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ANALYTICITY OF THE ENTROPY AND THE ESCAPE RATE OF

RANDOM WALKS IN HYPERBOLIC GROUPS

SÉBASTIEN GOUËZEL

Abstract. We consider random walks on a non-elementary hyperbolic group endowed
with a word distance. To a probability measure on the group are associated two numerical
quantities, the rate of escape and the entropy. On the set of admissible probability measures
whose support is contained in a given finite set, we show that both quantities depend in
an analytic way on the probability measure. Our spectral techniques also give a new proof
of the central limit theorem, and imply that the corresponding variance is analytic.

1. Introduction

Let Γ be a finitely generated group. Let µ be a finitely supported probability measure
on Γ, whose support generates Γ as a semigroup (we say that µ is admissible). It defines a
random walk on Γ, by Zn = g1 · · · gn where g1, g2, . . . is a sequence of Γ-valued i.i.d. random
variables with distribution µ. By definition, Zn is distributed according to the convolution
product µ∗n. Equivalently, Zn is a Markov chain on Γ, starting from the identity e of Γ,
whose transition probabilities are p(x → y) = µ(x−1y). These probabilities are invariant
under left multiplication, hence the Markov chain is homogeneous.

The behavior of the random walk is usually strongly related to the geometric properties
of the group. One can associate several numerical quantities to the random walk, including:

• The entropy, defined by

h(µ) = − lim log µ∗n({Zn})/n.
The almost sure convergence of this quantity follows from Kingman’s subadditive
theorem. Essentially, the walk at time n visits ehn points.

• The escape rate, or drift, defined by

ℓ(µ) = lim d(e, Zn)/n,

where d is a fixed (proper, left-invariant) distance on Γ. Again, the convergence
follows from Kingman’s theorem.

These quantities are significant when non-zero. This is for instance always the case in non-
amenable groups, and never the case in nilpotent groups for symmetric walks. Our focus
in this article will be on the former category, and especially on the subclass of hyperbolic
groups.

In hyperbolic groups, Erschler and Kaimanovich have proved in [EK13] that both the
entropy and the rate of escape depend continuously on the measure. If one concentrates on
measures with a given finite support, then the parameter space becomes a subset of Rd for
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some d, and one can investigate further regularity properties. Our goal in this article is to
show that the entropy, and the rate of escape for a word distance, are analytic.

Let Γ be a non-elementary hyperbolic group, endowed with a word distance d. Let F be
a finite subset of Γ. Denote by P+

1 (F ) the set of admissible probability measures supported
by F : this is a subset of the finite-dimensional space P(F ) = {µ : F → C}. Our main
theorem is the following.

Theorem 1.1. In this setting, the functions µ 7→ ℓ(µ) and µ 7→ h(µ) are analytic on P+
1 (F ).

More precisely, there exists an open subset of P(F ) containing P+
1 (F ) on which these two

functions extend to analytic functions.

The random walk converges almost surely to a point of the Gromov boundary of Γ.
The distribution of the limit is called the exit measure of the random walk. Its Hausdorff
dimension is proportional to h/ℓ [Haï13, Theorem 4.11]. Thus, it follows from the previous
theorem that it also depends analytically on µ.

This theorem extends several partial results in the literature. Here are some previous
results in this direction, we refer the reader to [GL13a] for more statements.

• For nearest neighbor random walks on the free group, one can obtain explicit for-
mulas for h(µ) and ℓ(µ), thereby proving analyticity. Similar results hold in free
products, see [Gil07, Gil11].

• In a free group, for measures with a given finite support, both the rate of escape
and the entropy are analytic, see respectively [Gil08] and [Led12].

• In a general hyperbolic group, but for a restricted class of distances, Gilch and
Ledrappier prove in [GL13a] that the rate of escape is analytic. The condition
on the distance is that its Busemann boundary should coincide with the Gromov
boundary (these terms are defined in Section 2.1). This is for instance the case if Γ
acts cocompactly on a hyperbolic space H

n and the distance is given by d(g, g′) =
dHn(g · O, g′ · O) where O is a suitable basepoint. On the other hand, if Γ is not
virtually free, this is never the case for a word distance as the Busemann boundary
is totally disconnected, contrary to the Gromov boundary.

• In surface groups, [HM13] shows that the rate of escape is analytic.
• In a general hyperbolic group, Ledrappier proves in [Led13] that both the rate of

escape and the entropy are Lipschitz continuous.
• This is improved to C1 by Mathieu in [Mat15].

Our approach to prove Theorem 1.1 is based on the strategy of Ledrappier in [Led13]:
We express the rate of escape and the entropy as integrals of quantities living on a suitable
boundary of the group, the Busemann boundary ∂BΓ. What we have to show is that
these quantities (the stationary measure and the Martin kernel) depend analytically on the
measure µ.

More precisely, let νµ be a stationary measure for µ on ∂BΓ. Let Kµ be the Martin kernel
for µ, also defined on ∂BΓ. Let cB be the Busemann cocycle on ∂BΓ. (All these terms will
be defined in Section 2.1.) Then the following formulas are classical:

(1.1) ℓ(µ) =
∑

g∈Γ
µ(g)

∫

∂BΓ
cB(g, ξ) dνµ(ξ)



ANALYTICITY OF THE ENTROPY AND THE ESCAPE RATE 3

and

(1.2) h(µ) = −
∑

g∈Γ
µ(g)

∫

∂BΓ
logKµ(g

−1, ξ) dνµ(ξ).

There are two main difficulties to prove analyticity statements using these formulas.
First, to use (1.1), we need to know that µ 7→ νµ is analytic in some sense. This is well

known if the action of Γ on ∂BΓ has contraction properties, for instance if ∂BΓ coincides
with the Gromov boundary ∂Γ. However, if Γ is not virtually free, the projection πB :
∂BΓ → ∂Γ is not one-to-one, and points in the same fiber of πB do not feel contraction. As
a consequence, we do not know if there is a unique stationary measure on ∂BΓ. To work
around this problem, we work on a subset ∂′BΓ of ∂BΓ which is minimal for the Γ-action,
and show using a non-constructive spectral argument that there is some form of contraction
there (more precisely, a spectral gap for the Markov operator associated to the walk, on
a suitable function space, with a simple dominating eigenvalue). Hence, there is a unique
stationary measure on ∂′BΓ, depending analytically on µ. Together with (1.1), this shows
that ℓ(µ) depends analytically on µ.

Second, in (1.2), the cocycle logKµ(g
−1, ξ) also depends on µ. This difficulty is serious,

making the entropy harder to study in general than the escape rate. To get the analyticity
of the entropy, we need to show that µ 7→ Kµ is analytic in some sense. Ledrappier obtains
in [Led13] the kernel Kµ(·, ξ) for each ξ by applying a sequence of contracting operators
depending on ξ. Choosing carefully the number of contraction steps, he deduces a Lipschitz
control on Kµ, and thus that the entropy is Lipschitz. Instead, we will exhibit the whole
kernel (x, ξ) 7→ Kµ(x, ξ) as the unique fixed point of a non-linear operator, depending
analytically on µ. The analyticity of µ 7→ Kµ then follows from a suitable application of
the implicit function theorem.

This approach is reminiscent of the study of unstable foliations in hyperbolic dynamics.
The usual strategy is to apply a map called the graph transform, enjoying contraction
properties, to obtain the unstable leaf at a point. Unstable leaves at nearby points are then
compared by iterating the graph transform a finite but carefully chosen number of times.
Another approach, advocated by Hirsch-Pugh-Shub in [HPS77], is to see the whole family
of unstable manifolds as the fixed point of a single operator. The proper setting is more
complicated to develop, but once this is done it is extremely powerful. We follow essentially
a similar strategy.

Remark 1.2. The kernel Kµ(x, ξ) is initially defined on the (geometric) Gromov boundary.
However, to construct an operator of which it is a fixed point, it is convenient to have
an underlying combinatorial structure. This is more efficiently done using the Busemann
boundary. Therefore, although the statement on analyticity on the entropy does not depend
on a distance choice, its proof relies on the tools we develop to show that the escape rate is
analytic for the word distance.

Once the spectral gap is available, standard techniques due to Guivarc’h and Le Page
imply several results on the behavior of the random walk, including the central limit theorem,
the law of the iterated logarithm and large deviations estimates. As an illustration, we prove
the following statement:
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Theorem 1.3. Under the assumptions of Theorem 1.1, there exists for all µ ∈ P+
1 (F ) a real

number σ2(µ) > 0 such that (d(e, Zn)−nℓ(µ))/
√
n converges in distribution to N (0, σ2(µ)).

Moreover, µ 7→ σ2(µ) is analytic on P+
1 (F ).

The central limit theorem is already known under much weaker assumptions on the
measure µ: it suffices that it has a second moment, it does not need to be admissible, and
the distance can be more general than a word distance. This is proved in [BQ14a]. Another
approach (which works also in acylindrically hyperbolic groups) has recently been developed
by Mathieu and Sisto. If one replaces the word distance by a nicer distance (for which the
Gromov boundary and the Busemann boundary coincide), then the central limit theorem
had been proved earlier by Björklund in [Bjö10].

On the other hand, the analyticity of µ 7→ σ2(µ) in Theorem 1.3 is new.

Remark 1.4. The assumption of finite support can be somewhat weakened for the analyt-
icity of µ 7→ ℓ(µ) and µ 7→ σ2(µ). Indeed, it can be replaced by an exponential moment

condition, of the form
∑|µ(g)|eα|g| < ∞, for any fixed α > 0. Denote by P(α) the set of

measures satisfying this condition (it is a Banach space for the corresponding norm), by
P1(α) its elements with

∑

µ(g) = 1, and by P+
1 (α) its elements which, furthermore, are

nonnegative and admissible. Then ℓ and σ2 are analytic on P+
1 (α), i.e., they extend to

analytic functions on a neighborhood of this set in P(α). The proofs are exactly the same
as for the finite support case, modulo some details on analytic functions on Banach spaces
which are explained in Paragraph 2.3.

On the other hand, for the entropy, finite support is essential to our argument. It is
likely that it can be weakened to exponential moment of some high enough order, using the
techniques of [Gou13], at the price of significant technical complications.

The paper is organized as follows: Section 2 recalls classical results for random walks on
hyperbolic groups. Then, the analyticity of the rate of escape is proved in Section 3, and
the analyticity of the entropy is proved in Section 4. Finally, Section 5 is devoted to the
central limit theorem.

2. Preliminaries

In this paragraph, we recall classical results on random walks on hyperbolic groups that we
will need later on. See [GdlH90] for a general introduction to hyperbolic groups, and [Led13,
Haï13, GMM15] for properties of random walks there.

2.1. Hyperbolic groups. Let Γ be a finitely generated group, with a finite symmetric
generating set S. The word distance d = dS is given by

d(x, y) = inf{n ∈ N : ∃s1, . . . , sn ∈ S with x−1y = s1 · · · sn}.
This is the graph distance on the Cayley graph of (Γ, S).

The group Γ is hyperbolic if all geodesic triangles in its Cayley graph are thin, i.e., there
exists δ > 0 such that each side of such a triangle is included in the δ-neighborhood of the
union of the two other sides. This geometric definition has a metric counterpart, as follows.
For x, y, z ∈ Γ, define the Gromov product of x and y with basepoint z as

(x|y)z = (d(x, z) + d(y, z)− d(x, y))/2.
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It is small if z is close to a geodesic from x to y. One should think of (x|y)z as the time
during which two geodesics from z to x and from z to y remain close. The group Γ is
hyperbolic if and only, for some δ > 0, and for all x1, x2, x3, z ∈ Γ,

(2.1) (x1|x3)z > min((x1|x2)z, (x2|x3)z)− δ.

A hyperbolic group Γ is nonelementary if it is not finite nor virtually Z. Equivalently, it is
non-amenable. Then it contains a free group on two generators.

The Gromov boundary of Γ, denoted by ∂Γ, is the set of equivalence classes of geodesic
rays, where two such rays are equivalent if they stay a bounded distance away. It has a
canonical topology, for which Γ ∪ ∂Γ is a compact space. A sequence xn ∈ Γ converges to
some point on the boundary if and only if (xn|xm)z tends to infinity when n,m → ∞ for
some, or equivalently all, basepoint z.

The group Γ acts on itself by left-multiplication. This action extends to a continuous
action on Γ ∪ ∂Γ, and in particular on ∂Γ.

All the notions we have described up to now are invariant under quasi-isometry. Hence,
they do not depend on the choice of the generating set S or the word metric d (although the
precise value of δ does). We turn to a notion that depends on finer details of the distance
(this is necessary to compute the escape rate, which really depends on the distance).

To y ∈ Γ, we associate the corresponding normalized distance function hy(x) = d(x, y)−
d(e, y). It is 1-Lipschitz and satisfies hy(e) = 0. A horofunction h on Γ is a pointwise limit of
a sequence hyn where yn → ∞. It is still 1-Lipschitz, satisfies h(e) = 0, and h(Γ) ⊂ Z. The
map x 7→ hx is an embedding Γ → C0(Γ,R). Identifying Γ with its image, and taking its
closure in C0(Γ,R) for the topology of pointwise convergence, we obtain a compactification
Γ ∪ ∂BΓ, where each ξ ∈ ∂BΓ corresponds to a horofunction hξ obtained as above. The
compact space ∂BΓ is called the Busemann boundary associated to (Γ, d). It really depends
on d, not just its quasi-isometry class.

If a sequence yn ∈ Γ converges in the Busemann compactification, it also converges in the
Gromov compactification. Hence, there is a canonical continuous projection πB : ∂BΓ → ∂Γ,
which is onto but not one-to-one in general. Indeed, the space ∂BΓ is made of Z-valued
functions, hence it is totally discontinuous, while ∂Γ is totally discontinuous if and only if
Γ is virtually free. The projection πB is uniformly finite-to-one by [CP01].

The left-action of Γ on itself extends to a continuous action on Γ∪∂BΓ, and in particular
on ∂BΓ. In terms of horofunctions, it is given by the following formula:

hg·ξ(x) = hξ(g
−1x)− hξ(g

−1),

where the term −hξ(g−1) ensures that the expression on the right vanishes for x = e, as it
should.

We define a distance on the Busemann boundary by

(2.2) d(ξ, ξ′) = e−n

where n is the largest number such that the functions hξ and hξ′ coincide on the ball B(e, n).
It is compatible with the topology of ∂BΓ.

Consider a point ξ ∈ ∂BΓ, and a subset A ⊂ Γ such that πB(ξ) does not belong to the
closure of A in the Gromov compactification. Then there exists C such that, for all x ∈ A,

(2.3) |d(e, x)− hξ(x)| 6 C.
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Indeed, if yn tends to ξ, then for large enough n a geodesic from x ∈ A to yn intersects
a fixed large enough ball around e. This implies that d(e, x) − hyn(x) remains uniformly
bounded. Letting n tend to infinity, we obtain the claim.

2.2. Random walks on hyperbolic groups. Let µ be an admissible probability measure
on a nonelementary hyperbolic group Γ, endowed with a word distance d. Almost surely,
trajectories Zn of the corresponding random walk converge in the Gromov compactification
Γ ∪ ∂Γ, towards a random point Z∞ ∈ ∂Γ. The distribution ν of Z∞ is a measure on ∂Γ,
called the exit measure, or hitting measure, or harmonic measure.

An important property of ν is that it is µ-stationary, i.e., µ ∗ ν = ν, i.e.,

(2.4) ν =
∑

g∈Γ
µ(g)g∗ν.

Indeed, consider the first jump g of the random walk, distributed according to µ, and then
the subsequent trajectories starting from g. By homogeneity, they are distributed like gZn−1,
hence their exit distribution is g∗ν. Averaging with respect to g, one obtains (2.4).

Using the contraction properties of the Γ-action on ∂Γ, one checks that ν is the unique
µ-stationary measure on ∂Γ. Moreover, it is atomless and has full support.

On the other hand, the random walk does not always converge in the Busemann com-
pactification Γ ∪ ∂BΓ. For instance, if Γ = Fd × Z/2Z (where Fd is a free group), then the
Busemann boundary is made of two copies of ∂Fd, corresponding to the two elements of
Z/2Z. As the random walk keeps jumping between the two sheets Fd × {0} and Fd × {1},
it does not converge.

Nevertheless, by compactness of ∂BΓ, there are stationary measures on ∂BΓ. Such mea-
sures project under πB to the unique stationary measure on ∂Γ. Since the projection πB is
uniformly finite-to-one, there are finitely many ergodic stationary measures on ∂BΓ, but it
is unknown if there is a single one in general.

One interest of these stationary measures is that they make it possible to express the
escape rate of the random walk. From this point on, we assume that µ has a moment of
order 1. Define the Busemann cocycle

(2.5) cB : Γ× ∂BΓ → R, cB(g, ξ) = hξ(g
−1).

It is a cocycle, i.e., it satisfies the following equation:

(2.6) cB(g1g2, ξ) = cB(g1, g2ξ) + cB(g2, ξ).

Moreover, if νB is any stationary probability measure on ∂BΓ, one has

(2.7) ℓ(µ) =

∫

cB(g, ξ) dµ(g) dνB(ξ),

see for instance [GMM15, Proposition 2.2].

Assume now that µ has finite support. The Green function associated to µ is defined by

(2.8) Gµ(x, y) =
∑

n

µ∗n(x−1y).

It is the average time that the walk started from x spends at y. It is also equal to
∑

n(Q
n
µδy)(x), where Qµ is the Markov operator of the random walk, given by Qµf(x) =
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∑

µ(g)f(xg). Since Γ is non-amenable, the spectral radius of this operator acting on ℓ2(Γ)
is < 1. Hence, the series (2.8) is well defined as its general term tends to 0 exponentially
fast. Moreover, if µ′ is any measure close enough to µ, then this series still makes sense,
even if µ′ is not a probability measure any more.

One interest of the Green function is that it is harmonic away from the diagonal: if x 6= y,
then Gµ(x, y) =

∑

g µ(g)Gµ(xg, y). This follows by considering the first jump of the random
walk, from x to xg, and then the trajectories from xg to y.

Letting y tend to infinity and normalizing, the limits of Green functions are globally
harmonic functions. More precisely, Ancona proved the following statement: let yn ∈ Γ tend
to ξ ∈ ∂Γ. Then Gµ(x, yn)/G(e, yn) converges to a limit denoted by Kµ(x, ξ), called the
Martin kernel. This function is harmonic in x for each ξ. Moreover, it depends continuously
on ξ ∈ ∂Γ.

Let ν be the unique stationary measure on ∂Γ. Given almost every ξ ∈ ∂Γ, the function
from Γ to R given by x 7→ (d(x∗ν)/dν)(ξ) is well-defined for all x and harmonic: this follows
from the stationarity of ν. It is therefore not surprising that it should be related to Kµ.
Indeed, for all x and ν-almost every ξ,

(2.9) Kµ(x, ξ) =
d(x∗ν)
dν

(ξ).

Using this formula and results of Kaimanovich [Kai00], the following classical expression
for the entropy h(µ) follows:

h(µ) = −
∫

Γ×∂Γ
logKµ(x

−1, ξ) dµ(x) dν(ξ).

We will rather use this formula on the Busemann boundary. The Martin kernel extends
to Γ×∂BΓ by the formula (x, ξ) 7→ Kµ(x, πB(ξ)). We will still denote this extended function
by Kµ. The projection (πB)∗νB of any stationary measure νB on ∂BΓ is equal to ν. Hence,
the previous formula yields

(2.10) h(µ) = −
∫

Γ×∂BΓ
logKµ(x

−1, ξ) dµ(x) dνB(ξ).

2.3. Analytic maps between Banach spaces. To prove the analyticity of ℓ and h, we
need to use analytic mappings between Banach spaces. Although this is standard, we recall
some details for the convenience of the reader. An excellent reference is [Muj86].

Let E, F be real Banach spaces. A mapping f from an open subset U of E to F is
real-analytic (or simply analytic) if, for every a ∈ U , f has a Taylor expansion around a, of
the form f(x) =

∑

m P
mf(a)(x−a), where Pmf(a) is a homogeneous polynomial of degree

m, i.e., a map of the form y 7→ A(y, . . . , y) where A is a continuous m-linear map from
Em to F . We require that the above series converges uniformly on some ball around a, i.e.,
∑‖Pmf(a)‖rm <∞ for some r > 0.

When the same property is satisfied in complex Banach spaces, we say that f is complex-
analytic, or analytic, or holomorphic.

Let f : U ⊂ E → F be a real-analytic map between real Banach spaces. Using its Taylor
series, one obtains an extension fC of f where fC : UC ⊂ EC → FC is holomorphic on a
domain UC of the complexification EC = E ⊗ C, with U ⊂ UC . One can choose to work
either with f or fC, i.e., in real or complex Banach spaces. However, holomorphic mappings
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enjoy several remarkable properties that are not satisfied in the real case, hence we will
mainly use the complex point of view. Notably:

• A mapping f is holomorphic if and only if it is everywhere differentiable over C (i.e.,
it is R-differentiable and its differential is C-linear) [Muj86, Theorem 13.16]. For
instance, this implies without any computation that a composition of holomorphic
maps is still holomorphic.

• A mapping f : U ⊂ E → F is holomorphic if and only if it is continuous and, for
every a, b ∈ E, the map z 7→ f(a+bz) from an open subset of C to F is holomorphic
where defined [Muj86, Theorem 8.7]

• A mapping f : U ⊂ E → F is holomorphic if and only if it is continuous and, for
every a, b ∈ E and every ψ ∈ F ′, the map z 7→ ψ ◦ f(a+ bz) from an open subset of
C to C is holomorphic where defined [Muj86, Theorem 8.12]

• A locally uniform pointwise limit of holomorphic mappings is still holomorphic,
by [Muj86, Proposition 9.13].

3. Analyticity of the escape rate

Let Γ be a non-elementary δ-hyperbolic group. Increasing δ if necessary, we may assume
that it is an integer.

In this section, we prove that the map µ 7→ ℓ(µ) is analytic on P+
1 (F ), as stated in

Theorem 1.1. We will even prove the stronger statement given in Remark 1.4. Let α > 0.
Denote by P(α) the complex Banach space of measures µ such that

∑|µ(g)|eα|g| <∞, with
the corresponding norm ‖µ‖α. We will show that µ 7→ ℓ(µ) is analytic on a neighborhood
of the set P+

1 (α) ⊂ P(α) of admissible probability measures.
The idea is to use (2.7). Thus, we need to exhibit a family of stationary probability

measures on the Busemann boundary ∂BΓ, depending analytically on µ.
We recall that we have defined a distance d on ∂BΓ in (2.2). We write Cβ for the space

of β-Hölder continuous function on (∂BΓ, d), with the norm

‖u‖Cβ = ‖u‖C0 + sup
ξ 6=ξ′

|u(ξ)− u(ξ′)|/d(ξ, ξ′)β .

.
The main result of this section is the following.

Theorem 3.1. Let α > 0 and β > 0. Let µ0 ∈ P+
1 (α) be an admissible probability measure

with a moment of order α. Then there exist a neighborhood U of µ0 in P(α) and an analytic
map Φ : U → (Cβ)∗ such that, for µ ∈ U ∩ P+

1 (α), the linear form Φ(µ) is given by the
integration against a µ-stationary measure on ∂BΓ.

Before proving this theorem, let us see how it implies the analyticity of the escape rate.

Corollary 3.2. The map u 7→ ℓ(µ), associating to µ ∈ P+
1 (α) its escape rate, extends to

an analytic map on a neighborhood in P(α) of any µ0 ∈ P+
1 (α).

Proof. Take β < α/2. Let Φ(µ) be constructed in Theorem 3.1, on a a neighborhood
U ⊂ P(α) of µ0 ∈ P+

1 (α). For µ ∈ U ∩ P+
1 (α), the linear form Φ(µ) corresponds to

integration against a µ-stationary measure. Hence, (2.7) shows that the escape rate ℓ(µ) is
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given by

(3.1) ℓ(µ) =
∑

g∈Γ
µ(g)Φ(µ)(ξ 7→ cB(g, ξ)).

We claim that the expression on the right defines an analytic function on U . Let us first
show that the sum converges absolutely. We need to estimate the Cβ norm of ug : ξ 7→
cB(g, ξ). It is bounded in sup norm by |g|. If d(ξ, ξ′) 6 e−|g|, we have ug(ξ) − ug(ξ

′) = 0.

On the other hand, if d(ξ, ξ′) > e−|g|, we have

|ug(ξ)− ug(ξ
′)|/d(ξ, ξ′)β 6 2|g|/e−β|g|

6 Ceα|g|.

Hence, ‖ug‖Cβ 6 Ceα|g|. It follows that
∑

g∈Γ
|µ(g)Φ(µ)(ug)| 6

∑

g∈Γ
|µ(g)|Ceα|g| 6 C‖µ‖α.

This shows that the right hand side of (3.1) is well defined. Moreover, each such sum,
when restricted to a finite subset of Γ, is analytic. Since analytic functions are closed under
uniform convergence, it follows that the sum over Γ is also analytic. �

The rest of this section is devoted to the proof of Theorem 3.1 .
To µ ∈ P(α) is associated a convolution operator on ∂BΓ, and consequently an operator

acting on continuous functions. It is given by

Lµu(ξ) =
∑

g

µ(g)u(g · ξ).

The stationary measure Φ(µ) of Theorem 3.1 will be constructed as an eigenfunction for the
dual operator L∗

µ acting on (Cβ)∗, for the eigenvalue 1. Eigenfunctions corresponding to
isolated eigenvalues which are simple depend analytically on the operator, hence we should
understand the spectral properties of L∗

µ or, equivalently, of Lµ.
The usual strategy, dating back to Guivarc’h-Le Page, is to prove the following contraction

estimate:

(3.2) sup
ξ,ξ′∈∂BΓ

∫ (

d(gξ, gξ′)
d(ξ, ξ′)

)β

dµ∗n(g) < 1,

for some n > 0 and some β > 0. Such an estimate implies that Lµ has a simple eigenvalue at
1 and no other eigenvalue of modulus > 1, see for instance [Bjö10] or [BQ14b]. Unfortunately,
such an inequality can not hold in general in our context. For instance, in Γ = Fd × Z/2Z,
consider two horofunctions ξ and ξ′ coming from the two sheets Fd×{0} and Fd×{1}. Then
gξ and gξ′ are at distance 1 for any g ∈ Γ, since they differ on the element e×1, at distance
1 of the origin. Hence, (3.2) is always equal to 1. In this example, one can nevertheless
hope that Lµ has contraction properties due to another mechanism, maybe matching for
instance gξ with g′ξ′ for some different group element g′.

In general, we will not obtain the contraction from an explicit contraction estimate such
as (3.2), but rather from a less explicit spectral argument.

Proposition 3.3. For µ ∈ P(α), the operator Lµ acts continuously on C0, and on Cβ when
β 6 α. Its operator norm is bounded by ‖µ‖α.
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Proof. If µ has finite support, then Lµu is the sum of the continuous functions ξ 7→ µ(g)u(g ·
ξ), bounded by |µ(g)|. Hence, Lµ acts continuously on C0 with norm at most

∑|µ(g)| 6
‖µ‖α. The general case follows by density.

Suppose now that two horofunctions hξ and hξ′ coincide on the ball B(e,N). Then the
horofunctions hgξ and hgξ′ coincide at least on the ball B(e,N − |g|). Therefore,

(3.3) d(gξ, gξ′) 6 e|g|d(ξ, ξ′).

Let u ∈ Cβ. We have

|Lµu(ξ)− Lµu(ξ
′)| 6

∑

|µ(g)||u(gξ)− u(gξ′)| 6
∑

|µ(g)|‖u‖Cβd(gξ, gξ′)β

6
∑

|µ(g)|‖u‖Cβeβ|g|d(ξ, ξ′)β = ‖µ‖β‖u‖Cβd(ξ, ξ′)β

6 ‖µ‖α‖u‖Cβd(ξ, ξ′)β .

This shows that Lµu is again β-Hölder continuous, with Hölder constant at most ‖µ‖α‖u‖Cβ .
�

This computation does not give any contraction. To get contraction, we should show that
d(gξ, gξ′) is smaller than d(ξ, ξ′) for most g. Starting from the fact that two horofunctions
hξ and hξ′ coincide on a ball B(e,N), we thus need to show that they coincide on a bigger
ball centered at g−1. This is essentially the content of the following lemma.

Lemma 3.4. Let h1 and h2 be two horofunctions, which coincide on a ball B(e,N). Let
x ∈ B(e,N − 10δ). Then h1 and h2 coincide on the ball B(x,N + h1(x)− 10δ).

This lemma is trivial for x = e, or more generally when h1(x) = −d(e, x): in this case,
the ball B(x,N + h1(x)− 10δ) is included in B(e,N), where we already know that h1 and
h2 coincide. On the other hand, it gives new and useful information for instance when h1(x)
is positive. This lemma follows easily from the arguments in [CP01], as we explain now.
The idea is that geodesics from a point y ∈ B(x,N + h1(x) − 10δ) to the point at infinity
directed by h1 have to enter B(e,N), hence the value of h1 on y is determined by its value
on B(e,N).

Proof. We will use the following easy inequality on Gromov products. For any u, v and w,
one has d(w, v) > d(w, u) − d(u, v). Hence

(u|v)w = (d(w, u) + d(w, v) − d(u, v))/2 > d(w, u) − d(u, v).

Take x ∈ B(e,N − 10δ). As h1 is a horofunction, it is a pointwise limit of normalized
distance functions. Hence, we may take z with d(e, z) > 2N such that h1(y) = hz(y) for all
y ∈ B(e, 2N), where hz(y) = d(z, y) − d(z, e). Write d(e, z) =M +N with M > N . Then

(e|x)z > d(z, e) − d(e, x) >M +N − (N − 10δ) =M + 10δ.

Consider y ∈ B(x,N + h1(x) − 10δ). As d(z, x) = d(z, e) + hz(x) = M + N + h1(x), we
obtain

(x|y)z > d(z, x) − d(y, x) >M +N + h1(x)− (N + h1(x)− 10δ) =M + 10δ.

The inequality (2.1) characterizing hyperbolic spaces entails

(3.4) (e|y)z >M + 9δ.
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Consider a and b the points on geodesics from z to e and from z to y, at distance M +9δ
of z. They belong to Γ since δ ∈ N by assumption. Moreover, d(e, a) = N − 9δ. We have
(e|a)z =M +9δ and (y|b)z =M +9δ. Combining these two inequalities with hyperbolicity,
and using (3.4), we get

(a|b)z >M + 7δ.

Hence,

d(a, b) = d(a, z) + d(b, z) − 2(a|b)z 6 2(M + 9δ) − 2(M + 7δ) = 4δ.

In particular, d(b, e) 6 d(a, e) + 4δ 6 N − 5δ. This implies that b ∈ B(e,N), so that
h1(b) = h2(b).

As b is on a geodesic segment from z to y, we have

h1(y) = hz(y) = hz(b) + d(b, y) = h1(b) + d(b, y).

Moreover, as h2 is 1-Lipschitz, h2(y) 6 h2(b) + d(b, y). This shows that h2(y) 6 h1(y).
We have proved that h2 6 h1 on B(x,N + h1(x) − 10δ). Since everything is symmetric,

the reverse inequality and the equality follow. �

A weak form of contraction of the convolution operator (called a Doeblin-Fortet inequal-
ity) follows using the standard trick of Le Page, as explained for instance in [BQ14b].

Lemma 3.5. Let µ ∈ P+
1 (α). There exist n > 0, β 6 α/2, C > 0 and ρ < 1 such that, for

any u ∈ Cβ,

(3.5) ‖Ln
µu‖Cβ 6 ρ‖u‖Cβ + C‖u‖C0 .

Proof. Let β 6 α/2. Fix n ∈ N, and N > 0. We want to estimate the β-Hölder constant
of Ln

µu. Given ξ and ξ′, we should bound |Ln
µu(ξ) − Ln

µu(ξ
′)|. If d(ξ, ξ′) > e−N , we simply

write

|Ln
µu(ξ)− Ln

µu(ξ
′)| 6 2‖Ln

µu‖C0 6 2‖u‖C0 6 d(ξ, ξ′)β · 2 · eβN‖u‖C0 .

This is compatible with the inequality we seek, for a large C > 2eβN .
Assume now that d(ξ, ξ′) = e−M 6 e−N , i.e., the two horofunctions hξ and hξ′ coincide

on the ball B(e,M) with M > N . When |g| 6 N − 10δ, Lemma 3.4 implies that hξ
and hξ′ coincide on the ball B(g−1,M + hξ(g

−1) − 10δ). We recall that g · ξ satisfies
hgξ(x) = hξ(g

−1x)−hξ(g−1). Hence, hgξ and hgξ′ coincide on the ball B(e,M+hξ(g
−1)−10δ).

This yields d(gξ, gξ′) 6 e10δ−hξ(g
−1)d(ξ, ξ′). If |g| > N − 10δ, we simply use the trivial

inequality d(gξ, gξ′) 6 e|g|d(ξ, ξ′) proved in (3.3) instead.
We obtain

|Ln
µu(ξ)− Ln

µu(ξ
′)| 6

∑

g

µ∗n(g)|u(gξ)− u(gξ′)| 6
∑

g

µ∗n(g)‖u‖Cβd(gξ, gξ′)β

6 ‖u‖Cβd(ξ, ξ
′)β





∑

|g|6N−10δ

µ∗n(g)eβ(10δ−hξ (g
−1)) +

∑

|g|>N−10δ

µ∗n(g)eβ|g|



.

If the term between parenthesis on the last line is bounded by ρ < 1, uniformly in ξ ∈ ∂BΓ,
then we get |Ln

µu(ξ) − Ln
µu(ξ

′)| 6 ρ‖u‖Cβd(ξ, ξ′)β, which is the desired bound for the pair

ξ, ξ′.
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Hence, to conclude, it suffices to obtain such a bound by ρ < 1 as above. It is even
sufficient to obtain it for N = ∞, since the same bound (with a slightly larger ρ′ ∈ (ρ, 1))
then follows for any large enough finite N . Finally, it suffices to find β 6 α/2 and n such
that, uniformly in ξ ∈ ∂BΓ,

(3.6)
∑

g

µ∗n(g)eβ(10δ−hξ (g
−1)) 6 ρ < 1.

We use the inequality et 6 1+ t+ t2e|t|. Moreover, there exists C such that t2 6 Ceα|t|/2

for all real t. Hence, the sum in the above equation is bounded by

∑

g

µ∗n(g)
(

1 + β(10δ − hξ(g
−1)) + β2(10δ − hξ(g

−1))2eβ(10δ+|g|)
)

6 1− β

(

∑

g

µ∗n(g)(hξ(g
−1)− 10δ)

)

+ β2C

(

∑

g

µ∗n(g)e(β+α/2)(10δ+|g|)
)

.

When β 6 α/2, the last sum is finite and bounded by e10αδ‖µ∗n‖α. Hence, when β tends
to 0, the last term is O(β2), and is negligible with respect to the first one, of order β. If
the first term is strictly negative, (3.6) follows for small enough β. Therefore, it suffices to
show that

(3.7)
∑

g

µ∗n(g)(hξ(g
−1)− 10δ) > K > 0,

uniformly in ξ ∈ ∂BΓ. The term on the left of this equation looks closely like the escape rate
of the random walk, which is strictly positive. The difficulty is that we want a pointwise
uniform inequality, not an averaged version.

This kind of situation has already been encountered several times in the literature, hence
efficient tools are available. We recall for instance Theorem 2.8 in [BQ14b]. Let Γ be a
countable group acting continuously on a compact space X, let µ be a probability measure
on Γ, and let c : Γ×X → R be a continuous cocycle, i.e., a continuous function satisfying
c(g1g2, x) = c(g1, g2x) + c(g2, x). Assume that

∑

g∈Γ µ(g) supx∈X |c(g, x)| < ∞. Assume
also that there exists ℓ ∈ R such that, for any µ-stationary probability measure ν on X,
∫

Γ×X c(g, x) dµ(g) dν(x) = ℓ. Then

1

n

∑

g∈Γ
µ∗n(g)c(g, x) → ℓ,

uniformly in x ∈ X.
We will apply this statement to the Busemann cocycle on X = ∂BΓ, given by cB(g, ξ) =

hξ(g
−1). In this case, for any stationary measure ν on ∂BΓ, (2.7) states that

∫

X
cB(g, ξ) dµ(g) dν(ξ) = ℓ.

Hence, we deduce from [BQ14b, Theorem 2.8] that

1

n

∑

g∈Γ
µ∗n(g)cB(g, ξ) → ℓ, uniformly in ξ ∈ ∂BΓ.



ANALYTICITY OF THE ENTROPY AND THE ESCAPE RATE 13

As µ is admissible and Γ is non-amenable, ℓ > 0. Hence, if n is large enough, we have for
all ξ ∈ ∂BΓ the inequality

∑

g

µ∗n(g)hξ(g
−1) > nℓ/2.

This implies (3.7) if n is large enough so that nℓ/2 > 10δ. �

Proposition 3.6. Let µ ∈ P+
1 (α). Consider a compact subset ∂′BΓ ⊂ ∂BΓ which is minimal

for the Γ-action. Then, for small enough β, the operator Lµ acting on Cβ(∂′BΓ) has a simple
eigenvalue at 1, finitely many eigenvalues of modulus 1 (they are simple and do not have
nontrivial Jordan blocks) and the rest of its spectrum is contained in a disk D(0, r) for some
r < 1.

Proof. In the proof, we let Lµ act on Cβ(∂′BΓ). On this space, the estimates of Lemma 3.5

readily follow from the corresponding ones on Cβ(∂BΓ). Let n and β be given by Lemma 3.5.
In the inequality (3.5), the term ρ‖u‖Cβ heuristically corresponds to a part of Lµ with

spectral radius at most ρ1/n, while the term C‖u‖C0 would come from a compact part (as

the inclusion of Cβ in C0 is compact), which should only add discrete eigenvalues. This
intuition is made precise by a theorem of Hennion [Hen93]: It entails that (3.5) implies

that the spectrum of Lµ in {z ∈ C : |z| > ρ1/n} is made of isolated eigenvalues of finite
multiplicity.

In particular, by discreteness, there are finitely many eigenvalues of modulus > 1, and
the rest of the spectrum is contained in a disk D(0, r) for some r < 1. As the iterates of
Lµ on C0 are uniformly bounded, there is no eigenvalue with modulus > 1. Moreover, the
eigenvalues of modulus 1 have no Jordan block.

Let u be an eigenfunction of Lµ for an eigenvalue ρ of modulus 1. Then v = |u| satisfies

(3.8) v = |u| = |Lk
µu| 6 Lk

µ|u| = Lk
µv.

Consider ξ ∈ ∂′BΓ such that v(ξ) is maximal. Then the previous inequality implies that
v(gξ) = v(ξ) for all g in the semigroup generated by the support of µ. By admissibility, this
is true for all g ∈ Γ. The orbit of ξ is dense in ∂′BΓ by minimality. Thus, v is constant.

The equality in (3.8) also implies that all the complex numbers u(gξ) for g ∈ supp(µ∗k)
have the same phase. Hence, u is constant on (suppµ∗k)ξ.

We claim that

(3.9) there exists N > 0 with µ∗N (e) > 0.

Indeed, fix x 6= e. Then, by admissibility, there is ℓ1 > 0 such that µ∗ℓ1(x) > 0, and ℓ2 > 0

such that µ∗ℓ2(x−1) > 0. Then µ∗(ℓ1+ℓ2)(e) > 0.

Fix such an N . Then, for any j, the sequence (suppµ∗(kN+j))(ξ) increases with k, towards
a limiting set Aj ⊂ ∂′BΓ. The function u is constant on each set Aj . Moreover, for j ∈ Z/NZ,
one has µ ∗ Aj = Aj+1. As Lµu = ρu, it follows that ρu|Aj

= u|Aj+1
. Finally, one gets

u(x) = ρju(ξ) for x ∈ Aj. As
⋃

j Aj = ∂′BΓ by minimality, this shows that u is determined
by its value at ξ, and therefore that the ρ-eigenspace is at most 1-dimensional.

For ρ = 1, the eigenspace is exactly 1-dimensional, as it contains the constant functions.
�
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Proof of Theorem 3.1. It suffices to prove the theorem for small enough β, as (Cβ)∗ ⊂ (Cβ′
)∗

when β 6 β′. We will use basic results of spectral theory in Banach spaces, as explained for
instance in [Kat66].

Take µ0 ∈ P+
1 (α). Proposition 3.6 applies to µ0. Hence, for small enough β, one can de-

compose the space Cβ(∂′BΓ) as a direct sum of finite-dimensional eigenspaces Eρ associated
to eigenvalues ρ with modulus 1, and an infinite-dimensional subspace E<1 on which Ln

µ0

tends exponentially fast to 0. Let Πµ0 be the eigenprojection for the eigenvalue 1, i.e., the

projection on E1 with kernel E<1 ⊕
⊕

ρ6=1Eρ. Then we claim that, for any u ∈ Cβ(∂′BΓ),

(3.10)
1

k

k−1
∑

i=0

Li
µ0
u→ Πµ0u.

Indeed, this is clear on each Eρ and on E separately, the general result follows. By [Kat66],
the projection Πµ0 is also given by the formula

(3.11) Πµ0u =
1

2iπ

∫

C
(zI − Lµ0)

−1 dz,

where C is any small enough circle around 1.
The map µ 7→ Lµ is linear and continuous by Proposition 3.3 (and therefore analytic).

For µ close enough to µ0, the operator Lµ is close to Lµ0 . Hence, the spectral description
given by Proposition 3.6 for Lµ0 persists for Lµ by spectral continuity results for isolated
simple eigenvalues, see [Kat66]: the operator Lµ has a unique eigenvalue close to 1, it is
simple, and the corresponding spectral projection Πµ is given by the formula (3.11) (with

µ0 replaced by µ). Moreover, µ 7→ Πµ is analytic. When µ ∈ P+
1 (α), the operator Lµ

is a convolution operator with a probability measure, hence Lµ1 = 1. In particular, the
corresponding eigenvalue is 1.

Let ξ0 ∈ ∂′BΓ. We define a linear form Φ(µ) on Cβ(∂′BΓ), for µ close to µ0, by Φ(µ)(u) =

(Πµu)(ξ0). Then µ 7→ Φ(µ) is analytic from U to (Cβ(∂′BΓ))
∗. As Hölder functions

on ∂BΓ restrict to Hölder functions on ∂′BΓ, Φ(µ) can be considered as a linear form

on Cβ(∂BΓ). Equivalently, we implicitly compose Φ(µ) with the continuous inclusion
(Cβ(∂′BΓ))

∗ ⊂ (Cβ(∂BΓ))
∗. Hence, Φ(µ) ∈ (Cβ(∂BΓ))

∗.
It remains to show that the linear form Φ(µ) is the integration against a stationary

probability measure on ∂′BΓ when µ ∈ P+
1 (α). In this case, Φ(µ)(u) is again given by the

formula (3.10) (with µ0 replaced by µ). For any nonnegative Hölder function u, one gets
0 6 Φ(µ)(u) 6 ‖u‖C0 . By density of Hölder functions in C0, we deduce that Φ(µ) extends to
a positive linear form on continuous functions, i.e., a positive measure on ∂′BΓ. As Φ(µ)1 = 1,
it is a probability measure. Finally, as Φ(µ)(Lµu) = Φ(µ)(u), it is stationary. �

4. Analyticity of the entropy

Let Γ be a non-elementary hyperbolic group. We fix once and for all a finite subset F of
Γ. We denote by P(F ) the set of functions µ : F → C, and by P+

1 (F ) its subset made of
admissible probability measures. We also fix a reference measure µ0 ∈ P+

1 (F ). Note that
the support of µ0 may be a proper subset of F . In this section, we prove the entropy part
of Theorem 1.1:
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Theorem 4.1. The map µ 7→ h(µ), associating to µ ∈ P+
1 (F ) its entropy, extends to an

analytic map on a neighborhood of µ0 in P(F ).

The idea is to start from (2.10), and to show thatKµ(x, ξ) (the limit ofGµ(x, yn)/Gµ(e, yn)
when yn tends to ξ) depends analytically on µ.

4.1. Strong Ancona inequalities. A fundamental tool to study the Green function and
the Martin kernel in hyperbolic groups is an inequality due to Ancona, showing that the
Green function is essentially multiplicative along geodesics. In other words, typical trajec-
tories of the random walk tend to follow geodesics. We will use repeatedly a quantitative
version of such inequalities, that we describe in this paragraph. As it should hold uniformly
on a neighborhood of µ0, we first describe such a convenient neighborhood.

As Γ is non-amenable, the spectral radius of the convolution operator by µ0 on ℓ2(Γ) is
< 1. We fix ε0 > 0 small enough so that the measure µ̄ = µ0+ε0

∑

g∈F δg also has a spectral
radius < 1.

We denote by Ū ⊂ P(F ) the set of functions supported on F with |µ(g) − µ0(g)| 6 ε0
for all g ∈ F , and by U its interior. We also write Ū+ for the nonnegative elements of Ū ,
and Ū+

1 for the admissible probability measures in Ū . As all functions in Ū are dominated
by µ̄, they all have a spectral radius < 1, uniformly. Moreover, the Green function (defined
in (2.8)) of µ ∈ Ū+ satisfies

Gµ(x, y) 6 Gµ̄(x, y)

for all x, y ∈ Γ.
If ε0 is small enough, all measures µ ∈ Ū+ satisfy µ(g) > µ0(g)/2 for all g ∈ suppµ0. As

µ0 is admissible, it follows that Gµ(x, y) > e−Cd(x,y) for all x, y ∈ Γ, uniformly in µ. As
trajectories from x to y and trajectories from y to z can be concatenated to form trajectories
from x to z, we deduce the following Harnack inequalities, uniformly in x, y, z ∈ Γ and
µ ∈ Ū+:

(4.1) e−Cd(x,y)
6
Gµ(x, z)

Gµ(y, z)
6 eCd(x,y), e−Cd(y,z)

6
Gµ(x, y)

Gµ(x, z)
6 eCd(y,z).

For µ ∈ Ū+, we say that a function u is µ-harmonic in a domain A of Γ if, for all x ∈ A,

u(x) =
∑

g

µ(g)u(xg).

For instance, the Green function x 7→ Gµ(x, y) is µ-harmonic on Γ \ {y}.
Consider a geodesic γ in Γ, with length D > 0, from x0 = γ(0) to y0 = γ(D). We define

a domain of points close to the beginning of γ as I−(γ) = {x ∈ Γ : (x0|x)y0 > D − 10δ}.
In the same way, let I+(γ) = {y ∈ Γ : (y0|y)x0 > D − 10δ}.

The quantitative Ancona inequalities we will use are the following:

Proposition 4.2. There exist C > 0 and D0 such that, for all µ ∈ Ū+, the following holds.
Let γ be a geodesic segment in Γ, with length D > D0. Let u and v be two nonnegative
functions on Γ which satisfy the following outside of I+(γ): they are strictly positive, µ-
harmonic, and bounded by a finite linear combination of functions Gµ(·, y) where y ∈ I+(γ).
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Then, for all x, x′ ∈ I−(γ)
∣

∣

∣

∣

u(x)/u(x′)
v(x)/v(x′)

− 1

∣

∣

∣

∣

6 Ce−C−1D.

Proof. This follows from the arguments in [GL13b]. Indeed, the conclusion of Lemma 4.4
there is a consequence of the fact that the spectral radius is bounded away from 1 on Ū+.
Then all the arguments up to the end of Theorem 4.6 apply verbatim, even for general
µ-harmonic functions. �

One important tool in this proof is the Ancona inequality (Theorem 4.1 in [GL13b]),
saying that the Green function is multiplicative up to a constant along geodesics. We will
use the following version:

Lemma 4.3. For any K > 0, there exists C > 0 with the following property. Let µ ∈ Ū+.
Consider three points x, y, z in Γ such that z is within distance K of a geodesic segment
between x and y. Then

C−1Gµ(x, z)Gµ(z, y) 6 Gµ(x, y) 6 CGµ(x, z)Gµ(z, y).

To illustrate the use of Proposition 4.2, let us explain how, conversely, it implies Ancona
inequalities. We stress that this is not the logical order, as the proof of Proposition 4.2 uses
the lemma.

Proof. By Harnack inequalities, it suffices to prove the lemma when K = 0, i.e., z belongs
to a geodesic between x and y.

If z is D0-close to x or y, then Ancona inequalities are trivial thanks to Harnack inequal-
ities (4.1). Otherwise, along a geodesic from x to y containing z, consider the point x0
between x and z at distance D = D0 of z, and similarly the point y0 between z and y with
d(z, y0) = D0. Let γ be the restriction of the geodesic to [x0y0]. Then x, x0 ∈ I−(γ) and
y, y0 ∈ I+(γ). The functions u = Gµ(·, y) and v = Gµ(·, y0) satisfy the assumptions of the
proposition. We deduce

∣

∣

∣

∣

Gµ(x, y)/Gµ(x0, y)

Gµ(x, y0)/Gµ(x0, y0)
− 1

∣

∣

∣

∣

6 Ce−C−1D0 .

In particular, the quotient is bounded. As x0 and y0 are within bounded distance of z, this
quotient coincides, up to a multiplicative constant, with

Gµ(x, y)/Gµ(z, y)

Gµ(x, z)/Gµ(z, z)
.

Its boundedness shows that Gµ(x, y) 6 CGµ(x, z)Gµ(z, y). The other inequality Gµ(x, y) >
C−1Gµ(x, z)Gµ(z, y) is trivial since trajectories from x to z and from z to y can be concate-
nated to form trajectories from x to y. �

Remark 4.4. Proposition 4.2 applies to the Martin kernel x 7→ Kµ(x, ξ) when ξ /∈ Γ \ I+(γ).
It is µ-harmonic and positive everywhere, what remains to be checked is that it is bounded
by CGµ(x, y0). Let yn ∈ I+(γ) tend to ξ. Then a geodesic from x to yn passes within
bounded distance of y0, uniformly in n and in x in Γ \ I+(γ). Thus, Ancona inequalities
give

Gµ(x, yn) 6 CGµ(x, y0)Gµ(y0, yn).
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By Harnack inequalities, Gµ(y0, yn) 6 CGµ(e, yn). Hence,

Gµ(x, yn)/Gµ(e, yn) 6 CGµ(x, y0).

Letting n tend to infinity, we obtain Kµ(x, ξ) 6 CGµ(x, y0) as desired.

When A is a subset of Γ and µ ∈ Ū+, we define the relative Green function Gµ(x, y;A)
as the sum of µ-probabilities of paths from x to y that stay in A except possibly at the first
and last step, i.e.,

Gµ(x, y;A) =
∑

n>0

∑

x0=x,x1,...,xn=y
x1,...,xn−1∈A

µ(x−1
0 x1) · · · µ(x−1

n−1xn).

The function x 7→ Gµ(x, y;A) is harmonic on the set of points x that are different from y and
can not jump outside of A in one step. It is bounded by Gµ(x, y). Hence, Proposition 4.2
applies to relative Green functions on suitable domains. One has Gµ(x, y; Γ) = Gµ(x, y).

4.2. The Martin kernel as a fixed point. To prove that the entropy depends analytically
on the measure, using (2.10), we should show that the Martin kernel Kµ depends analytically
on µ. As we explained in the introduction, our strategy is to exhibit Kµ as the fixed point
of a suitable operator, and conclude using the implicit function theorem.

We will now introduce this operator, first formally. Let N > 0 be large enough, only
depending on the subset F of Γ in which the measures we consider are supported. To
ξ ∈ ∂BΓ, we associate a point a(ξ) with |a(ξ)| = N which, heuristically, points in the
direction of ξ. We require that hξ(a(ξ)) = −N and that a(ξ) only depends on the restriction
of hξ to B(e,N). We also associate to ξ a set of points in Γ denoted by Λ(ξ) = Λ0(ξ), which
only depends on the restriction of hξ to B(e,N) and contains the points “far away from ξ”.
More precisely, let

Λ(ξ) = {g ∈ Γ : (a(ξ)|g)e 6 N/4}.
If N is large enough, F and F−1 are included in Λ(ξ) for every ξ. We will also need a
slightly larger set

Λ′(ξ) = {g ∈ Γ : (a(ξ)|g)e 6 N/2}.
Given ξ ∈ ∂BΓ, there is now a canonical way to go towards ξ at infinity, starting from the

identity e. First, we jump to a1 = a(ξ). Then, to a2 = a1·a(a−1
1 ξ). Then, to a3 = a2·a(a−1

2 ξ),
and so on. To this process correspond nested sets

Λ(ξ) = Λ0(ξ) ⊂ Λ1(ξ) = a1Λ(a
−1
1 ξ) ⊂ Λ2(ξ) = a2Λ(a

−1
2 ξ) ⊂ . . .

covering more and more the group. The successive boundaries of these sets form a sequence
of barriers between e and ξ. Let also Λ′

k(ξ) = akΛ
′(a−1

k ξ). The complements of Λi(ξ) and
Λ′
i(ξ) are essentially horoballs centered at ξ, at distance respectively iN+N/4 and iN+N/2

of e.
Let µ ∈ Ū+. Consider a nonnegative function u on Γ which is, on Λ′(ξ), positive, har-

monic, and bounded by a finite linear combination of functions G(·, yi) with yi /∈ Λ′(ξ). It
is classical that such a function satisfies

(4.2) u(x) =
∑

y/∈Λ′(ξ)

Gµ(x, y; Λ
′(ξ))u(y).
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Indeed, by harmonicity, u(x) =
∑

y µ(x
−1y)u(y). One can then apply again this formula

to all the y which are still in Λ′(ξ), and repeat this algorithm up to time n. If µ is a
probability measure, this amounts to considering the random walk starting from x, stopped
once it exits Λ′(ξ), and saying that the average value of u along this process does not change
by harmonicity. We get a formula u(x) =

∑

y Fn(y)u(y), where for y /∈ Λ′(ξ)

Fn(y) =
∑

i6n

∑

x0=x,x1,...,xi=y
x1,...,xi−1∈Λ′(ξ)

µ(x−1
0 x1) · · ·µ(x−1

i−1xi)

converges to Gµ(x, y; Λ
′(ξ)) when n tends to ∞. On the other hand, for y ∈ Λ′(ξ),

Fn(y) =
∑

x0=x,x1,...,xn=y
x1,...,xn−1∈Λ′(ξ)

µ(x−1
0 x1) · · · µ(x−1

n−1xn).

One should show that the contribution of these points to the equality u(x) =
∑

y Fn(y)u(y)

tends to 0 when n tends to ∞. This follows from the domination condition u(x) 6

C
∑

G(x, yi), since this contribution is then bounded by the tails of the series defining
the Green function, which tend to 0 as the series is finite.

Remark 4.5. The Martin kernel Kµ(·, ξ) is bounded on Λ′(ξ) by CG(·, y0) for any y0 /∈
Λ′(ξ), see Remark 4.4. Hence, it satisfies (4.2).

In the formula (4.2), the points y /∈ Λ′(ξ) with a nonzero coefficient Gµ(x, y; Λ
′(ξ)) are

within bounded distance of Λ′(ξ), as the walk has bounded jumps. In particular, if N is
large enough, they are all included in Λ1(ξ). Thus, this formula can also be written as

(4.3) u(x) =
∑

y∈Λ1(ξ)\Λ′(ξ)

Gµ(x, y; Λ
′(ξ))u(y).

This shows how the values of u on Λ0(ξ) are determined by its values on Λ1(ξ). This
formula entails that harmonic functions are fixed point of an operator, which has contracting
properties thanks to the good behavior of the kernel Gµ(x, y; Λ1(ξ)) coming from Ancona
inequalities. Ultimately, this should provide a tractable analytic characterization of the
Martin kernel.

We convert this heuristic discussion into a true operator Mµ, defined for any µ ∈ Ū . It
acts on scalar-valued functions f(x, ξ) defined on pairs (x, ξ) with ξ ∈ ∂BΓ and x ∈ Λ(ξ),
by the formula

(4.4) Mµf(x, ξ) =
∑

y∈Λ1(ξ)\Λ′(ξ)

Gµ(x, y; Λ
′(ξ))f(a(ξ)−1y, a(ξ)−1ξ).

Note that the right-hand side is well defined as the point a(ξ)−1y, a(ξ)−1ξ belongs to the
domain of definition of f , i.e., a(ξ)−1y ∈ Λ(a(ξ)−1ξ), thanks to the condition y ∈ Λ1(ξ).

To get a fixed point, we should projectivize this operator, normalizing for instance so
that the value at (e, ξ) is always 1. Hence, let

Lµf(x, ξ) = Mµf(x, ξ)/Mµf(e, ξ).

This is not defined when Mµf(e, ξ) = 0 for some ξ. We should also ensure that the sums
in the definition of Mµ are finite.
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The contraction properties of this operator are central to the proof of strong Ancona
inequalities (Proposition 4.2): For µ ∈ Ū+, these inequalities are obtained by letting this
operator act on a cone of positive functions, endowed with a Hilbert distance. To apply the
implicit function theorem, we will rather need contraction on a Banach space, that we will
deduce from Proposition 4.2. Hence, we will not reprove Proposition 4.2, but rather use its
results to obtain another form of contraction.

The iterates of Mµ (whence of Lµ) have the same form. Indeed,

M2
µf(x, ξ) =

∑

y/∈Λ′(ξ)

Gµ(x, y; Λ
′(ξ))Mµf(a(ξ)

−1y, a(ξ)−1ξ)

=
∑

y/∈Λ′(ξ)

Gµ(x, y; Λ
′(ξ))

∑

z /∈Λ′(a(ξ)−1ξ)

Gµ(a(ξ)
−1y, z; Λ′(a(ξ)−1ξ))×

× f(a(a(ξ)−1ξ)−1z, a(a(ξ)−1ξ)−1a(ξ)−1ξ).

Let w = a(ξ)z, it belongs to the complement of Λ′
1(ξ). Moreover,

Gµ(a(ξ)
−1y, z; Λ′(a(ξ)−1ξ)) = Gµ(y,w; Λ

′
1(ξ)).

Decomposing a trajectory from x ∈ Λ(ξ) to w according to the first point where it exits
Λ′(ξ), we have

∑

y/∈Λ′(ξ)

Gµ(x, y; Λ
′(ξ))Gµ(y,w; Λ

′
1(ξ)) = Gµ(x,w; Λ

′
1(ξ)).

Recalling that a2(ξ) = a(ξ) · a(a(ξ)−1ξ), the above formula for M2
µf(x, ξ) becomes

M2
µf(x, ξ) =

∑

w/∈Λ′
1(ξ)

Gµ(x,w; Λ
′
1(ξ))f(a2(ξ)

−1w, a2(ξ)
−1ξ).

The only points with a nonzero coefficient Gµ(x,w; Λ
′
1(ξ)) belong to Λ2(ξ). Hence, the sum

may be restricted to w ∈ Λ2(ξ) \ Λ′
1(ξ).

In the same way, iterating this argument, one obtains

(4.5) Mn
µf(x, ξ) =

∑

y∈Λn(ξ)\Λ′
n−1(ξ)

Gµ(x, y; Λ
′
n−1(ξ))f(an(ξ)

−1y, an(ξ)
−1ξ).

Finally, as the projectivization commutes with the iteration of Mµ,

Ln
µf(x, ξ) = Mn

µf(x, ξ)/Mn
µf(e, ξ).

We define different norms on these functions. Let µ ∈ Ū+. We set

‖f‖C0
µ
= sup

ξ
sup

x∈Λ(ξ)
|f(x, ξ)|/Gµ(x, e)

and, for small β > 0,

‖f‖′Cβ
µ
= sup

d(ξ,ξ′)6e−N

d(ξ, ξ′)−β sup
x∈Λ(ξ)=Λ(ξ′)

|f(x, ξ)− f(x, ξ′)|/Gµ(x, e).
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Finally, let ‖f‖Cβ
µ
= ‖f‖C0

µ
+ ‖f‖′Cβ

µ
. As these are Hölder-like norms, one checks easily that

these spaces are Banach algebras: if f1, f2 ∈ Cβ
µ , then f1f2 ∈ Cβ

µ and

‖f1f2‖Cβ
µ
6 ‖f1‖Cβ‖f2‖Cβ .

The same holds in C0
µ.

Remark 4.6. Take x ∈ Λ(ξ). Then a geodesics from x to ξ passes within uniformly bounded
distance of e. By Ancona inequalities, if y is close to ξ, we obtain Gµ(x, y)/Gµ(e, y) ≍
Gµ(x, e). Letting y → ξ yields

Gµ(x, e) ≍ Kµ(x, ξ) uniformly in ξ ∈ ∂BΓ and x ∈ Λ(ξ).

Hence, in the definitions of the norms for C0
µ and Cβ

µ , we could have normalized by Kµ(x, ξ)
instead of Gµ(x, e), obtaining an equivalent norm.

This also implies that, if d(ξ, ξ′) 6 e−N (ensuring that Λ(ξ) = Λ(ξ′)), then Kµ(x, ξ) ≍
Kµ(x, ξ

′) uniformly on x ∈ Λ(ξ).

If we want to study a fixed operator Lµ with µ ∈ Ū+, the space Cβ
µ is most natural.

However, we want to vary µ in U . Hence, we need a reference space, independent of µ. We

recall that we have a measure µ̄ which dominates all measures µ ∈ U . The spaces Cβ
µ are

all included in Cβ
µ̄ . Hence, we can use the latter as a fixed reference space. We will simply

write C0 = C0
µ̄ and Cβ = Cβ

µ̄ .

Lemma 4.7. For µ ∈ Ū and small enough β, the operator Mµ sends continuously Cβ into

itself. If µ ∈ Ū+, it even sends Cβ into Cβ
µ . Moreover, the map (µ, f) 7→ Mµf is analytic

from U × Cβ to Cβ .

Proof. Consider f ∈ Cβ and µ ∈ Ū+. Then

|Mµf(x, ξ)| 6
∑

y∈Λ1(ξ)\Λ′(ξ)

Gµ(x, y; Λ
′(ξ))|f(a(ξ)−1y, a(ξ)−1ξ)|

6
∑

y∈Λ1(ξ)\Λ′(ξ)

Gµ(x, y)Gµ̄(a(ξ)
−1y, e)‖f‖C0 .

As x ∈ Λ(ξ) and y /∈ Λ′(ξ), a geodesics from x to y passes within bounded distance of e.
Hence, by Ancona inequalities (Lemma 4.3),

Gµ(x, y) 6 CGµ(x, e)Gµ(e, y) 6 CGµ(x, e)Gµ̄(e, y).

Moreover, Gµ̄(a(ξ)
−1y, e) = Gµ̄(y, a(ξ)) 6 CGµ̄(y, e) as a(ξ) is a bounded distance away

from e. Hence,

|Mµf(x, ξ)| 6 C
∑

y∈Γ
Gµ(x, e)Gµ̄(e, y)Gµ̄(y, e)‖f‖C0 .

Factorizing Gµ(x, e)‖f‖C0 , we are left with the sum
∑

y Gµ̄(e, y)Gµ̄(y, e). Since the spectral

radius of µ̄ is < 1 by construction, the map r 7→ Grµ̄(e, e) is well defined and analytic on a
neighborhood of 1. In particular, Gµ̄(e, e) + ∂Grµ̄(e, e)/∂r|r=1 is finite. By an elementary
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computation (see [GL13b, Proposition 1.9]), this is equal to
∑

y Gµ̄(e, y)Gµ̄(y, e). Hence,
this sum is finite. This shows that

‖Mµf‖C0
µ
6 C‖f‖C0 .

Let us now control the Hölder norm. Consider ξ, ξ′, write d(ξ, ξ′) = e−n. If n 6 2N , then

∣

∣Mµf(x, ξ)−Mµf(x, ξ
′)
∣

∣/(d(ξ, ξ′)βGµ(x, e)) 6 e2Nβ(|Mµf(x, ξ)|+
∣

∣Mµf(x, ξ
′)
∣

∣)/Gµ(x, e)

6 Ce2Nβ‖f‖C0 ,

by the sup norm control we have already proved. Assume now that n > 2N . This entails
Λ(ξ) = Λ(ξ′), and a(ξ) = a(ξ′), and Λ(a(ξ)−1ξ) = Λ(a(ξ′)−1ξ′). Then, for x ∈ Λ(ξ) = Λ(ξ′),

|Mµf(x, ξ)−Mµf(x, ξ
′)|

=

∣

∣

∣

∣

∣

∣

∑

y∈Λ1(ξ)\Λ′(ξ)

Gµ(x, y; Λ
′(ξ))(f(a(ξ)−1y, a(ξ)−1ξ)− f(a(ξ′)−1y, a(ξ′)−1ξ′))

∣

∣

∣

∣

∣

∣

6
∑

y∈Λ1(ξ)\Λ′(ξ)

Gµ(x, y)d(a(ξ)
−1ξ, a(ξ)−1ξ′)βGµ̄(a(ξ)

−1y, e)‖f‖′Cβ .

As above, this is bounded by

CGµ(x, e)d(a(ξ)
−1ξ, a(ξ)−1ξ′)β‖f‖′Cβ 6 CeβNGµ(x, e)d(ξ, ξ

′)β‖f‖′Cβ ,

by (3.3). This shows that Mµ maps continuously Cβ into Cβ
µ when µ ∈ Ū+.

When µ ∈ U , we show in the same way that Mµ maps continuously Cβ into itself. The
computation is the same, excepted that Gµ is not positive any more. Hence, one should
bound |Gµ(x, y)| by Gµ̄(x, y) at the beginning of the computation, and then proceed in the
same way.

The map F : (µ, f) 7→ Mµf on Cβ is linear in f . To prove that it is analytic, we
should control its dependence on µ. Each function µ 7→ Gµ(x, y; Λ

′(ξ)) is a limit of a
degree K polynomial, obtained by considering the weight of trajectories of length at most
K. Moreover, the corresponding K-truncated operators all satisfy the same bounds as F ,
since the above computations apply. Hence, F is the uniform limit of analytic operators FK .
As analyticity is stable under uniform convergence, it follows that F itself is analytic. �

Corollary 4.8. Let µ1 ∈ U and f1 ∈ Cβ satisfy Mµ1f1(e, ξ) 6= 0 for all ξ. Then the operator

(µ, f) 7→ Lµf is well defined and analytic from a neighborhood of (µ1, f1) in U × Cβ, to Cβ.

Proof. The operator to be studied is the composition of (µ, f) 7→ Mµf and N : f 7→
f̃(x, ξ) = f(x, ξ)/f(e, ξ). The first one is well defined and analytic by Lemma 4.7. Hence,
it suffices to show that N is well defined and analytic on the open set Dβ ⊂ Cβ of functions
f with f(e, ξ) 6= 0 for all ξ.

Let us first check that, if f ∈ Dβ, then N f ∈ Cβ. The supremum condition is obvious
since 1/|f(e, ξ)| is uniformly bounded, by compactness of ∂BΓ and continuity. We check the
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Hölder condition. We have

|N f(x, ξ)−N f(x, ξ′)| = |f(x, ξ)/f(e, ξ) − f(x, ξ′)/f(e, ξ′)|
6 C|f(x, ξ)f(e, ξ′)− f(e, ξ)f(x, ξ′)|
6 C|f(x, ξ)− f(x, ξ′)||f(e, ξ′)|+C|f(x, ξ′)||f(e, ξ′)− f(e, ξ)|.

The first term is bounded by Cd(ξ, ξ′)βGµ̄(x, e). In the second one, we have |f(x, ξ′)| 6
CGµ̄(x, e) and |f(e, ξ′)−f(e, ξ)| 6 Cd(ξ′, ξ)β , hence we obtain the same bound. This shows

that N f ∈ Cβ.
For the analyticity, let us fix f ∈ Dβ. For small h ∈ Cβ ,

N (f + h)(x, ξ) =
(f + h)(x, ξ)

(f + h)(e, ξ)
=

(f + h)(x, ξ)

f(e, ξ)

∑

(−1)n(h/f)(e, ξ)n.

This power series converges on a ball with positive radius, as Cβ is a Banach algebra. �

In the same way, one proves the following:

Corollary 4.9. Let µ1 ∈ Ū+ and f1 ∈ Cβ satisfy Mµ1f1(e, ξ) 6= 0 for all ξ. Then the

operator f 7→ Lµ1f is well defined and analytic from a neighborhood of f1 in Cβ, to Cβ
µ .

Proof. The operator Lµ1 is the composition of Mµ1 and N : f 7→ f̃(x, ξ) = f(x, ξ)/f(e, ξ).

The first one is linear from Cβ to Cβ
µ by Lemma 4.7, the second one is analytic as we

explained in the proof of Corollary 4.8 (on Cβ , but the same proof works in Cβ
µ). Hence,

their composition is analytic. �

Lemma 4.10. For small enough β and for µ ∈ Ū+, the function (x, ξ) 7→ Kµ(x, ξ) belongs

to Cβ.

Proof. By (4.6), Kµ(x, ξ) ≍ Gµ(x, e) uniformly in ξ ∈ ∂BΓ and x ∈ Λ(ξ). Moreover,
Gµ(x, e) 6 Gµ̄(x, e). This proves that ‖Kµ‖C0 <∞.

Let us estimate its Hölder norm. Consider ξ, ξ′ with d(ξ, ξ′) = e−n for some n > N .
Proposition 4.2 applies to Martin kernels, by Remark 4.4. It shows that, for any x ∈ Λ(ξ),

∣

∣

∣

∣

Kµ(x, ξ)/Kµ(e, ξ)

Kµ(x, ξ′)/Kµ(e, ξ′)
− 1

∣

∣

∣

∣

6 Ce−C−1n.

As Kµ(e, ξ) = Kµ(e, ξ
′) = 1, we obtain

|Kµ(x, ξ)−Kµ(x, ξ
′)| 6 Kµ(x, ξ

′)Ce−C−1n.

The term on the right hand side is bounded by C ′Gµ̄(x, e)d(ξ, ξ
′)β if β is small enough. �

The operators Lµ were defined precisely so that the following lemma holds.

Lemma 4.11. Let µ ∈ Ū+. The function (x, ξ) 7→ Kµ(x, ξ) is a fixed point of Lµ. It is the

only one among positive functions in Cβ.

Proof. As Kµ ∈ Cβ by Lemma 4.10, the operator Mµ is well defined on Kµ. By positivity,
LµKµ is also well defined.
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By Remark 4.5, the function Kµ satisfies the equation (4.2), i.e.,

(4.6) Kµ(x, ξ) =
∑

y/∈Λ′(ξ)

Gµ(x, y; Λ
′(ξ))Kµ(y, ξ).

It follows from its definition that Kµ satisfies the following multiplicative cocycle equation:

Kµ(y, ξ) = Kµ(a
−1y, a−1ξ)/Kµ(a

−1, a−1ξ).

Therefore, (4.6) gives

Kµ(x, ξ) =
∑

y/∈Λ′(ξ)

Gµ(x, y; Λ
′(ξ))Kµ(a(ξ)

−1y, a(ξ)−1ξ)/Kµ(a(ξ)
−1, a(ξ)−1ξ).

Hence,

(4.7) MµKµ(x, ξ) = Kµ(a(ξ)
−1, a(ξ)−1ξ)Kµ(x, ξ).

Applying this equation to x = e and dividing both sides, we get Kµ(x, ξ)/Kµ(e, ξ) =
LµKµ(x, ξ). As Kµ(e, ξ) = 1, this concludes the proof that Kµ is a fixed point of Lµ.

Consider now any fixed point f > 0 of Lµ in Cβ. Using the equality (4.5), we get

(4.8) f(x, ξ) = Ln
µf(x, ξ) = Mn

µf(e, ξ)
−1 ·

∑

y/∈Λ′
n−1(ξ)

Gµ(x, y; Λ
′
n−1(ξ))f(an(ξ)

−1y, an(ξ)
−1ξ).

Proposition 4.2 yields, for all x ∈ Λ(ξ) and all y /∈ Λ′
n−1(ξ) with Gµ(e, y; Λ

′
n−1(ξ)) > 0

∣

∣

∣

∣

Gµ(x, y; Λ
′
n−1(ξ))/Gµ(e, y; Λ

′
n−1(ξ))

Kµ(x, ξ)/Kµ(e, ξ)
− 1

∣

∣

∣

∣

6 Ce−C−1n.

Let ε > 0. For large enough n, we obtain

Gµ(x, y; Λ
′
n−1(ξ)) = (1± ε)Gµ(e, y; Λ

′
n−1(ξ))Kµ(x, ξ).

Injecting this estimate into (4.8) (and using the nonnegativity of f), we get

f(x, ξ) = (1± ε)Mn
µf(e, ξ)

−1 ·
∑

y/∈Λ′
n−1(ξ)

Gµ(e, y; Λ
′
n−1(ξ))Kµ(x, ξ)f(an(ξ)

−1y, an(ξ)
−1ξ)

= (1± ε)Mn
µf(e, ξ)

−1 ·Kµ(x, ξ)Mn
µf(e, ξ) = (1± ε)Kµ(x, ξ).

Letting ε tend to 0, we obtain f = Kµ. �

The following lemma encompasses the contraction properties of Lµ on Cβ . It is the main
technical tool to be able to apply the implicit function theorem later on.

Lemma 4.12. Assume that β is small enough. Let µ ∈ Ū+. The differential of Lµ at Kµ

satisfies
‖DLn

µ(Kµ) : Cβ → Cβ‖ 6 Ce−ρn,

for some ρ > 0, some C > 0 and all n > 0.

Proof. Denoting by I the inclusion of Cβ
µ in Cβ, we have DLn+1

µ (Kµ) = I ◦ DLn
µ(Kµ) ◦

DLµ(Kµ) where the operator on the right is well defined and maps continuously Cβ into Cβ
µ

by Corollay 4.9. Thus, it suffices to show that

(4.9) ‖DLn
µ(Kµ) : Cβ

µ → Cβ
µ‖ 6 Ce−ρn.
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For ease of notations, we will write x for a pair (x, ξ), and ex = (e, ξ). By Remark 4.6,

we can define equivalent norms on C0
µ and Cβ

µ by

‖f‖C̄0
µ
= sup

x
|f(x)|/Kµ(x),

and

‖f‖′C̄β
µ
= sup

d(ξ,ξ′)6e−N

sup
x∈Λ(ξ)

d(ξ, ξ′)−β |f(x, ξ)− f(x, ξ′)|/Kµ(x, ξ).

In this last equation, we could have use Kµ(x, ξ) or Kµ(x, ξ
′) since their ratio is bounded,

again by Remark 4.6. It suffices to prove the inequality (4.9) for the norm C̄β
µ , which is

equivalent to the original one.
We have Ln

µf(x) = Mn
µf(x)/Mn

µf(ex). Consequently,

(4.10) DLn
µ(Kµ)f(x) =

Mn
µf(x) · Mn

µKµ(ex)−Mn
µf(ex)Mn

µKµ(x)

(Mn
µKµ(ex))2

.

By (4.5), the operator Mn
µ can be written as

(4.11) Mn
µf(x) =

∑

y

Fn(x,y)f(y)

where the kernel Fn is a relative Green function, given by

Fn((x, ξ), (y, η)) = 1η=an(ξ)−1ξ1an(ξ)y∈Λn(ξ)\Λ′
n−1(ξ)

Gµ(x, an(ξ)y; Λ
′
n−1(ξ)).

When we write Fn((x, ξ), (y, η)), we will implicitly only consider those pairs where Fn can
be nonzero, i.e., those where η = an(ξ)

−1ξ and an(ξ)y ∈ Λn(ξ) \ Λ′
n−1(ξ).

The following property of Fn follows from Proposition 4.2: There exist ρ0 > 0 and C > 0
such that, for all x, and all y, z with Fn(x,y) 6= 0, Fn(x, z) 6= 0,

∣

∣

∣

∣

Fn(x, z)/Fn(ex, z)

Fn(x,y)/Fn(ex,y)
− 1

∣

∣

∣

∣

6 Ce−ρ0n.

In particular,

(4.12) |Fn(ex,y)Fn(x, z) − Fn(x,y)Fn(ex, z)| 6 Ce−ρ0nFn(x,y)Fn(ex, z).

By (4.10),

(4.13) DLn
µ(Kµ)f(x) =

∑

y,z(Fn(x,y)Fn(ex, z) − Fn(ex,y)Fn(x, z))f(y)Kµ(z)
(

∑

y Fn(ex,y)Kµ(y)
)2 .

With (4.12), we get

(4.14) |DLn
µ(Kµ)f(x)| 6 Ce−ρ0n

∑

y,z Fn(x,y)Fn(ex, z)|f(y)|Kµ(z)
(

∑

y Fn(ex,y)Kµ(y)
)2 .
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The sum on the numerator can be factored. The part with z cancels out one of the factors
of the denominator. In the y part, we have by definition |f(y)| 6 ‖f‖C̄0

µ
Kµ(y). Hence,

|DLn
µ(Kµ)f(x)| 6 C‖f‖C̄0

µ
e−ρ0n

∑

y Fn(x,y)Kµ(y)
∑

y Fn(ex,y)Kµ(y)
= C‖f‖C̄0

µ
e−ρ0nLµKµ(x)

= C‖f‖C̄0
µ
e−ρ0nKµ(x),

as Kµ is a fixed point of Lµ. This shows that ‖DLn
µ(Kµ)f‖C̄0

µ
6 Ce−ρ0n‖f‖C̄0

µ
, as claimed.

Let us now control its Hölder norm. Let x = (x, ξ) and x′ = (x, ξ′), with d(ξ, ξ′) = e−k

for some k > N . We should bound |DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)|/(d(ξ, ξ′)βKµ(x)).

If k 6 (n+ 1)N , we write

|DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)| 6 |DLn

µ(Kµ)f(x)|+ |DLn
µ(Kµ)f(x

′)|
6 ‖DLn

µ(Kµ)f‖C̄0
µ
(Kµ(x) +Kµ(x

′))

6 C‖DLn
µ(Kµ)f‖C̄0

µ
Kµ(x),

where the last inequality uses the fact that Kµ(x
′) 6 CKµ(x), explained in Remark 4.6.

Therefore,

|DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)|/(d(ξ, ξ′)βKµ(x)) 6 Ceβ(n+1)N‖DLn

µ(Kµ)f‖C̄0
µ

6 Ceβ(n+1)Ne−ρ0n‖f‖C̄0
µ
.

If β is small enough (i.e., β < ρ0/N), this is exponentially small as desired.
Assume now that k > (n + 1)N . Then an(ξ) = an(ξ

′) (we will simply denote it by an).
Moreover, the two horofunctions given by η = a−1

n ξ and η′ = a−1
n ξ′ coincide on the ball of

radius N . Thus, the summation set in (4.11) is the same for x and x′. Moreover, for any y, we
have Fn((x, ξ), (y, η)) = Fn((x, ξ

′), (y, η′)). Taking ξ, ξ′ (and therefore η and η′) as fixed, we

will simply write F̃n(x, y) for this common quantity. Let u(η) = 1/(
∑

y F̃n(e, y)Kµ(y, η))
2,

and define u(η′) in the same way with η′. By (4.13),

DLn
µ(Kµ)f(x) =

∑

y,z

(F̃n(x, y)F̃n(e, z)− F̃n(e, y)F̃n(x, z))f(y, η)Kµ(z, η)u(η).

The same formula holds for x′. Hence,

(4.15)
∣

∣DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)
∣

∣

=

∣

∣

∣

∣

∣

∑

y,z

(

F̃n(x, y)F̃n(e, z) − F̃n(e, y)F̃n(x, z)
)

· (f(y, η)Kµ(z, η)u(η) − f(y, η′)Kµ(z, η
′)u(η′))

∣

∣

∣

∣

∣

.

We use the equality abc− a′b′c′ = (a− a′)bc+ a′(b− b′)c+ a′b′(c− c′) to bound the last
difference. We have

|f(y, η)− f(y, η′)| 6 d(η, η′)β‖f‖C̄β
µ
Kµ(y, η).

As Kµ ∈ Cβ
µ = C̄β

µ by Lemma 4.10,

|Kµ(z, η) −Kµ(z, η
′)| 6 Cd(η, η′)βKµ(z, η).
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Finally, u(η) = 1/(Mn
µKµ(e, ξ))

2. By (4.7), this equals 1/Kµ(a
−1
n , a−1

n ξ)2 = 1/Kµ(a
−1
n , η)2.

We have |Kµ(a
−1
n , η)−Kµ(a

−1
n , η′)| 6 Cd(η, η′)βKµ(a

−1
n , η) since Kµ ∈ Cβ

µ = C̄β
µ . Moreover,

the ratio Kµ(a
−1
n , η)/Kµ(a

−1
n , η′) is uniformly bounded by Remark 4.6. Therefore,

|u(η)− u(η′)| =
∣

∣

∣

∣

(Kµ(a
−1
n , η)−Kµ(a

−1
n , η′))(Kµ(a

−1
n , η) +Kµ(a

−1
n , η′))

Kµ(a
−1
n , η)2Kµ(a

−1
n , η′)2

∣

∣

∣

∣

6 Cd(η, η′)β/Kµ(a
−1
n , η)2 = Cd(η, η′)βu(η).

Combining these inequalities, we obtain

|f(y, η)Kµ(z, η)u(η) − f(y, η′)Kµ(z, η
′)u(η′)| 6 Cd(η, η′)β‖f‖C̄β

µ
Kµ(y, η)Kµ(z, η)u(η).

Together with (4.15), this yields
∣

∣DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)
∣

∣

6 Cd(η, η′)β‖f‖C̄β
µ

∑

y,z

∣

∣F̃n(x, y)F̃n(e, z) − F̃n(e, y)F̃n(x, z)
∣

∣Kµ(y, η)Kµ(z, η)u(η).

The sum is precisely the sum we have handled in the control of the sup norm, in (4.13),
with f replaced by Kµ. We have shown that it is bounded by Ce−ρ0nKµ(x). Finally, we get

∣

∣DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)
∣

∣ 6 Ce−ρ0nd(η, η′)βKµ(x)‖f‖C̄β
µ
.

As η = a−1
n ξ and η′ = a−1

n ξ′ with |an| 6 nN , we have d(η, η′) 6 enNd(ξ, ξ′) by (3.3).
Therefore,

∣

∣DLn
µ(Kµ)f(x)−DLn

µ(Kµ)f(x
′)
∣

∣ 6 CeβnNe−ρ0nd(ξ, ξ′)βKµ(x)‖f‖C̄β
µ
.

If β < ρ0/N , this is again exponentially small as desired. �

Let us consider the transformation Q : (µ, f) 7→ Lµf − f , defined on a neighborhood of

(µ0,Kµ0) in U × Cβ for a suitably small β. It satisfies Q(µ0,Kµ0) = 0 as Kµ0 is a fixed
point of Lµ0 by Lemma 4.11. Moreover, ∂fQ(µ0,Kµ0) = DLµ0(Kµ0) − Id is invertible, by
Lemma 4.12. The implicit function theorem, in its analytic version, shows the existence of
an analytic family µ 7→ fµ, for µ close to µ0, with fµ0 = Kµ0 , and such that Q(µ, fµ) = 0,
i.e., Lµfµ = fµ.

Lemma 4.13. For µ ∈ U+ close enough to µ0, the function fµ is everywhere positive.

Proof. As µ 7→ fµ is analytic, it is continuous. For µ close to µ0, the function fµ is close in

Cβ to f0 = Kµ0 . As

fµ(x, ξ) = Lµfµ(x, ξ) = Mµfµ(x, ξ)/Mµfµ(e, ξ),

it suffices to show that Mµf is positive if f is close enough to f0 in Cβ, and µ ∈ U+.

Let ε > 0. Any f close enough to f0 in Cβ satisfies f(x, ξ) > f0(x, ξ) − εGµ̄(x, e) by
definition of the norm. We obtain

(4.16) Mµf(x, ξ) > Mµf0(x, ξ)− εMµGµ̄(x, e) > Mµf0(x, ξ) − CεGµ(x, e).

For the last inequality, we used the fact that (x, ξ) 7→ Gµ̄(x, e) belongs obviously to C0, and
the fact that Mµ maps C0 into C0

µ by Lemma 4.7.
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Let ξ ∈ ∂BΓ. Consider a point y = y(ξ), close to a geodesic from e to a(ξ), which does
not belong to Λ′(ξ) but such that Gµ0(e, y; Λ

′(ξ)) > 0, i.e., y is close enough to the boundary
of Λ′(ξ) to be an exit point of the random walk in Λ′(ξ). It satisfies Gµ(e, y; Λ

′(ξ)) > 0 as
µ > µ0/2 thanks to the definition of U . The function x 7→ Gµ(x, y; Λ

′(ξ)) is positive and
harmonic on Λ(ξ). Therefore, Proposition 4.2 applied to this function and to x 7→ Gµ(x, y)
shows that

Gµ(x, y)/Gµ(e, y)

Gµ(x, y; Λ′(ξ))/Gµ(e, y; Λ′(ξ))
6 C,

uniformly in x ∈ Λ(ξ). The quantities Gµ(e, y; Λ
′(ξ)) and Gµ(e, y) are bounded from

above and from below, uniformly. We obtain Gµ(x, y; Λ
′(ξ)) > C−1Gµ(x, y), which is

> C−1Gµ(x, e) thanks to Harnack inequalities (as d(e, y) is uniformly bounded).
By the definition (4.4) of Mµ,

Mµf0(x, ξ) > Gµ(x, y(ξ); Λ
′(ξ))f0(a(ξ)

−1y, a(ξ)−1ξ) > C−1Gµ(x, e) · C−1,

as f0 is uniformly bounded from below on points which are a bounded distance away from
the identify.

Finally, we obtain from (4.16)

Mµf(x, ξ) > C−1Gµ(x, e)− CεGµ(x, e).

If ε is small enough, this is bounded from below by a positive multiple of Gµ(x, e), uniformly
in (x, ξ). �

We can now prove that the entropy depends analytically on the measure.

Proof of Theorem 4.1. By Lemma 4.13, there exists a neighborhood V0 of µ0 in U ⊂ P(F )
such that, for µ ∈ V0 ∩U+, the function fµ is a fixed point of Lµ in Cβ, everywhere positive.

By Lemma 4.11, it has to coincide with Kµ. Moreover, µ 7→ fµ is analytic from V0 to Cβ

for some β > 0.
We have also constructed in Theorem 3.1 an analytic map µ 7→ Φ(µ) on a neighborhood

V1 of µ0, taking values in (Cβ)∗, which corresponds for µ ∈ P+
1 (F ) to the integration against

a µ-stationary measure νµ on ∂BΓ.

Let V = V0 ∩ V1. For µ ∈ V ∩ P+
1 , the integral expression (2.10) of the entropy gives

h(µ) = −
∑

x∈F
µ(x)

∫

∂BΓ
logKµ(x

−1, ξ) dνµ(ξ)

= −
∑

x∈F
µ(x) · Φ(µ)(ξ 7→ log fµ(x

−1, ξ)).

The expression on the second line is well defined and analytic on V , giving the desired
analytic extension of the entropy. Indeed, by definition of Cβ , each function ξ 7→ fµ(x

−1, ξ)

(with x fixed) belongs to Cβ and depends analytically on µ. Composing with the logarithm,
applying the analytic linear form Φ(µ), and doing a finite summation over F , everything
remains analytic. �
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5. Central limit theorem

In this section, we prove the central limit theorem, Theorem 1.3. Once Proposition 3.6
is available, it follows using the method of Le Page as described for instance in [BL85]
or [BQ14b]. Although the details are now standard, we will sketch the argument especially
since the lack of true contraction on ∂′BΓ creates possible periodicity problems. We will
prove the result for measures with an exponential moment of order α > 0, as announced in
Remark 1.4.

For µ ∈ P+
1 (α), we start from the operator Lµ, acting on Cβ(∂′BΓ) for some small enough

β > 0 by the formula Lµu(ξ) =
∑

g µ(g)u(gξ). By Proposition 3.6, it has a simple eigenvalue
at 1. For t ∈ R, define a perturbed operator Lµ,t by

Lµ,tu(ξ) =
∑

g∈Γ
µ(g)eitcB(g,ξ)u(gξ),

where cB is the Buseman cocycle (2.5). Then

L2
µ,tu(ξ) =

∑

g1,g2

µ(g1)µ(g2)e
itcB(g1,g2ξ)eitcB(g2,ξ)u(g1g2ξ) =

∑

g

µ∗2(g)eitcB(g,ξ)u(gξ),

thanks to the cocycle equation (2.6) for cB . Iterating this argument, one gets

Ln
µ,tu(ξ) =

∑

g

µ∗n(g)eitcB(g,ξ)u(gξ).

In particular, if Zn denotes the right random walk driven by µ, the characteristic function
of cB(Zn, ξ) can be expressed for all ξ ∈ ∂′BΓ as follows:

(5.1) E(eitcB(Zn,ξ)) = Ln
µ,t1(ξ).

Fix once and for all a point ξ ∈ ∂′BΓ. We will prove a central limit theorem for cB(·, ξ), i.e.,
prove that (cB(Zn, ξ)−nℓ)/

√
n converges in distribution to a Gaussian random variable. By

Lévy’s theorem, it suffices to prove the pointwise convergence of the characteristic functions.
It will be obtained from (5.1) and the good spectral properties of Lµ,t.

One checks easily that the map t 7→ Lµ,t is analytic. By Proposition 3.6, the operator
Lµ,0 = Lµ has a simple eigenvalue at 1, finitely many additional simple eigenvalues ρ of
modulus 1, and the rest of its spectrum is contained in a disk of radius < 1. This spectral
picture persists for small t, see for instance [Kat66]: there are spectral projections Π1,t and
Πρ,t and Π<1,t, all depending analytically on t, such that

Ln
µ,t = Ln

µ,tΠ1,t +
∑

ρ6=1

Ln
µ,tΠρ,t + Ln

µ,tΠ<1,t.

(All these projections also depend on µ, we suppress it from the notations for convenience.)
Moreover, Π1,t is a one-dimensional projection, and Lµ,t acts on its image as the multiplica-
tion by the corresponding eigenvalue λ(t) = λµ(t). This eigenvalue also depends analytically
on t.

Denote by ℓ the escape rate of the random walk. Then (5.1) implies that, for any t,
and for large enough n (so that t/

√
n is in the neighborhood of 0 where the above spectral
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description holds true)

E

(

e
it

cB(Zn,ξ)−nℓ
√

n

)

= e−it
√
nℓLn

µ,t/
√
n1(ξ)

= e−it
√
nℓ



λ(t/
√
n)nΠ1,t/

√
n1(ξ) +

∑

ρ6=1

Ln
µ,t/

√
nΠρ,t/

√
n1(ξ) + Ln

µ,t/
√
nΠ<1,t/

√
n1(ξ)



 .

Since the function 1 belongs to the eigenspace for the eigenvalue 1, one has Πρ,01 = Π<1,01 =

0. Hence, when n tends to infinity, the functions Πρ,t/
√
n1 and Π<1,t/

√
n1 tend to 0 in Cβ,

and therefore in C0. As the iterates Ln
µ,t/

√
n

are bounded in sup norm by 1, it follows that

Ln
µ,t/

√
n
Πρ,t/

√
n1(ξ) and Ln

µ,t/
√
n
Π<1,t/

√
n1(ξ) tend to 0.

In the same way, Π1,t/
√
n1 tends to Π1,01 = 1. Finally, we obtain

(5.2) E

(

e
it

cB(Zn,ξ)−nℓ
√

n

)

= e−it
√
nℓλ(t/

√
n)n + o(1).

As λ is an analytic function with λ(0) = 1, it has a Taylor expansion at 0. It is convenient

to write it as λ(t) = eiat−bt2/2+o(t2), with a = −iλ′(0) and b = −a2 − λ′′(0).
From this point on, two approaches are possible:

• One can proceed directly, without identifying a and b.
• Or one can identify a and b by a tedious spectral computation.

The second approach is more precise (using it, one can prove that the variance in the central
limit theorem is positive). However, since the first one is more illuminating, we will argue
first in this way.

Reproducing the above computation but for cB/n, one has

E(eitcB(Zn,ξ)/n) = λ(t/n)n + o(1) → eiat.

By definition, cB(Zn, ξ) = hξ(Z
−1
n ). The point Z−1

n is distributed as the position Wn at
time n of the reverse random walk, for the measure µ̌ given by µ̌(x) = µ(x−1). As µ̌ is
also admissible, this reverse random walk converges almost surely to a point on the Gromov
boundary. As its exit distribution has no atom, this limit is almost surely different from
πB(ξ), the projection of ξ in the Gromov boundary. Then hξ(Wn) − d(e,Wn) remains
bounded almost surely by (2.3). Moreover, d(e,Wn)/n tends to ℓ, hence hξ(Wn)/n tends
almost surely to ℓ. This implies that

(5.3) cB(Zn, ξ)/n = hξ(Z
−1
n )/n tends in probability to ℓ.

Therefore, E(eitcB(Zn,ξ)/n) converges to eitℓ. Hence, a = ℓ.
For future use, note that the same argument shows that, for any sequence rn tending to

infinity,

(5.4)
cB(Zn, ξ)− d(e, Zn)

rn
tends in probability to 0.

Using a = ℓ, the equation (5.2) becomes

E

(

e
it

cB(Zn,ξ)−nℓ
√

n

)

= e−it
√
nℓeia

√
nt−bt2/2+o(1) + o(1) → e−bt2/2.
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We recall a version of Lévy’s theorem: if a sequence of real random variables Xn satisfies
E(eitXn) → ϕ(t) where ϕ is a continuous function, then Xn converges in distribution to a
random variable X, and ϕ(t) = E(eitX). Hence, (cB(Zn, ξ)−nℓ)/

√
n converges to a random

variable, whose characteristic function is e−bt2/2. This implies that b ∈ [0,∞). Writing it as
σ2 > 0, we have proved that (cB(Zn, ξ)− nℓ)/

√
n converges to N (0, σ2) for any ξ ∈ ∂′BΓ.

Finally,

d(e, Zn)− nℓ√
n

=
cB(Zn, ξ)− nℓ√

n
+
d(e, Zn)− cB(Zn, ξ)√

n
.

The first term on the right converges to N (0, σ2). The second term on the right converges
to 0 in probability by (5.4). Hence, their sum also converges to N (0, σ2). This concludes
the proof of the central limit theorem for d(e, Zn).

Let us show that σ2(µ) depends analytically on µ. One checks easily that the map (µ, t) 7→
Lµ,t is analytic. Hence, (µ, t) 7→ λµ(t) is also analytic, as simple isolated eigenvalues depend
analytically on the operator, see [Kat66]. As a consequence, µ 7→ λ′µ(0) = ∂λµ(t)/∂t|t=0 is

analytic, and so is µ 7→ λ′′µ(0). Since ℓ(µ) = a = −iλ′µ(0) and σ2(µ) = b = −a2 − λ′′µ(0),
we recover simultaneously the analyticity of the escape rate stated in Theorem 1.1, and the
analyticity of the variance in Theorem 1.3.

It remains to show that the variance σ2(µ) is nonzero. For this, we need to identify b,
by a spectral computation. Let ν denote the unique stationary measure of the random
walk on ∂′BΓ, i.e., the fixed point of the operator (Lµ)

∗. Define ut = Π1,t1/
∫

Π1,t1 dν, it
is an eigenfunction for the eigenvalue λ(t) of Lµ,t, normalized by

∫

ut dν = 1. Note that
∫

Π1,01 dν =
∫

1 dν = 1, so that the denominator in the definition of ut does not vanish for
small enough t. As ut depends analytically on t, we may write ut = u0 + itv + O(t2), with
u0 = 1 and

∫

v dν = 0 as
∫

ut dν = 1 for all t. Moreover, Lµ,tut = λ(t)ut. Keeping only the
terms of order 6 1 in this equation and using λ(t) = 1 + ita+O(t2), we get for all ξ ∈ ∂BΓ

∑

g

µ(g)eitcB(g,ξ)(1 + itv(gξ)) = (1 + ita)(1 + itv(ξ)) +O(t2),

i.e.,

1 + it
∑

g

µ(g)cB(g, ξ) + it
∑

g

µ(g)v(gξ) = 1 + ita+ itv(ξ) +O(t2).

Looking at the coefficient of it, we get

(5.5)
∑

g

µ(g)(cB(g, ξ) + v(gξ) − v(ξ)− a) = 0.

Integrating this equation with respect to ν and using its stationarity, we recover the equality

a =

∫

cB(g, ξ) dµ(g) dν(ξ) = ℓ,

that we proved before by a probabilistic argument.
Define a new cocycle

c̃(g, ξ) = cB(g, ξ) + v(gξ) − v(ξ)− ℓ.
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It satisfies
∑

µ(g)c̃(g, ξ) = 0 for all ξ by (5.5). Moreover, cB(Zn, ξ) − nℓ − c̃(Zn, ξ) =
v(ξ)− v(Znξ) is uniformly bounded, hence it is equivalent to have the central limit theorem
for cB or for c̃, and the asymptotic variances coincide.

Let us use c̃ instead of cB , to define a new operator L̃tu =
∑

g µ(g)e
itc̃(g,ξ)u(gξ). All the

above discussion applies to this operator. We get in particular a new eigenvalue λ̃(t), a new
eigenfunction ũt which can be expanded as 1 + itṽ +O(t2) with

∫

ṽ dν = 0, a new value of

the derivative ã of λ̃ at 0. The equation (5.5) becomes

(5.6)
∑

g

µ(g)(c̃(g, ξ) + ṽ(gξ) − ṽ(ξ)− ã) = 0.

By construction,
∑

µ(g)c̃(g, ξ) = 0 for all g. Integrating the above equation with respect
to ν, we get ã = 0. Then (5.6) yields ṽ = L0ṽ. By Proposition 3.6, ṽ is constant. As its
integral is zero, ṽ = 0. Finally, ũt = 1 +O(t2).

We can now compute the second term in the expansion of λ̃(t). We have

λ̃(t) =

∫

λ̃(t)ũt dν =

∫

L̃tũt dν =

∫

L̃t(ũt − 1) dν +

∫

L̃t1 dν

=

∫

(L̃t − L0)(ũt − 1) dν +

∫

L̃t1 dν.

The first term is O(t3) as ũt − 1 = O(t2) and L̃t − L0 = O(t). The second term is equal to
∫

eitc̃(g,ξ) dµ(g) dν(ξ) = 1 + it

∫

c̃(g, ξ) dµ(g) dν(ξ) − t2

2

∫

c̃(g, ξ)2 dµ(g) dν(ξ) +O(t3).

Since the variance in the central limit theorem is given by −λ̃′′(0), we obtain

σ2 =
∑

g

µ(g)

∫

c̃(g, ξ)2 dν(ξ) > 0.

If it vanishes, then all quantities c̃(g, ξ) are zero for g in the support of µ. Using the definition
of c̃ and the cocycle equation for cB , this gives

cB(Zn, ξ) = nℓ+ v(ξ)− v(Znξ)

for any Zn in the support of µ∗n. Take n with µ∗n(e) > 0, by (3.9). Applying the above
equation to Zn = e, we get 0 = nℓ, a contradiction with the positivity of ℓ that follows from
the non-amenability of Γ. Thus, σ2 > 0. �

Remark 5.1. Several of the above arguments could be replaced by martingale arguments,
as in [BQ14a], but we have opted for a self-contained spectral treatment. Note that many ob-
jects that appear in this proof are also present in the martingale argument. For instance, the
key step in the martingale argument is to construct a function v such that (5.5) holds. This
function v (a solution of the Poisson equation) appears naturally in the spectral framework,
as the derivative of t 7→ ut.

There is nothing special about the Busemann cocycle in the above proof: the next theorem
is proved exactly in the same way.
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Theorem 5.2. Let Γ be a non-elementary hyperbolic group endowed with an admissible
probability measure µ having an exponential moment. Let c : Γ× ∂′BΓ → R be a cocycle on
a minimal subset ∂′BΓ of the Busemann boundary ∂BΓ. Assume that the cocycle is Hölder
continuous, i.e., for every g ∈ Γ, the map ξ 7→ c(g, ξ) is Hölder continuous on ∂′BΓ.

Let Zn denote the right random walk on Γ driven by µ. Then there exists ℓ ∈ R such
that, for any ξ ∈ ∂′BΓ, the quantity c(Zn, ξ)/n converges almost surely to ℓ. Moreover, there
exists σ2 > 0 such that

c(Zn, ξ)− nℓ√
n

→ N (0, σ2).

Additionnally, σ2 = 0 if and only if there exists a Hölder continuous function v on ∂′BΓ such
that c(g, ξ) = v(gξ) − v(ξ) for all g ∈ Γ and all ξ ∈ ∂′BΓ (and in this case ℓ = 0 also). This
is also equivalent to the uniform boundedness of c.

Finally, both ℓ and σ depend analytically on µ.
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