset of ∂BΓ which is minimal among such sets. It is simply called a minimal subset
of ∂BΓ. An essential feature of such a set ∂ ′

BΓ is that, for any x ∈ ∂ ′
BΓ, then Γx is dense in ∂ ′

BΓ. Indeed,
otherwise, the closure of Γx would be a nonempty compact invariant strict subset of ∂ ′

BΓ, contradicting
its minimality.

Proposition 3.6. Let µ ∈ P
+
1 (α). Consider a nonempty compact subset ∂ ′

BΓ ⊆ ∂BΓ which is minimal

for the Γ-action. Then, for small enough β , the operator Lµ acting on Cβ (∂ ′
BΓ) has a simple eigenvalue

at 1, finitely many eigenvalues of modulus 1 (they are simple and do not have nontrivial Jordan blocks)

and the rest of its spectrum is contained in a disk D(0,r) for some r < 1.
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Proof. In the proof, we let Lµ act on Cβ (∂ ′
BΓ). On this space, the estimates of Lemma 3.5 readily follow

from the corresponding ones on Cβ (∂BΓ). Let n and β be given by Lemma 3.5. In the inequality (3.5),
the term ρ‖u‖Cβ heuristically corresponds to a part of Lµ with spectral radius at most ρ1/n, while the
term C‖u‖C0 would come from a compact part (as the inclusion of Cβ in C0 is compact), which should
only add discrete eigenvalues. This intuition is made precise by a theorem of Hennion [Hen93]: It entails
that (3.5) implies that the spectrum of Lµ in {z ∈C : |z|> ρ1/n} is made of isolated eigenvalues of finite
multiplicity.

In particular, by discreteness, there are finitely many eigenvalues of modulus > 1, and the rest of
the spectrum is contained in a disk D(0,r) for some r < 1. As the iterates of Lµ on C0 are uniformly
bounded, there is no eigenvalue with modulus > 1. Moreover, the eigenvalues of modulus 1 have no
Jordan block.

Let u be a nonzero eigenfunction of Lµ for an eigenvalue ρ of modulus 1. Then v = |u| satisfies

v = |u|= |Lk
µu|6 Lk

µ |u|= Lk
µv. (3.8)

Consider ξ ∈ ∂ ′
BΓ such that v(ξ ) is maximal. Then the previous inequality implies that v(gξ ) = v(ξ )

for all g in the semigroup generated by the support of µ . By admissibility, this is true for all g ∈ Γ. The
orbit of ξ is dense in ∂ ′

BΓ by minimality. Thus, v is constant.
The equality in (3.8) also implies that all the complex numbers u(gξ ) for g ∈ supp(µ∗k) have the

same phase. Hence, u is constant on (supp µ∗k)ξ .
We claim that

there exists N > 0 with µ∗N(e)> 0. (3.9)

Indeed, fix x 6= e. Then, by admissibility, there is ℓ1 > 0 such that µ∗ℓ1(x) > 0, and ℓ2 > 0 such that
µ∗ℓ2(x−1)> 0. Then µ∗(ℓ1+ℓ2)(e)> 0.

Fix such an N. Then, for any j, the sequence (supp µ∗(kN+ j))(ξ ) increases with k, towards a limiting
set A j ⊆ ∂ ′

BΓ. The function u is constant on each set A j. Moreover, for j ∈Z/NZ, one has (supp µ) ·A j =
A j+1. As Lµu = ρu, it follows that ρu|A j

= u|A j+1
. Finally, one gets u(x) = ρ ju(ξ ) for x ∈ A j. As

⋃

j A j = ∂ ′
BΓ by minimality, this shows that u is determined by its value at ξ , and therefore that the

ρ-eigenspace is at most 1-dimensional.
For ρ = 1, the eigenspace is exactly 1-dimensional, as it contains the constant functions.

Example. On Γ = F2 ×Z/2Z, consider the uniform measure µ on (e,1), (a,1), (a−1,1), (b,1) and
(b−1,1), where a and b are the canonical generators of F2. It is admissible. Let ν denote its (unique)
stationary measure on the Gromov boundary ∂Γ ≃ ∂F2. The Busemann boundary ∂BΓ is canonically
isomorphic to ∂F2 ×Z/2Z, and the Γ action on ∂BΓ is minimal. Write ν0 and ν1 for ν ⊗δ0 and ν ⊗δ1.
As the measure µ exchanges the sheets F2 ×{0} and F2 ×{1}, the operator (Lµ)

∗ maps ν0 to ν1 and
ν1 to ν0. Dually, denoting by ui the characteristic function of ∂F2 ×{i} for i = 0,1, the operator Lµ

maps u0 to u1 and u1 to u0. The constant function u = u0 +u1 = 2 is invariant under Lµ . Moreover, this
operator also has a simple eigenvalue at −1, for the eigenfunction u0 −u1. There is no other eigenvalue
of modulus 1. Dually, the measure ν0 +ν1 is an eigenmeasure of (Lµ)

∗ for the eigenvalue 1 and ν0 −ν1

is an eigenmeasure for the eigenvalue −1.

Proof of Theorem 3.1. It suffices to prove the theorem for small enough β , as (Cβ )∗ ⊆ (Cβ ′
)∗ when β 6

β ′. We will use basic results of spectral theory in Banach spaces, as explained for instance in [Kat66].
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Take µ0 ∈P
+
1 (α). Proposition 3.6 applies to µ0. Hence, for small enough β , one can decompose the

space Cβ (∂ ′
BΓ) as a direct sum of finite-dimensional eigenspaces Eρ associated to eigenvalues ρ with

modulus 1, and an infinite-dimensional subspace E<1 on which Ln
µ0

tends exponentially fast to 0. Let
Πµ0 be the eigenprojection for the eigenvalue 1, i.e., the projection on E1 with kernel E<1 ⊕

⊕

ρ 6=1 Eρ .

Then we claim that, for any u ∈Cβ (∂ ′
BΓ),

1
k

k−1

∑
i=0

Li
µ0

u → Πµ0u. (3.10)

Indeed, this is clear on each Eρ and on E separately, and the general result follows. By [Kat66], the
projection Πµ0 is also given by the formula

Πµ0u =
1

2iπ

∫

C

(zI −Lµ0)
−1 dz, (3.11)

where C is any small enough circle around 1.
The map µ 7→ Lµ is linear and continuous by Proposition 3.3 (and therefore analytic). For µ close

enough to µ0, the operator Lµ is close to Lµ0 . Hence, the spectral description given by Proposition 3.6
for Lµ0 persists for Lµ by spectral continuity results for isolated simple eigenvalues, see [Kat66]: the
operator Lµ has a unique eigenvalue close to 1, it is simple, and the corresponding spectral projection
Πµ is given by the formula (3.11) (with µ0 replaced by µ). Moreover, µ 7→ Πµ is analytic. When
µ ∈ P

+
1 (α), the operator Lµ is a convolution operator with a probability measure, hence Lµ1 = 1. In

particular, the corresponding eigenvalue is 1.
Let ξ0 ∈ ∂ ′

BΓ. We define a linear form Φ(µ) on Cβ (∂ ′
BΓ), for µ close to µ0, by Φ(µ)(u) = (Πµu)(ξ0).

Then µ 7→ Φ(µ) is analytic from U to (Cβ (∂ ′
BΓ))∗. As Hölder functions on ∂BΓ restrict to Hölder

functions on ∂ ′
BΓ, Φ(µ) can be considered as a linear form on Cβ (∂BΓ). Equivalently, we implicitly

compose Φ(µ) with the continuous inclusion (Cβ (∂ ′
BΓ))∗ ⊆ (Cβ (∂BΓ))∗. Hence, Φ(µ) ∈ (Cβ (∂BΓ))∗.

It remains to show that the linear form Φ(µ) is the integration against a stationary probability mea-
sure on ∂ ′

BΓ when µ ∈ P
+
1 (α). In this case, Φ(µ)(u) is again given by the formula (3.10) (with µ0

replaced by µ), as the above discussion also applies to µ . For any nonnegative Hölder function u, one
gets 06 Φ(µ)(u)6 ‖u‖C0 . By Stone-Weierstrass theorem, Hölder functions are dense in C0. We deduce
that Φ(µ) extends to a positive linear form on continuous functions, i.e., a positive measure on ∂ ′

BΓ. As
Φ(µ)1 = 1, it is a probability measure. Finally, as Φ(µ)(Lµu) = Φ(µ)(u), it is stationary.

4 Analyticity of the entropy

Let Γ be a nonelementary hyperbolic group. We fix once and for all a finite subset F of Γ. We denote by
P(F) the set of functions µ : F → C, and by P

+
1 (F) its subset made of admissible probability measures.

We also fix a reference measure µ0 ∈ P
+
1 (F). Note that the support of µ0 may be a proper subset of F .

In this section, we prove the entropy part of Theorem 1.1:

Theorem 4.1. The map µ 7→ h(µ), associating to µ ∈ P
+
1 (F) its entropy, extends to an analytic map on

a neighborhood of µ0 in P(F).

The idea is to start from (2.10), and to show that the lift KB
µ (x,ξ ) of the Martin kernel to the Buse-

mann boundary depends analytically on µ .
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4.1 Strong Ancona inequalities

A fundamental tool to study the Green function and the Martin kernel in hyperbolic groups is an inequal-
ity due to Ancona, showing that the Green function is essentially multiplicative along geodesics. In
other words, typical trajectories of the random walk tend to follow geodesics. We will use repeatedly a
quantitative version of such inequalities, that we describe in this paragraph. As it should hold uniformly
on a neighborhood of µ0, we first describe such a convenient neighborhood.

As Γ is non-amenable, the spectral radius of the convolution operator by µ0 on ℓ2(Γ) is < 1. We fix
ε0 > 0 small enough so that the measure µ̄ = µ0 + ε0 ∑g∈F δg also has a spectral radius < 1.

We denote by Ū ⊆ P(F) the set of functions supported on F with |µ(g)−µ0(g)| 6 ε0 for all g ∈ F ,
and by U its interior. We also write Ū+ for the nonnegative elements of Ū , and Ū+

1 for the admissible
probability measures in Ū . As all functions in Ū are dominated by µ̄ , they all have a spectral radius < 1,
uniformly. Moreover, the Green function (defined in (2.8)) of µ ∈ Ū+ satisfies

Gµ(x,y) 6 Gµ̄(x,y)

for all x,y ∈ Γ.
If ε0 is small enough, all measures µ ∈ Ū+ satisfy µ(g) > µ0(g)/2 for all g ∈ supp µ0. As µ0 is

admissible, it follows that Gµ(x,y)> e−Cd(x,y) for all x,y ∈ Γ, uniformly in µ . As trajectories from x to y

and trajectories from y to z can be concatenated to form trajectories from x to z, we deduce the following
Harnack inequalities, uniformly in x,y,z ∈ Γ and µ ∈ Ū+:

e−Cd(x,y)
6

Gµ(x,z)

Gµ(y,z)
6 eCd(x,y), e−Cd(y,z)

6
Gµ(x,y)

Gµ(x,z)
6 eCd(y,z). (4.1)

For µ ∈ Ū+, we say that a function u : Γ → R is µ-harmonic in a domain A of Γ if, for all x ∈ A,

u(x) =∑
g

µ(g)u(xg).

For instance, the Green function x 7→ Gµ(x,y) is µ-harmonic on Γ\{y}.

Consider a geodesic γ in Γ, with length D > 0, from x0 = γ(0) to y0 = γ(D). We define a domain
of points close to the beginning of γ as I−(γ) = {x ∈ Γ : (x0|x)y0 > D− 10δ}. In the same way, let
I+(γ) = {y ∈ Γ : (y0|y)x0 > D−10δ}.

The quantitative Ancona inequalities we will use are the following:

Proposition 4.2. There exist C > 0 and D0 such that, for all µ ∈ Ū+, the following holds. Let γ be a

geodesic segment in Γ, with length D > D0. Let u and v be two nonnegative functions on Γ which satisfy

the following outside of I+(γ): they are strictly positive, µ-harmonic, and bounded by a finite linear

combination of functions Gµ(·,y) where y ∈ I+(γ). Then, for all x,x′ ∈ I−(γ)

∣

∣

∣

∣

u(x)/u(x′)
v(x)/v(x′)

−1

∣

∣

∣

∣

6Ce−C−1D.
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Proof. This follows from the arguments in [GL13b]. Indeed, the conclusion of Lemma 4.4 there is a
consequence of the fact that the spectral radius is bounded away from 1 on Ū+. Then all the arguments
up to the end of Theorem 4.6 apply verbatim, even for general µ-harmonic functions. Note that, while
it is assumed in the statements of [GL13b] that the measure is symmetric, this is only used in the proof
of Lemma 4.4 there (which is trivial in our context, even without symmetry).

One important tool in this proof is the Ancona inequality (Theorem 4.1 in [GL13b]), saying that the
Green function is multiplicative up to a constant along geodesics. We will use the following version:

Lemma 4.3. For any K > 0, there exists C > 0 with the following property. Let µ ∈ Ū+. Consider three

points x, y, z in Γ such that z is within distance K of a geodesic segment between x and y. Then

C−1Gµ(x,z)Gµ (z,y) 6 Gµ(x,y) 6CGµ(x,z)Gµ (z,y).

To illustrate the use of Proposition 4.2, let us explain how, conversely, it implies Ancona inequalities.
We stress that this is not the logical order, as the proof of Proposition 4.2 uses the lemma.

Proof. By Harnack inequalities, it suffices to prove the lemma when K = 0, i.e., z belongs to a geodesic
between x and y.

If z is D0-close to x or y, then Ancona inequalities are trivial thanks to Harnack inequalities (4.1).
Otherwise, along a geodesic from x to y containing z, consider the point x0 between x and z at distance
D = D0 of z, and similarly the point y0 between z and y with d(z,y0) = D0. Let γ be the restriction of
the geodesic to [x0y0]. Then x,x0 ∈ I−(γ) and y,y0 ∈ I+(γ). The functions u = Gµ(·,y) and v = Gµ(·,y0)
satisfy the assumptions of the proposition. We deduce

∣

∣

∣

∣

Gµ(x,y)/Gµ (x0,y)

Gµ(x,y0)/Gµ(x0,y0)
−1

∣

∣

∣

∣

6Ce−C−1D0 .

In particular, the fraction is bounded. As x0 and y0 are within bounded distance of z, this fraction
coincides, up to a multiplicative constant, with

Gµ(x,y)/Gµ (z,y)

Gµ(x,z)/Gµ (z,z)
.

Its boundedness shows that Gµ(x,y) 6 CGµ(x,z)Gµ (z,y). Conversely, the other inequality Gµ(x,y) >
C−1Gµ(x,z)Gµ (z,y) is trivial since trajectories from x to z and from z to y can be concatenated to form
trajectories from x to y.

Remark 4.4. Proposition 4.2 applies to the Martin kernel x 7→ Kµ(x,ξ ) when ξ /∈ Γ\ I+(γ). It is µ-
harmonic and positive everywhere, what remains to be checked is that it is bounded by CGµ(x,y0). Let
yn ∈ I+(γ) tend to ξ . Then a geodesic from x to yn passes within bounded distance of y0, uniformly in n

and in x in Γ\ I+(γ). Thus, Ancona inequalities give

Gµ(x,yn)6CGµ(x,y0)Gµ(y0,yn).

By Harnack inequalities, Gµ(y0,yn)6CGµ(e,yn). Hence,

Gµ(x,yn)/Gµ(e,yn)6CGµ(x,y0).

Letting n tend to infinity, we obtain Kµ(x,ξ )6CGµ(x,y0) as desired.
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When A is a subset of Γ and µ ∈ Ū+, we define the relative Green function Gµ(x,y;A) as the sum of
µ-probabilities of paths from x to y that stay in A except possibly at the first and last step, i.e.,

Gµ(x,y;A) = ∑
n>0

∑
x0=x,x1 ,...,xn=y

x1,...,xn−1∈A

µ(x−1
0 x1) · · ·µ(x−1

n−1xn).

The function x 7→ Gµ(x,y;A) is harmonic on the set of points x that are different from y and can not
jump outside of A in one step. It is bounded by Gµ(x,y). Hence, Proposition 4.2 applies to relative
Green functions on suitable domains. One has Gµ(x,y;Γ) = Gµ(x,y).

4.2 The Martin kernel as a fixed point

To prove that the entropy depends analytically on the measure, using (2.10), we should show that the
lifted Martin kernel KB

µ depends analytically on µ . As we explained in the introduction, our strategy is
to exhibit KB

µ as the fixed point of a suitable operator, and conclude using the implicit function theorem.
We will now introduce this operator, first formally. Let N > 0 be large enough, only depending

on the subset F of Γ in which the measures we consider are supported. To ξ ∈ ∂BΓ, we associate
a point a(ξ ) ∈ Γ with |a(ξ )| = N which, heuristically, points in the direction of ξ . We require that
hξ (a(ξ )) =−N and that a(ξ ) only depends on the restriction of hξ to B(e,N). We also associate to ξ a
set of points in Γ denoted by Λ(ξ ) = Λ0(ξ ), which only depends on the restriction of hξ to B(e,N) and
contains the points “far away from ξ ”. More precisely, let

Λ(ξ ) = {g ∈ Γ : (a(ξ )|g)e 6 N/4}.

If N is large enough, F and F−1 are included in Λ(ξ ) for every ξ . We will also need a slightly larger set

Λ′(ξ ) = {g ∈ Γ : (a(ξ )|g)e 6 N/2}.

Given ξ ∈ ∂BΓ, there is now a canonical way to go towards ξ at infinity, starting from the identity e.
First, we jump to a1 = a(ξ ). Then, to a2 = a1 ·a(a−1

1 ξ ). Then, to a3 = a2 ·a(a−1
2 ξ ), and so on. To this

process correspond nested sets

Λ(ξ ) = Λ0(ξ )⊂ Λ1(ξ ) = a1Λ(a−1
1 ξ )⊂ Λ2(ξ ) = a2Λ(a−1

2 ξ )⊂ . . .

covering more and more the group. The successive boundaries of these sets form a sequence of barriers
between e and ξ . Let also Λ′

k(ξ ) = akΛ′(a−1
k ξ ). The complements of Λi(ξ ) and Λ′

i(ξ ) are essentially
horoballs centered at πBξ , at distance respectively iN +N/4 and iN +N/2 of e.

Let µ ∈ Ū+. Consider a nonnegative function u on Γ which is, on Λ′(ξ ), positive, harmonic, and
bounded by a finite linear combination of functions Gµ(·,yi) with yi /∈ Λ′(ξ ). It is classical that such a
function satisfies

u(x) = ∑
y/∈Λ′(ξ )

Gµ(x,y;Λ′(ξ ))u(y). (4.2)

Indeed, by harmonicity, u(x) = ∑y µ(x−1y)u(y). One can then apply again this formula to all the y which
are still in Λ′(ξ ), and repeat this algorithm up to time n. If µ is a probability measure, this amounts to
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considering the random walk starting from x, stopped once it exits Λ′(ξ ), and saying that the average
value of u along this process does not change by harmonicity. We get a formula u(x) = ∑y Fn(y)u(y),
where for y /∈ Λ′(ξ )

Fn(y) = ∑
i6n

∑
x0=x,x1,...,xi=y
x1,...,xi−1∈Λ′(ξ )

µ(x−1
0 x1) · · ·µ(x−1

i−1xi)

converges to Gµ(x,y;Λ′(ξ )) when n tends to ∞. On the other hand, for y ∈ Λ′(ξ ),

Fn(y) = ∑
x0=x,x1,...,xn=y
x1,...,xn−1∈Λ′(ξ )

µ(x−1
0 x1) · · ·µ(x−1

n−1xn).

One should show that the contribution of these points to the equality u(x) =∑y Fn(y)u(y) tends to 0 when
n tends to ∞. This follows from the domination condition u(x)6C ∑Gµ(x,yi), since this contribution is
then bounded by the tails of the series defining the Green function, which tend to 0 as the series is finite.

Remark 4.5. The lifted Martin kernel KB
µ (·,ξ ) = Kµ(·,πBξ ) is bounded on Λ′(ξ ) by CGµ(·,y0) for any

y0 /∈ Λ′(ξ ), see Remark 4.4. Hence, it satisfies (4.2).

In the formula (4.2), the points y /∈ Λ′(ξ ) with a nonzero coefficient Gµ(x,y;Λ′(ξ )) are within
bounded distance of Λ′(ξ ), as the walk has bounded jumps. In particular, if N is large enough, they
are all included in Λ1(ξ ). Thus, this formula can also be written as

u(x) = ∑
y∈Λ1(ξ )\Λ′(ξ )

Gµ(x,y;Λ′(ξ ))u(y).

This shows how the values of u on Λ0(ξ ) are determined by its values on Λ1(ξ ). This formula entails
that harmonic functions are fixed point of an operator, which has contracting properties thanks to the
good behavior of the kernel Gµ(x,y;Λ′(ξ )) coming from Ancona inequalities. Ultimately, this should
provide a tractable analytic characterization of the Martin kernel.

We convert this heuristic discussion into a true operator Mµ , defined for any µ ∈ Ū . It acts on
scalar-valued functions f (x,ξ ) defined on pairs (x,ξ ) with ξ ∈ ∂BΓ and x ∈ Λ(ξ ), by the formula

Mµ f (x,ξ ) = ∑
y∈Λ1(ξ )\Λ′(ξ )

Gµ(x,y;Λ′(ξ )) f (a(ξ )−1y,a(ξ )−1ξ ). (4.3)

Note that the right-hand side is well defined as the point (a(ξ )−1y,a(ξ )−1ξ ) belongs to the domain of
definition of f , i.e., a(ξ )−1y ∈ Λ(a(ξ )−1ξ ), thanks to the condition y ∈ Λ1(ξ ).

To get a fixed point, we should projectivize this operator, normalizing for instance so that the value
at (e,ξ ) is always 1. Hence, let

Lµ f (x,ξ ) =Mµ f (x,ξ )/Mµ f (e,ξ ).

This is not defined when Mµ f (e,ξ ) = 0 for some ξ . We should also ensure that the sums in the definition
of Mµ are finite.

The contraction properties of this operator are central to the proof of strong Ancona inequalities
(Proposition 4.2): For µ ∈ Ū+, these inequalities are obtained by letting this operator act on a cone of
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positive functions, endowed with a Hilbert distance. To apply the implicit function theorem, we will
rather need contraction on a Banach space, that we will deduce from Proposition 4.2. Hence, we will
not reprove Proposition 4.2, but rather use its results to obtain another form of contraction.

The iterates of Mµ (whence of Lµ ) have the same form. Indeed,

M
2
µ f (x,ξ ) = ∑

y/∈Λ′(ξ )

Gµ(x,y;Λ′(ξ ))Mµ f (a(ξ )−1y,a(ξ )−1ξ )

= ∑
y/∈Λ′(ξ )

Gµ(x,y;Λ′(ξ )) ∑
z/∈Λ′(a(ξ )−1ξ )

Gµ(a(ξ )
−1y,z;Λ′(a(ξ )−1ξ ))×

× f (a(a(ξ )−1ξ )−1z,a(a(ξ )−1ξ )−1a(ξ )−1ξ ).

Let w = a(ξ )z, it belongs to the complement of Λ′
1(ξ ). Moreover,

Gµ(a(ξ )
−1y,z;Λ′(a(ξ )−1ξ )) = Gµ(y,w;Λ′

1(ξ )).

Decomposing a trajectory from x ∈ Λ(ξ ) to w according to the first point where it exits Λ′(ξ ), we have

∑
y/∈Λ′(ξ )

Gµ(x,y;Λ′(ξ ))Gµ(y,w;Λ′
1(ξ )) = Gµ(x,w;Λ′

1(ξ )).

Recalling that a2(ξ ) = a(ξ ) ·a(a(ξ )−1ξ ), the above formula for M2
µ f (x,ξ ) becomes

M
2
µ f (x,ξ ) = ∑

w/∈Λ′
1(ξ )

Gµ(x,w;Λ′
1(ξ )) f (a2(ξ )

−1w,a2(ξ )
−1ξ ).

The only points with a nonzero coefficient Gµ(x,w;Λ′
1(ξ )) belong to Λ2(ξ ). Hence, the sum may be

restricted to w ∈ Λ2(ξ )\Λ′
1(ξ ).

In the same way, iterating this argument, one obtains

M
n
µ f (x,ξ ) = ∑

y∈Λn(ξ )\Λ′
n−1(ξ )

Gµ(x,y;Λ′
n−1(ξ )) f (an(ξ )

−1y,an(ξ )
−1ξ ). (4.4)

Finally, as the projectivization commutes with the iteration of Mµ ,

L
n
µ f (x,ξ ) =M

n
µ f (x,ξ )/Mn

µ f (e,ξ ).

We define different norms on these functions. Let µ ∈ Ū+. We set

‖ f‖
C0

µ
= sup

ξ

sup
x∈Λ(ξ )

| f (x,ξ )|/Gµ(x,e)

and, for small β > 0,

‖ f‖′
C

β
µ
= sup

d(ξ ,ξ ′)6e−N

d(ξ ,ξ ′)−β sup
x∈Λ(ξ )=Λ(ξ ′)

| f (x,ξ )− f (x,ξ ′)|/Gµ(x,e).
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Finally, let ‖ f‖
C

β
µ
= ‖ f‖

C0
µ
+‖ f‖′

C
β
µ
. As these are Hölder-like norms, one checks easily that these spaces

are Banach algebras: if f1, f2 ∈ C
β
µ , then f1 f2 ∈ C

β
µ and

‖ f1 f2‖
C

β
µ
6 ‖ f1‖Cβ ‖ f2‖Cβ .

The same holds in C0
µ .

Remark 4.6. Take x ∈ Λ(ξ ). Then a geodesics from x to πBξ passes within uniformly bounded distance
of e. By Ancona inequalities, we obtain Gµ(x,y)/Gµ (e,y)≍ Gµ(x,e) if y is close to πBξ . Letting y tend
to πBξ yields

Gµ(x,e) ≍ KB
µ (x,ξ ) uniformly in ξ ∈ ∂BΓ and x ∈ Λ(ξ ).

Hence, in the definitions of the norms for C0
µ and C

β
µ , we could have normalized by KB

µ (x,ξ ) instead of
Gµ(x,e), obtaining an equivalent norm.

This also implies that, if d(ξ ,ξ ′) 6 e−N (ensuring that Λ(ξ ) = Λ(ξ ′)), then KB
µ (x,ξ ) ≍ KB

µ (x,ξ
′)

uniformly on x ∈ Λ(ξ ).

If we want to study a fixed operator Lµ with µ ∈ Ū+, the space C
β
µ is most natural. However, we

want to vary µ in U . Hence, we need a reference space, independent of µ . We recall that we have a
measure µ̄ which dominates all measures µ ∈U . The spaces Cβ

µ are all included in C
β
µ̄ . Hence, we can

use the latter as a fixed reference space. We will simply write C0 = C0
µ̄ and Cβ = C

β
µ̄ .

Lemma 4.7. For µ ∈ Ū and small enough β , the operator Mµ sends continuously Cβ into itself. If

µ ∈ Ū+, it even sends Cβ into C
β
µ . Moreover, the map (µ , f ) 7→Mµ f is analytic from U ×Cβ to Cβ .

Proof. Consider f ∈ Cβ and µ ∈ Ū+. Then

|Mµ f (x,ξ )| 6 ∑
y∈Λ1(ξ )\Λ′(ξ )

Gµ(x,y;Λ′(ξ ))| f (a(ξ )−1y,a(ξ )−1ξ )|

6 ∑
y∈Λ1(ξ )\Λ′(ξ )

Gµ(x,y)Gµ̄ (a(ξ )
−1y,e)‖ f‖

C0 .

As x ∈ Λ(ξ ) and y /∈ Λ′(ξ ), a geodesics from x to y passes within bounded distance of e. Hence, by
Ancona inequalities (Lemma 4.3),

Gµ(x,y) 6CGµ(x,e)Gµ (e,y) 6CGµ(x,e)Gµ̄ (e,y).

Moreover, Gµ̄(a(ξ )
−1y,e) =Gµ̄(y,a(ξ ))6CGµ̄(y,e) as a(ξ ) is a bounded distance away from e. Hence,

|Mµ f (x,ξ )|6C ∑
y∈Γ

Gµ(x,e)Gµ̄ (e,y)Gµ̄ (y,e)‖ f‖
C0 .

Factorizing Gµ(x,e)‖ f‖
C0 , we are left with the sum ∑y Gµ̄(e,y)Gµ̄ (y,e). Since the spectral radius of

µ̄ is < 1 by construction, the map r 7→ Grµ̄(e,e) is well defined and analytic on a neighborhood of
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1. In particular, Gµ̄(e,e) + ∂Grµ̄(e,e)/∂ r|r=1 is finite. By an elementary computation (see [GL13b,
Proposition 1.9]), this is equal to ∑y Gµ̄(e,y)Gµ̄ (y,e). Hence, this sum is finite. This shows that

‖Mµ f‖
C0

µ
6C‖ f‖

C0 .

Let us now control the Hölder norm. Consider ξ ,ξ ′, write d(ξ ,ξ ′) = e−n. If n 6 2N, then

∣

∣Mµ f (x,ξ )−Mµ f (x,ξ ′)
∣

∣/(d(ξ ,ξ ′)β Gµ(x,e)) 6 e2Nβ (
∣

∣Mµ f (x,ξ )
∣

∣+
∣

∣Mµ f (x,ξ ′)
∣

∣)/Gµ(x,e)

6Ce2Nβ‖ f‖
C0 ,

by the sup norm control we have already proved. Assume now that n > 2N. This entails Λ(ξ ) = Λ(ξ ′),
and a(ξ ) = a(ξ ′), and Λ(a(ξ )−1ξ ) = Λ(a(ξ ′)−1ξ ′). Then, for x ∈ Λ(ξ ) = Λ(ξ ′),

|Mµ f (x,ξ )−Mµ f (x,ξ ′)|

=

∣

∣

∣

∣

∣

∑
y∈Λ1(ξ )\Λ′(ξ )

Gµ(x,y;Λ′(ξ ))( f (a(ξ )−1y,a(ξ )−1ξ )− f (a(ξ ′)−1y,a(ξ ′)−1ξ ′))

∣

∣

∣

∣

∣

6 ∑
y∈Λ1(ξ )\Λ′(ξ )

Gµ(x,y)d(a(ξ )
−1ξ ,a(ξ )−1ξ ′)β Gµ̄(a(ξ )

−1y,e)‖ f‖′
Cβ .

As above, this is bounded by

CGµ(x,e)d(a(ξ )
−1ξ ,a(ξ )−1ξ ′)β‖ f‖′

Cβ 6CeβNGµ(x,e)d(ξ ,ξ
′)β‖ f‖′

Cβ ,

by (3.3). This shows that Mµ maps continuously Cβ into C
β
µ when µ ∈ Ū+.

When µ ∈U , we show in the same way that Mµ maps continuously Cβ into itself. The computation
is the same, excepted that Gµ is not positive any more. Hence, one should bound |Gµ(x,y)| by Gµ̄(x,y)
at the beginning of the computation, and then proceed in the same way.

The map F : (µ , f ) 7→Mµ f on Cβ is linear in f . To prove that it is analytic, we should control its
dependence on µ . Each function µ 7→ Gµ(x,y;Λ′(ξ )) is a limit of a degree K polynomial, obtained by
considering the weight of trajectories of length at most K. Moreover, the corresponding K-truncated
operators all satisfy the same bounds as F , since the above computations apply. Hence, F is the uniform
limit of analytic operators FK . As analyticity is stable under uniform convergence (see Paragraph 2.3), it
follows that F itself is analytic.

Corollary 4.8. Let µ1 ∈U and f1 ∈ Cβ satisfy Mµ1 f1(e,ξ ) 6= 0 for all ξ . Then the operator (µ , f ) 7→
Lµ f is well defined and analytic from a neighborhood of (µ1, f1) in U ×Cβ , to Cβ .

Proof. The operator to be studied is the composition of the operators (µ , f ) 7→ Mµ f and N : f 7→
f̃ (x,ξ ) = f (x,ξ )/ f (e,ξ ). The first one is well defined and analytic by Lemma 4.7. Hence, it suffices to
show that N is well defined and analytic on the open set Dβ ⊆ Cβ of functions f with f (e,ξ ) 6= 0 for all
ξ .
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Let us first check that, if f ∈ Dβ , then N f ∈ Cβ . The supremum condition is obvious since
1/| f (e,ξ )| is uniformly bounded, by compactness of ∂BΓ and continuity. We check the Hölder con-
dition. We have

|N f (x,ξ )−N f (x,ξ ′)|= | f (x,ξ )/ f (e,ξ )− f (x,ξ ′)/ f (e,ξ ′)|
6C| f (x,ξ ) f (e,ξ ′)− f (e,ξ ) f (x,ξ ′)|
6C| f (x,ξ )− f (x,ξ ′)|| f (e,ξ ′)|+C| f (x,ξ ′)|| f (e,ξ ′)− f (e,ξ )|.

The first term is bounded by Cd(ξ ,ξ ′)β Gµ̄(x,e). In the second one, we have | f (x,ξ ′)|6CGµ̄(x,e) and
| f (e,ξ ′)− f (e,ξ )|6Cd(ξ ′,ξ )β , hence we obtain the same bound. This shows that N f ∈ Cβ .

For the analyticity, let us fix f ∈Dβ . For small h ∈ Cβ ,

N( f +h)(x,ξ ) =
( f +h)(x,ξ )

( f +h)(e,ξ )
=

( f +h)(x,ξ )

f (e,ξ ) ∑(−1)n(h/ f )(e,ξ )n.

This power series converges on a ball with positive radius, as Cβ is a Banach algebra.

In the same way, one proves the following:

Corollary 4.9. Let µ ∈ Ū+ and f1 ∈ Cβ satisfy Mµ f1(e,ξ ) 6= 0 for all ξ . Then the operator f 7→ Lµ f

is well defined and analytic from a neighborhood of f1 in Cβ , to C
β
µ .

Proof. The operator Lµ is the composition of Mµ and N : f 7→ f̃ (x,ξ ) = f (x,ξ )/ f (e,ξ ). The first

one is linear from Cβ to C
β
µ by Lemma 4.7, the second one is analytic as we explained in the proof of

Corollary 4.8 (on Cβ , but the same proof works in C
β
µ). Hence, their composition is analytic.

Lemma 4.10. For small enough β and for µ ∈ Ū+, the function (x,ξ ) 7→ KB
µ (x,ξ ) belongs to Cβ .

Proof. By (4.6), KB
µ (x,ξ )≍Gµ(x,e) uniformly in ξ ∈ ∂BΓ and x∈Λ(ξ ). Moreover, Gµ(x,e)6Gµ̄(x,e).

This proves that ‖KB
µ‖C0 < ∞.

Let us estimate its Hölder norm. Consider ξ ,ξ ′ with d(ξ ,ξ ′) = e−n for some n > N. Proposition 4.2
applies to Martin kernels, by Remark 4.4. It shows that, for any x ∈ Λ(ξ ),

∣

∣

∣

∣

∣

KB
µ (x,ξ )/KB

µ (e,ξ )

KB
µ (x,ξ

′)/KB
µ (e,ξ

′)
−1

∣

∣

∣

∣

∣

6Ce−C−1n.

As KB
µ (e,ξ ) = KB

µ (e,ξ
′) = 1, we obtain

|KB
µ (x,ξ )−KB

µ (x,ξ
′)|6 KB

µ (x,ξ
′)Ce−C−1n.

The term on the right hand side is bounded by C′Gµ̄(x,e)d(ξ ,ξ
′)β if β is small enough.

The operators Lµ were defined precisely so that the following lemma holds.
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Lemma 4.11. Let µ ∈ Ū+. The function (x,ξ ) 7→ KB
µ (x,ξ ) is a fixed point of Lµ . It is the only one

among positive functions in Cβ .

Proof. As KB
µ ∈ Cβ by Lemma 4.10, the operator Mµ is well defined on KB

µ . By positivity, LµKB
µ is also

well defined.
By Remark 4.5, the function KB

µ satisfies the equation (4.2), i.e.,

KB
µ (x,ξ ) = ∑

y/∈Λ′(ξ )

Gµ(x,y;Λ′(ξ ))KB
µ (y,ξ ). (4.5)

It follows from its definition that KB
µ satisfies the following multiplicative cocycle equation:

KB
µ (y,ξ ) = KB

µ (a
−1y,a−1ξ )/KB

µ (a
−1,a−1ξ ).

Therefore, (4.5) gives

KB
µ (x,ξ ) = ∑

y/∈Λ′(ξ )

Gµ(x,y;Λ′(ξ ))KB
µ (a(ξ )

−1y,a(ξ )−1ξ )/KB
µ (a(ξ )

−1,a(ξ )−1ξ ).

Hence,
MµKB

µ (x,ξ ) = KB
µ (a(ξ )

−1,a(ξ )−1ξ )KB
µ (x,ξ ). (4.6)

Applying this equation to x = e and dividing both sides, we get KB
µ (x,ξ )/KB

µ (e,ξ ) = LµKB
µ (x,ξ ). As

KB
µ (e,ξ ) = 1, this concludes the proof that KB

µ is a fixed point of Lµ .

Consider now any fixed point f > 0 of Lµ in Cβ . Using the equality (4.4), we get

f (x,ξ ) =L
n
µ f (x,ξ ) =M

n
µ f (e,ξ )−1 ·∑

y/∈Λ′
n−1(ξ )

Gµ(x,y;Λ′
n−1(ξ )) f (an(ξ )

−1y,an(ξ )
−1ξ ). (4.7)

Proposition 4.2 yields, for all x ∈ Λ(ξ ) and all y /∈ Λ′
n−1(ξ ) with Gµ(e,y;Λ′

n−1(ξ ))> 0

∣

∣

∣

∣

∣

Gµ(x,y;Λ′
n−1(ξ ))/Gµ(e,y;Λ′

n−1(ξ ))

KB
µ (x,ξ )/KB

µ (e,ξ )
−1

∣

∣

∣

∣

∣

6Ce−C−1n.

Let ε > 0. For large enough n, we obtain

Gµ(x,y;Λ′
n−1(ξ )) = (1± ε)Gµ(e,y;Λ′

n−1(ξ ))K
B
µ (x,ξ ).

Injecting this estimate into (4.7) (and using the nonnegativity of f ), we get

f (x,ξ ) = (1± ε)Mn
µ f (e,ξ )−1 ·∑

y/∈Λ′
n−1(ξ )

Gµ(e,y;Λ′
n−1(ξ ))K

B
µ (x,ξ ) f (an(ξ )

−1y,an(ξ )
−1ξ )

= (1± ε)Mn
µ f (e,ξ )−1 ·KB

µ (x,ξ )M
n
µ f (e,ξ ) = (1± ε)KB

µ (x,ξ ).

Letting ε tend to 0, we obtain f = KB
µ .
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The following lemma encompasses the contraction properties of Lµ on Cβ . It is the main technical
tool to be able to apply the implicit function theorem later on.

Lemma 4.12. Assume that β is small enough. Let µ ∈ Ū+. The differential of Lµ at KB
µ satisfies

‖DL
n
µ(K

B
µ ) : Cβ → C

β‖6Ce−ρn,

for some ρ > 0, some C > 0 and all n > 0.

Proof. Denoting by I the inclusion of Cβ
µ in Cβ , we have DLn+1

µ (KB
µ ) = I ◦DLn

µ(K
B
µ )◦DLµ(K

B
µ ) where

the operator on the right is well defined and maps continuously Cβ into C
β
µ by Corollary 4.9. Thus, it

suffices to show that
‖DL

n
µ(K

B
µ ) : Cβ

µ → C
β
µ‖6Ce−ρn. (4.8)

For ease of notations, we will write x for a pair (x,ξ ), and ex = (e,ξ ). By Remark 4.6, we can define

equivalent norms on C0
µ and C

β
µ by

‖ f‖
C̄0

µ
= sup

x
| f (x)|/KB

µ (x),

and
‖ f‖′

C̄
β
µ
= sup

d(ξ ,ξ ′)6e−N

sup
x∈Λ(ξ )

d(ξ ,ξ ′)−β | f (x,ξ )− f (x,ξ ′)|/KB
µ (x,ξ ).

In this last equation, we could have use KB
µ (x,ξ ) or KB

µ (x,ξ
′) since their ratio is bounded, again by

Remark 4.6. It suffices to prove the inequality (4.8) for the norm C̄
β
µ , which is equivalent to the original

one.
We have Ln

µ f (x) =Mn
µ f (x)/Mn

µ f (ex). Consequently,

DL
n
µ(K

B
µ ) f (x) =

Mn
µ f (x) ·Mn

µKB
µ (ex)−Mn

µ f (ex)M
n
µKB

µ (x)

(Mn
µKB

µ (ex))2 . (4.9)

By (4.4), the operator Mn
µ can be written as

M
n
µ f (x) = ∑

y

Fn(x,y) f (y) (4.10)

where the kernel Fn is a relative Green function, given by

Fn((x,ξ ),(y,η)) = 1η=an(ξ )−1ξ 1an(ξ )y∈Λn(ξ )\Λ′
n−1(ξ )

Gµ(x,an(ξ )y;Λ′
n−1(ξ )).

When we write Fn((x,ξ ),(y,η)), we will implicitly only consider those pairs where Fn can be nonzero,
i.e., those where η = an(ξ )

−1ξ and an(ξ )y ∈ Λn(ξ )\Λ′
n−1(ξ ).

The following property of Fn follows from Proposition 4.2: There exist ρ0 > 0 and C > 0 such that,
for all x, and all y,z with Fn(x,y) 6= 0, Fn(x,z) 6= 0,

∣

∣

∣

∣

Fn(x,z)/Fn(ex,z)

Fn(x,y)/Fn(ex,y)
−1

∣

∣

∣

∣

6Ce−ρ0n.
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In particular,
|Fn(ex,y)Fn(x,z)−Fn(x,y)Fn(ex,z)|6Ce−ρ0nFn(x,y)Fn(ex,z). (4.11)

By (4.9),

DL
n
µ(K

B
µ ) f (x) =

∑y,z(Fn(x,y)Fn(ex,z)−Fn(ex,y)Fn(x,z)) f (y)KB
µ (z)

(

∑y Fn(ex,y)KB
µ (y)

)2 . (4.12)

With (4.11), we get

|DL
n
µ(K

B
µ ) f (x)|6Ce−ρ0n ∑y,z Fn(x,y)Fn(ex,z)| f (y)|KB

µ (z)
(

∑y Fn(ex,y)KB
µ (y)

)2 .

The sum on the numerator can be factored. The part with z cancels out one of the factors of the denomi-
nator. In the y part, we have by definition | f (y)|6 ‖ f‖

C̄0
µ
KB

µ (y). Hence,

|DL
n
µ(K

B
µ ) f (x)|6C‖ f‖

C̄0
µ
e−ρ0n ∑y Fn(x,y)K

B
µ (y)

∑y Fn(ex,y)KB
µ (y)

=C‖ f‖
C̄0

µ
e−ρ0n

L
n
µKB

µ (x)

=C‖ f‖
C̄0

µ
e−ρ0nKB

µ (x),

as KB
µ is a fixed point of Lµ . This shows that ‖DLn

µ(K
B
µ ) f‖

C̄0
µ
6Ce−ρ0n‖ f‖

C̄0
µ
, as claimed.

Let us now control its Hölder norm. Let x = (x,ξ ) and x′ = (x,ξ ′), with d(ξ ,ξ ′) = e−k for some
k > N. We should bound |DLn

µ(K
B
µ ) f (x)−DLn

µ(K
B
µ ) f (x′)|/(d(ξ ,ξ ′)β KB

µ (x)).
If k 6 (n+1)N, we write

|DL
n
µ(K

B
µ ) f (x)−DL

n
µ(K

B
µ ) f (x′)|6 |DL

n
µ(K

B
µ ) f (x)|+ |DL

n
µ(K

B
µ ) f (x′)|

6 ‖DL
n
µ(K

B
µ ) f‖

C̄0
µ
(KB

µ (x)+KB
µ (x

′))

6C‖DL
n
µ(K

B
µ ) f‖

C̄0
µ
KB

µ (x),

where the last inequality uses the fact that KB
µ (x

′)6CKB
µ (x), explained in Remark 4.6. Therefore,

|DL
n
µ(K

B
µ ) f (x)−DL

n
µ(K

B
µ ) f (x′)|/(d(ξ ,ξ ′)β KB

µ (x)) 6Ceβ(n+1)N‖DL
n
µ(K

B
µ ) f‖

C̄0
µ

6Ceβ(n+1)Ne−ρ0n‖ f‖
C̄0

µ
.

If β is small enough (i.e., β < ρ0/N), this is exponentially small as desired.
Assume now that k > (n+ 1)N. Then an(ξ ) = an(ξ

′) (we will simply denote it by an). Moreover,
the two horofunctions given by η = a−1

n ξ and η ′ = a−1
n ξ ′ coincide on the ball of radius N. Thus, the

summation set in (4.10) is the same for x and x′. Moreover, for any y, we have Fn((x,ξ ),(y,η)) =
Fn((x,ξ

′),(y,η ′)). Taking ξ , ξ ′ (and therefore η and η ′) as fixed, we will simply write F̃n(x,y) for
this common quantity. Let u(η) = 1/(∑y F̃n(e,y)K

B
µ (y,η))2, and define u(η ′) in the same way with η ′.

By (4.12),

DL
n
µ(K

B
µ ) f (x) =∑

y,z

(F̃n(x,y)F̃n(e,z)− F̃n(e,y)F̃n(x,z)) f (y,η)KB
µ (z,η)u(η).
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The same formula holds for x′. Hence,

∣

∣DL
n
µ(K

B
µ ) f (x)−DL

n
µ(K

B
µ ) f (x′)

∣

∣=
∣

∣

∣

∣

∣

∑
y,z

(

F̃n(x,y)F̃n(e,z)− F̃n(e,y)F̃n(x,z)
)

·( f (y,η)KB
µ (z,η)u(η)− f (y,η ′)KB

µ (z,η
′)u(η ′))

∣

∣

∣

∣

∣

. (4.13)

We use the equality abc−a′b′c′ = (a−a′)bc+a′(b−b′)c+a′b′(c− c′) to bound the last difference.
We have

| f (y,η)− f (y,η ′)|6 d(η ,η ′)β‖ f‖
C̄

β
µ
KB

µ (y,η).

As KB
µ ∈ C

β
µ = C̄

β
µ by Lemma 4.10,

|KB
µ (z,η)−KB

µ (z,η
′)|6Cd(η ,η ′)β KB

µ (z,η).

Finally, u(η) = 1/(Mn
µ KB

µ (e,ξ ))
2. By (4.6), this equals 1/KB

µ (a
−1
n ,a−1

n ξ )2 = 1/KB
µ (a

−1
n ,η)2. We

have |KB
µ (a

−1
n ,η)−KB

µ (a
−1
n ,η ′)| 6 Cd(η ,η ′)β KB

µ (a
−1
n ,η) since KB

µ ∈ C
β
µ = C̄

β
µ . Moreover, the ratio

KB
µ (a

−1
n ,η)/KB

µ (a
−1
n ,η ′) is uniformly bounded by Remark 4.6. Therefore,

|u(η)−u(η ′)|=
∣

∣

∣

∣

∣

(KB
µ (a

−1
n ,η)−KB

µ(a
−1
n ,η ′))(KB

µ (a
−1
n ,η)+KB

µ(a
−1
n ,η ′))

KB
µ (a

−1
n ,η)2KB

µ (a
−1
n ,η ′)2

∣

∣

∣

∣

∣

6Cd(η ,η ′)β/KB
µ (a

−1
n ,η)2 =Cd(η ,η ′)β u(η).

Combining these inequalities, we obtain

| f (y,η)KB
µ (z,η)u(η)− f (y,η ′)KB

µ (z,η
′)u(η ′)|6Cd(η ,η ′)β‖ f‖

C̄
β
µ
KB

µ (y,η)KB
µ (z,η)u(η).

Together with (4.13), this yields

∣

∣DL
n
µ(K

B
µ ) f (x)−DL

n
µ(K

B
µ ) f (x′)

∣

∣

6Cd(η ,η ′)β‖ f‖
C̄

β
µ
∑
y,z

∣

∣F̃n(x,y)F̃n(e,z)− F̃n(e,y)F̃n(x,z)
∣

∣KB
µ (y,η)KB

µ (z,η)u(η).

The sum is precisely the sum we have handled in the control of the sup norm, in (4.12), with f replaced
by KB

µ . We have shown that it is bounded by Ce−ρ0nKB
µ (x). Finally, we get

∣

∣DL
n
µ(K

B
µ ) f (x)−DL

n
µ(K

B
µ ) f (x′)

∣

∣6Ce−ρ0nd(η ,η ′)β KB
µ (x)‖ f‖

C̄
β
µ
.

As η = a−1
n ξ and η ′ = a−1

n ξ ′ with |an|6 nN, we have d(η ,η ′)6 enNd(ξ ,ξ ′) by (3.3). Therefore,

∣

∣DL
n
µ(K

B
µ ) f (x)−DL

n
µ(K

B
µ ) f (x′)

∣

∣6CeβnNe−ρ0nd(ξ ,ξ ′)β KB
µ (x)‖ f‖

C̄
β
µ
.

If β < ρ0/N, this is again exponentially small as desired.
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Let us consider the transformation Q : (µ , f ) 7→ Lµ f − f , defined on a neighborhood of (µ0,K
B
µ0
) in

U ×Cβ for a suitably small β . It satisfies Q(µ0,K
B
µ0
) = 0 as KB

µ0
is a fixed point of Lµ0 by Lemma 4.11.

Moreover, ∂ fQ(µ0,K
B
µ0
) = DLµ0(K

B
µ0
)− Id is invertible, by Lemma 4.12. The implicit function theorem,

in its analytic version, shows the existence of an analytic family µ 7→ fµ , for µ close to µ0, with fµ0 =
KB

µ0
, and such that Q(µ , fµ ) = 0, i.e., Lµ fµ = fµ .

Lemma 4.13. For µ ∈U+ close enough to µ0, the function fµ is everywhere positive.

Proof. As µ 7→ fµ is analytic, it is continuous. For µ close to µ0, the function fµ is close in Cβ to
f0 = KB

µ0
. As

fµ(x,ξ ) = Lµ fµ(x,ξ ) =Mµ fµ(x,ξ )/Mµ fµ(e,ξ ),

it suffices to show that Mµ f is positive if f is close enough to f0 in Cβ , and µ ∈U+.
Let ε > 0. Any f close enough to f0 in Cβ satisfies f (x,ξ ) > f0(x,ξ )− εGµ̄(x,e) by definition of

the norm. We obtain

Mµ f (x,ξ )>Mµ f0(x,ξ )− εMµGµ̄(x,e) >Mµ f0(x,ξ )−CεGµ(x,e). (4.14)

For the last inequality, we used the fact that (x,ξ ) 7→ Gµ̄(x,e) belongs obviously to C0, and the fact that
Mµ maps C0 into C0

µ by Lemma 4.7.
Let ξ ∈ ∂BΓ. Consider a point y = y(ξ ), close to a geodesic from e to a(ξ ), which does not belong

to Λ′(ξ ) but such that Gµ0(e,y;Λ′(ξ ))> 0, i.e., y is close enough to the boundary of Λ′(ξ ) to be an exit
point of the random walk in Λ′(ξ ). It satisfies Gµ(e,y;Λ′(ξ ))> 0 as µ > µ0/2 thanks to the definition
of U . The function x 7→ Gµ(x,y;Λ′(ξ )) is positive and harmonic on Λ(ξ ). Therefore, Proposition 4.2
applied to this function and to x 7→ Gµ(x,y) shows that

Gµ(x,y)/Gµ (e,y)

Gµ(x,y;Λ′(ξ ))/Gµ(e,y;Λ′(ξ ))
6C,

uniformly in x ∈ Λ(ξ ). The quantities Gµ(e,y;Λ′(ξ )) and Gµ(e,y) are bounded from above and from
below, uniformly. We obtain Gµ(x,y;Λ′(ξ ))>C−1Gµ(x,y), which is >C−1Gµ(x,e) thanks to Harnack
inequalities (as d(e,y) is uniformly bounded).

By the definition (4.3) of Mµ ,

Mµ f0(x,ξ )> Gµ(x,y(ξ );Λ′(ξ )) f0(a(ξ )
−1y,a(ξ )−1ξ )>C−1Gµ(x,e) ·C−1,

as f0 is uniformly bounded from below on points which are a bounded distance away from the identify.
Finally, we obtain from (4.14)

Mµ f (x,ξ )>C−1Gµ(x,e)−CεGµ(x,e).

If ε is small enough, this is bounded from below by a positive multiple of Gµ(x,e), uniformly in (x,ξ ).

We can now prove that the entropy depends analytically on the measure.
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Proof of Theorem 4.1. By Lemma 4.13, there exists a neighborhood V0 of µ0 in U ⊆ P(F) such that, for
µ ∈V0 ∩U+, the function fµ is a fixed point of Lµ in Cβ , everywhere positive. By Lemma 4.11, it has
to coincide with KB

µ . Moreover, µ 7→ fµ is analytic from V0 to Cβ for some β > 0.
We have also constructed in Theorem 3.1 an analytic map µ 7→ Φ(µ) on a neighborhood V1 of

µ0, taking values in (Cβ )∗, which corresponds for µ ∈ P
+
1 (F) to the integration against a µ-stationary

measure νµ on ∂BΓ.
Let V =V0 ∩V1. For µ ∈V ∩P

+
1 , the integral expression (2.10) of the entropy gives

h(µ) =− ∑
x∈F

µ(x)
∫

∂BΓ
logKB

µ (x
−1,ξ )dνµ(ξ )

=− ∑
x∈F

µ(x) ·Φ(µ)(ξ 7→ log fµ(x
−1,ξ )).

The expression on the second line is well defined and analytic on V , giving the desired analytic extension
of the entropy. Indeed, by definition of Cβ , each function ξ 7→ fµ(x

−1,ξ ) (with x fixed) belongs to Cβ

and depends analytically on µ . Composing with the logarithm, applying the analytic linear form Φ(µ),
and doing a finite summation over F , everything remains analytic.

5 Central limit theorem

In this section, we prove the central limit theorem, Theorem 1.5. Once Proposition 3.6 is available, it
follows using the method of Le Page [LP82] as described for instance in [BL85] or [BQ14]. Although
the details are now standard, we will sketch the argument especially since the lack of true contraction
on ∂ ′

BΓ creates possible periodicity problems. We will prove the result for measures with an exponential
moment of order α > 0, as announced in Remark 1.6.

For µ ∈ P
+
1 (α), we start from the operator Lµ , acting on Cβ (∂ ′

BΓ) for some small enough β > 0
by the formula Lµu(ξ ) = ∑g µ(g)u(gξ ). By Proposition 3.6, it has a simple eigenvalue at 1. For t ∈ R,
define a perturbed operator Lµ ,t by

Lµ ,tu(ξ ) = ∑
g∈Γ

µ(g)eitcB(g,ξ )u(gξ ),

where cB is the Busemann cocycle (2.5). Then

L2
µ ,tu(ξ ) = ∑

g1,g2

µ(g1)µ(g2)e
itcB(g1,g2ξ )eitcB(g2,ξ )u(g1g2ξ ) =∑

g

µ∗2(g)eitcB(g,ξ )u(gξ ),

thanks to the cocycle equation (2.6) for cB. Iterating this argument, one gets

Ln
µ ,tu(ξ ) = ∑

g

µ∗n(g)eitcB(g,ξ )u(gξ ).

In particular, if Zn denotes the right random walk driven by µ , the characteristic function of cB(Zn,ξ )
can be expressed for all ξ ∈ ∂ ′

BΓ as follows:

E(eitcB(Zn,ξ )) = Ln
µ ,t1(ξ ). (5.1)
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Fix once and for all a point ξ ∈ ∂ ′
BΓ. We will prove a central limit theorem for cB(·,ξ ), i.e., prove

that (cB(Zn,ξ )−nℓ)/
√

n converges in distribution to a Gaussian random variable. By Lévy’s theorem, it
suffices to prove the pointwise convergence of the characteristic functions. It will be obtained from (5.1)
and the good spectral properties of Lµ ,t .

One checks easily that the map t 7→ Lµ ,t is analytic. By Proposition 3.6, the operator Lµ ,0 = Lµ

has a simple eigenvalue at 1, finitely many additional simple eigenvalues ρ of modulus 1, and the rest
of its spectrum is contained in a disk of radius < 1. This spectral picture persists for small t, see for
instance [Kat66]: there are spectral projections Π1,t and Πρ ,t and Π<1,t , all depending analytically on t,
such that

Ln
µ ,t = Ln

µ ,tΠ1,t + ∑
ρ 6=1

Ln
µ ,tΠρ ,t +Ln

µ ,tΠ<1,t .

(All these projections also depend on µ , we suppress it from the notations for convenience.) Moreover,
Π1,t is a one-dimensional projection, and Lµ ,t acts on its image as the multiplication by the corresponding
eigenvalue λ (t) = λµ(t). This eigenvalue also depends analytically on t.

Denote by ℓ the escape rate of the random walk. Then (5.1) implies that, for any t, and for large
enough n (so that t/

√
n is in the neighborhood of 0 where the above spectral description holds true)

E

(

e
it

cB(Zn,ξ )−nℓ√
n

)

= e−it
√

nℓLn
µ ,t/

√
n
1(ξ )

= e−it
√

nℓ

(

λ (t/
√

n)nΠ1,t/
√

n1(ξ )+ ∑
ρ 6=1

Ln
µ ,t/

√
n
Πρ ,t/

√
n1(ξ )+Ln

µ ,t/
√

n
Π<1,t/

√
n1(ξ )

)

.

Since the function 1 belongs to the eigenspace for the eigenvalue 1, one has Πρ ,01 = Π<1,01 = 0.
Hence, when n tends to infinity, the functions Πρ ,t/

√
n1 and Π<1,t/

√
n1 tend to 0 in Cβ , and therefore

in C0. As the iterates Ln
µ ,t/

√
n

are bounded in sup norm by 1, it follows that Ln
µ ,t/

√
n
Πρ ,t/

√
n1(ξ ) and

Ln
µ ,t/

√
n
Π<1,t/

√
n1(ξ ) tend to 0.

In the same way, Π1,t/
√

n1 tends to Π1,01 = 1. Finally, we obtain

E

(

e
it

cB(Zn,ξ )−nℓ√
n

)

= e−it
√

nℓλ (t/
√

n)n +o(1). (5.2)

As λ is an analytic function with λ (0) = 1, it has a Taylor expansion at 0. It is convenient to write
it as λ (t) = eiat−bt2/2+o(t2), with a =−iλ ′(0) and b =−a2 −λ ′′(0).

>From this point on, two approaches are possible:

• One can proceed directly, without identifying a and b.

• Or one can identify a and b by a tedious spectral computation.

The second approach is more precise (using it, one can prove that the variance in the central limit theorem
is positive). However, since the first one is more illuminating, we will argue first in this way.

Reproducing the above computation but for cB/n, one has

E(eitcB(Zn,ξ )/n) = λ (t/n)n +o(1)→ eiat .
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SÉBASTIEN GOUËZEL

By definition, cB(Zn,ξ ) = hξ (Z
−1
n ). The point Z−1

n is distributed as the position Wn at time n of the
reverse random walk, for the measure µ̌ given by µ̌(x) = µ(x−1). As µ̌ is also admissible, this reverse
random walk converges almost surely to a point on the Gromov boundary. As its exit distribution has
no atom, this limit is almost surely different from πB(ξ ), the projection of ξ in the Gromov boundary.
Then hξ (Wn)−d(e,Wn) remains bounded almost surely by (2.3). Moreover, d(e,Wn)/n tends to ℓ, hence
hξ (Wn)/n tends almost surely to ℓ. This implies that

cB(Zn,ξ )/n = hξ (Z
−1
n )/n tends in probability to ℓ.

Therefore, E(eitcB(Zn,ξ )/n) converges to eitℓ. Hence, a = ℓ.
For future use, note that the same argument shows that, for any sequence rn tending to infinity,

cB(Zn,ξ )−d(e,Zn)

rn

tends in probability to 0. (5.3)

Using a = ℓ, the equation (5.2) becomes

E

(

e
it

cB(Zn,ξ )−nℓ√
n

)

= e−it
√

nℓeia
√

nt−bt2/2+o(1)+o(1)→ e−bt2/2.

We recall a version of Lévy’s theorem: if a sequence of real random variables Xn satisfies E(eitXn)→
ϕ(t) where ϕ is a continuous function, then Xn converges in distribution to a random variable X ,
and ϕ(t) = E(eitX ). Hence, (cB(Zn,ξ )− nℓ)/

√
n converges to a random variable, whose character-

istic function is e−bt2/2. This implies that b ∈ [0,∞). Writing it as σ 2 > 0, we have proved that
(cB(Zn,ξ )−nℓ)/

√
n converges to N(0,σ 2) for any ξ ∈ ∂ ′

BΓ.
Finally,

d(e,Zn)−nℓ√
n

=
cB(Zn,ξ )−nℓ√

n
+

d(e,Zn)− cB(Zn,ξ )√
n

.

The first term on the right converges to N(0,σ 2). The second term on the right converges to 0 in
probability by (5.3). Hence, their sum also converges to N(0,σ 2). This concludes the proof of the
central limit theorem for d(e,Zn).

Let us show that σ 2(µ) depends analytically on µ . One checks easily that the map (µ , t) 7→ Lµ ,t

is analytic. Hence, (µ , t) 7→ λµ(t) is also analytic, as simple isolated eigenvalues depend analytically
on the operator, see [Kat66]. As a consequence, µ 7→ λ ′

µ(0) = ∂λµ(t)/∂ t|t=0 is analytic, and so is
µ 7→ λ ′′

µ (0). Since ℓ(µ) = a = −iλ ′
µ(0) and σ 2(µ) = b = −a2 −λ ′′

µ (0), we recover simultaneously the
analyticity of the escape rate stated in Theorem 1.1, and the analyticity of the variance in Theorem 1.5.

It remains to show that the variance σ 2(µ) is nonzero. For this, we need to identify b, by a spectral
computation. Let ν denote the unique stationary measure of the random walk on ∂ ′

BΓ, i.e., the fixed
point of the operator (Lµ)

∗. Define ut = Π1,t1/
∫

Π1,t1dν , it is an eigenfunction for the eigenvalue λ (t)
of Lµ ,t , normalized by

∫

ut dν = 1. Note that
∫

Π1,01dν =
∫

1dν = 1, so that the denominator in the
definition of ut does not vanish for small enough t. As ut depends analytically on t, we may write
ut = u0 + itv+O(t2), with u0 = 1 and

∫

vdν = 0 as
∫

ut dν = 1 for all t. Moreover, Lµ ,tut = λ (t)ut .
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Keeping only the terms of order 6 1 in this equation and using λ (t) = 1+ ita+O(t2), we get for all
ξ ∈ ∂BΓ

∑
g

µ(g)eitcB(g,ξ )(1+ itv(gξ )) = (1+ ita)(1+ itv(ξ ))+O(t2),

i.e.,
1+ it ∑

g

µ(g)cB(g,ξ )+ it ∑
g

µ(g)v(gξ ) = 1+ ita+ itv(ξ )+O(t2).

Looking at the coefficient of it, we get

∑
g

µ(g)(cB(g,ξ )+ v(gξ )− v(ξ )−a) = 0. (5.4)

Integrating this equation with respect to ν and using its stationarity, we recover the equality

a =

∫

cB(g,ξ )dµ(g)dν(ξ ) = ℓ,

that we proved before by a probabilistic argument.
Define a new cocycle

c̃(g,ξ ) = cB(g,ξ )+ v(gξ )− v(ξ )− ℓ.

It satisfies ∑ µ(g)c̃(g,ξ ) = 0 for all ξ by (5.4). Moreover, cB(Zn,ξ )− nℓ− c̃(Zn,ξ ) = v(ξ )− v(Znξ )
is uniformly bounded, hence it is equivalent to have the central limit theorem for cB or for c̃, and the
asymptotic variances coincide.

Let us use c̃ instead of cB, to define a new operator L̃t by L̃tu(ξ ) = ∑g µ(g)eitc̃(g,ξ )u(gξ ). All the

above discussion applies to this operator. We get in particular a new eigenvalue λ̃ (t), a new eigenfunction
ũt which can be expanded as 1+ itṽ+O(t2) with

∫

ṽdν = 0, a new value of the derivative ã of λ̃ at 0.
The equation (5.4) becomes

∑
g

µ(g)(c̃(g,ξ )+ ṽ(gξ )− ṽ(ξ )− ã) = 0. (5.5)

By construction, ∑ µ(g)c̃(g,ξ ) = 0 for all g. Integrating the above equation with respect to ν , we get
ã = 0. Then (5.5) yields ṽ = L0ṽ. By Proposition 3.6, ṽ is constant. As its integral is zero, ṽ = 0. Finally,
ũt = 1+O(t2).

We can now compute the second term in the expansion of λ̃ (t). We have

λ̃ (t) =

∫

λ̃ (t)ũt dν =

∫

L̃t ũt dν =

∫

L̃t(ũt −1)dν +

∫

L̃t1dν

=

∫

(L̃t −L0)(ũt −1)dν +

∫

L̃t1dν .

The first term is O(t3) as ũt −1 = O(t2) and L̃t −L0 = O(t). The second term is equal to

∫

eitc̃(g,ξ ) dµ(g)dν(ξ ) = 1+ it

∫

c̃(g,ξ )dµ(g)dν(ξ )− t2

2

∫

c̃(g,ξ )2 dµ(g)dν(ξ )+O(t3).
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Since the variance in the central limit theorem is given by −λ̃ ′′(0), we obtain

σ 2 = ∑
g

µ(g)

∫

c̃(g,ξ )2 dν(ξ )> 0.

If it vanishes, then all quantities c̃(g,ξ ) are zero for g in the support of µ . Using the definition of c̃ and
the cocycle equation for cB, this gives

cB(Zn,ξ ) = nℓ+ v(ξ )− v(Znξ )

for any Zn in the support of µ∗n. Take n with µ∗n(e) > 0, by (3.9). Applying the above equation to
Zn = e, we get 0 = nℓ, a contradiction with the positivity of ℓ that follows from the non-amenability of
Γ. Thus, σ 2 > 0.

Remark 5.1. Several of the above arguments could be replaced by martingale arguments, as in [BQ16],
but we have opted for a self-contained spectral treatment. Note that many objects that appear in this
proof are also present in the martingale argument. For instance, the key step in the martingale argument
is to construct a function v such that (5.4) holds. This function v (a solution of the Poisson equation)
appears naturally in the spectral framework, as the derivative of t 7→ ut .

There is nothing special about the Busemann cocycle in the above proof: the next theorem is proved
exactly in the same way.

Theorem 5.2. Let Γ be a nonelementary hyperbolic group with a word distance, endowed with an

admissible probability measure µ having an exponential moment. Let c : Γ×∂ ′
BΓ → R be a cocycle on

a minimal subset ∂ ′
BΓ of the Busemann boundary ∂BΓ. Assume that the cocycle is Hölder continuous,

i.e., for every g ∈ Γ, the map ξ 7→ c(g,ξ ) is Hölder continuous on ∂ ′
BΓ.

Let Zn denote the right random walk on Γ driven by µ . Then there exists ℓ ∈ R such that, for any

ξ ∈ ∂ ′
BΓ, the quantity c(Zn,ξ )/n converges almost surely to ℓ. Moreover, there exists σ 2 > 0 such that

c(Zn,ξ )−nℓ√
n

→N(0,σ 2).

Additionally, σ 2 = 0 if and only if there exists a Hölder continuous function v on ∂ ′
BΓ such that c(g,ξ ) =

v(gξ )− v(ξ ) for all g ∈ Γ and all ξ ∈ ∂ ′
BΓ (and in this case ℓ = 0 also). This is also equivalent to the

uniform boundedness of c.

Finally, both ℓ and σ depend analytically on µ .
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