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ABSTRACT

The hydrodynamic forces acting on an isolated body

could be considerably different than those when it is con-

sidered in an array of multiple bodies, due to wave inter-

actions among them. In this context, we present in this

paper a numerical approach based on the linear potential

flow theory to solve full hydrodynamic interaction problem

in a multiple body array. In contrast to the previous ap-

proaches that considered all bodies in an array as a single

unit, the present approach relies on solving for an isolated

body. The interactions among the bodies are then taken

into account via plane wave approximation in an iterative

manner. The boundary value problem corresponding to a

isolated body is solved by the Boundary Element Method

(BEM). The approach is useful when the bodies are suffi-

ciently distant from each other, at-least greater than five

times the characteristic dimensions of the body. This is

a valid assumption for wave energy converter devices ar-

ray of point absorber type, which is our target application

at a later stage. The main advantage of the proposed ap-

proach is that the computational time requirement is signif-

icantly less than the commonly used direct BEM. The time

savings can be realized for even small arrays consisting of

four bodies. Another advantage is that the computer mem-

ory requirements are also significantly smaller compared to

the direct BEM, allowing us to consider large arrays. The

numerical results for hydrodynamic interaction problem in

two arrays consisting of 25 cylinders and same number of

rectangular flaps are presented to validate the proposed ap-

proach.

Introduction

The motivation of this study originates from the need

of modeling large arrays of wave energy converter devices

(WECs) of point absorber type. Installation of several

WECs would be required to extract reasonable amount of

energy, and the wave interaction effects may become neces-

sary to take into account in order to make reliable estimates

on the energy production for a particular array configura-

tion. In practice, due to mooring and maintenance issues

for example, the separating distance between the devices

could be a few hundred meters [1]. This study aims to deal

with hydrodynamic interaction problem in such configura-

tions of the bodies.

The classical approach to solve full hydrodynamic in-

1



teraction problem is to model the problem in the linear po-

tential theory framework. Essentially the diffraction and

radiation problems in frequency domain are solved, and the

hydrodynamic coefficients: excitation force, added mass

and wave damping, can then be easily post-processed. A

judicious choice to solve these problems is by the Bound-

ary Element Method (BEM), since the discretization of the

boundary alone is required. However, when array con-

sists of several bodies, the discretization element increases,

and use of the BEM becomes prohibitive due to compu-

tational requirements of solving a dense linear matrix sys-

tem. In addition, the solution of diffraction and radiation

problems are sought for a wide range of frequencies to per-

form comprehensive hydrodynamic analysis, thereby be-

coming more difficult to do in reasonable time. There have

been attempts to accelerate the BEM by coupling with the

fast methods, such as fast multipole methods (FMM) [2]

and fast Fourier transforms (FFT) [3]. In wave hydrody-

namics field the BEM-FMM coupling to solve diffraction

and radiation problems has been realized in [4–6] for spe-

cific applications. The acceleration using fast Fourier trans-

forms has been performed in [7] and others. However,

these approaches have some limitations. In FMM, the ex-

isting multipole series expansion of the free surface Greens

function is conditionally convergent, thereby restricting

scope of developments for generic three-dimensional bod-

ies. Whereas, in FFT methods, construction of a grid and

projection operations in full domain of the sparsely placed

body array would lead to a sub-optimal algorithm.

Besides aforementioned fast methods, some interesting

(semi-) algebraic approaches have also been proposed. An

interaction approach based on multiple scattering theory [8]

and combining direct matrix method is presented in [9]. An

extension of this theory, so called hierarchical interaction

theory, is presented in [10]. The plane wave approximation,

also known as wide space approximation, coupled with di-

rect matrix approach is proposed by Simon [11]. This ap-

proach is further improved to reduce the wide spacing re-

quirement by taking non-plane correction in [12]. A de-

tailed comparison of the plane wave approximation and the

multiple scattering approach is performed on the arrays of

five WEC devices in [13]. We may highlight that the afore-

mentioned approaches are very interesting for axisymmet-

ric bodies.

In this study, we propose a simple approach for hydro-

dynamic interactions in an array of large number of bod-

ies of arbitrary shape, provided the bodies are sufficiently

distant from each other. The approach couples efficiency

of the BEM and simplicity of the plane wave approxima-

tion [11]. The central idea is that when the body are suffi-

cient distant in an array then the effects of wave field ema-

nating from one body can be taken into account at the other

body as an additional plane incident wave. Here we use

this approximation efficiently and develop a fast algorithm.

The computational time and memory requirements using

the proposed approach are significantly less than the direct

BEM, and is applicable to bodies of arbitrary shape. Fur-

thermore, the approach is simple and can be easily imple-

mented in existing diffraction/radiation solvers.

1 Problem statement

We consider the problem of water waves incident on

an assembly of N floating three-dimensional bodies under

the framework of linearized potential flow theory. Specif-

ically, the flow is assumed to be invisicid, incompressible

and irrotational, and the wave amplitude is small relative to

the wavelength. With these assumptions the problem can

be formulated in terms of a velocity potential Φ satisfying

the Laplace’s equation in the fluid domain and appropriate

boundary conditions. For simplicity we consider that the

fluid domain is of infinite depth and unbounded in horizon-

tal directions. The motion is time harmonic with radian fre-

quency ω , i.e. Φ(x,y,z, t) = Re{φ(x,y,z)e−iωt}. The time

dependence term is omitted hereafter.

The linearization permits writing the velocity potential

φ as sum of the incident potential φin, the diffraction poten-

tial φd and the radiation potential φr. The explicit form of

the incident potential is given by

φin =
gA

ω
ekzeik(xcosβ+ysinβ ) (1)

where k = ω2/g is the wave number, g is the acceleration

due to gravity, A is the amplitude and β is the angle be-

tween the direction of propagation of the incident wave and

the positive x-axis. The diffraction potential corresponds to

the potential generated in response to the incident waves.

The radiation potential represents the fluid disturbance due

to the motions of the bodies in still water corresponding to

six degree of freedom: surge, sway, heave, roll, pitch and

yaw.
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The diffraction and radiation boundary value problems

(BVPs) can be summarized as follows:

Diffraction problem



















∆φd = 0 in fluid domain

∇φd → 0 z → ∞
∂φd

∂ z
− kφd = 0 at mean free surface position z = 0

∂φd

∂n
=− ∂φin

∂n
on mean wetted body surface

(2)

Radiation problems























∆φ
j

ri = 0 in fluid domain

∇φ
j

ri → 0 z → ∞

∂φ
j

ri

∂ z
− kφ

j
ri = 0 at mean free surface position z = 0

∂φ
j

ri

∂n
= n

j
i on mean wetted body surface

(3)

where indices i and j correspond to the degree of free-

dom of motion (i = 1..6) and the numeration of the body

( j = 1..N), respectively. With this convention n
j
i denotes

the generalized normal vector on body j with six compo-

nents. The first three components of the generalized normal

vector on body j are the components of the unit normal

vector n considered pointing outwards to jth body surface,

and next three are the rotations x×n referred to the origin

x= 0, while on all other bodies except j all the components

are zero.

Having solved the diffraction and radiation problems,

it is straightforward to compute the hydrodynamic coeffi-

cients: excitation force, added mass and wave damping co-

efficients.

1.1 Boundary integral equation formulation

The BVPs (2) and (3) can be transformed into bound-

ary integral equations by either using Green’s identity in-

volving potentials only (direct formulation), or involving

particular source distribution (indirect formulation). We

prefer the source formulation because both diffraction and

radiation problems can be formulated in a common frame-

work of Fredholm equation of second kind and imple-

mented in our homemade software AQUAPLUS [14]. First

the following integral equations is solved for the unknown

source distribution σ on the body surfaces S =
⋃N

k=1 Sk

σ(x)

2
−

1

4π

∫

S
σ(x′)

∂G(x′,x)

∂nx

dS(x′) =

{

− ∂φin

∂n
(x)

n
j
i (x)

, (4)

where x
′ and x are the source and field point, respectively.

The function G(x′,x) is the free surface Green function tak-

ing into account the linearized free surface conditions, con-

ditions at the sea bottom and radiation conditions at infin-

ity [15]. Having solved (4) for the density σ , the velocity

potential can be computed at any arbitrary point by the fol-

lowing equation:

φ(x) =−
1

4π

∫

S
σ(x′)G(x′,x)dS(x′). (5)

2 BEM coupling with plane wave approximation

Let us point out that the discretization of (4) leads to

a dense matrix system. For an array consisting of N bod-

ies, the number of diffraction and radiation problems to be

solved for motion in one degree of freedom are (1+N)n f ,

where n f is the number of the frequencies. When N is large

it is not feasible through direct BEM to solves the problems

in reasonable time. Keeping this in focus, we now describe

a simple and fast approach to solve the BVPs through cou-

pling BEM and plane wave approximation. Specifically

we show how to take into account multiple interactions

through plane wave approximation when bodies are suffi-

ciently well separated.

For simplicity, we first consider the interaction phe-

nomenon in an array of two bodies. Due to incident

waves (diffraction problem) or independent motion (radi-

ation problem) the body 1 scatter waves that excite body

2. The body 2 responds to this excitation and in turn send

outgoing waves towards body 1 which also respond to this

excitation and so on. In the same vain, the body 2 interacts

with body 1 due to incident waves or independent motion

of the former. In what follows, we will approximate the im-

pact of outgoing waves from a body by incident plane wave

potential on all other bodies. This can be understood from

the fact, as outlined by Simon [11], that far from the gen-

erating body the outgoing waves have small curvature and

they act as plane waves on the incident body. Further, as

the local wave field decay with distance, we can expect that
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it will not influence other bodies. However, for numerical

accuracy the criterion ‘sufficiently far’ require careful in-

vestigation. On the basis of our numerical experiments we

can point out that when the separating distance between the

bodies is greater than approximately five times the charac-

teristic dimensions of the body the approximation provides

reliable results. The algorithm based on the above idea is

formulated for N body array in three steps which are de-

scribed below.

Step 1: Contributions of individual bodies

In this step we compute the potential on each body

by considering them isolated, i.e. hypothetically

assuming bodies have no interaction with each other.

This is straightforward to compute by solving integral

equations (4 and 5) on the wetting body surface of

individual body. The size of linear system to be solved

is equal to the number of panels of a single body. In

the first iteration the usual boundary conditions in

(2 and 3) for diffraction and radiation problems are

assigned locally to a body. The boundary conditions

for the subsequent iterations are obtained in step

2 taking into account wave interactions. We can

point out an additional advantage when bodies are of

same shape. The influence matrices corresponding

to Green function and its normal derivative ma-

trices for a single body can be stored and used for

all other bodies whenever their contribution are sought.

Step 2: Contributions due to wave interaction

As mentioned, we approximate the potential due to

body i on body j by the potential of an incident plane

wave. Since we know the source distribution on an ar-

bitrary body i from step 1, the potential at the mean

center position (x j,y j,0) is computed for all other bod-

ies using (5); denoted by Ai j. The total effect at body j

is taken as the sum of the effects from all other bodies

in terms of incident plane waves of complex amplitude

Ai j, i.e.

φ ∗
j =

N

∑
i=1

Ai je
kzeik((x−x j)cosθi j+(y−y j)sinθi j), j 6= i, (6)

where θi j is the angle subtended by mean center

position of body i while considering origin at the

mean center position of body j. Having computed the

effect at all the bodies in the array we compute the

contribution of all the bodies as isolated (step 1) due to

the excitation induced by φ ∗.

Step 3: Check for convergence

At each iteration the step 1 and 2 contributes towards

the total potential on the body. This process is repeated

till the amplitude of the incident waves |Ai j| becomes

smaller than 10−3 for all the bodies or maximum num-

ber of iterations are reached. The maximum number

of iterations are set as twice the number of bodies in

the array. According to our numerical investigation for

a few frequencies the number of iterations are higher

than the number of bodies, but for the majority the

number of iterations is much smaller.

3 Numerical examples

We first consider hydrodynamic interaction problem in

two arrays consisting of 25 floating rectangular flaps and

same number of cylinders for accuracy check. The numeri-

cal results obtained by the proposed approach are compared

with the direct BEM using constant panels. Next, some

results of accuracy dependency on separating distance be-

tween the bodies and comparison of computational time

between the direct BEM and the proposed approach as a

function of number of bodies, are provided.

3.1 Floating rectangular flaps

The flaps are arranged in a regular triangular pattern, as

shown in figure (1). The width and draught of each flap is

10 meter (m) and length 5m. Each rectangular flap is dis-

cretized with 504 panels. The direction of propagation of

the incident waves is β = 0. The amplitude of surge and

sway exciting forces on arbitrary selected flaps are shown

in figures (2) and (3). The results from the proposed ap-

proach are plotted in lines and those by direct BEM are

marked by (+) in all cases. For radiation forces the nota-

tion [m,n; p,q] is used to indicate the force on body p in

direction q due to the forced oscillations of body m in di-

rection n. Some results of added mass and wave damping

coefficients are plotted in figures (4) and (5). The num-

ber of iterations to attain convergence for diffraction prob-

lem is shown in figure (6) (red curve). A similar conver-

gence pattern is observed for radiation problems. How-

ever, there is a significant difference in computation time of
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FIGURE 1. Array layout and surface mesh representation of

rectangular flap
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FIGURE 2. Surge exciting forces (kN/m) on barges 1-red, 7-

blue, 13-green.
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FIGURE 3. Sway exciting forces (kN/m) on barges 5-red, 12-

blue, 19-green.

both the approaches. Solving diffraction or radiation BVP

for 25 frequencies through direct BEM took more than 8

hours, whereas the proposed approach took approximately

12 minutes.

3.2 Floating cylinders

In this array the cylinders are arranged in a regular

square pattern, shown in figure (7). Each cylinder has di-

ameter and draft of 10m and is discretized with 560 pan-

els. The direction of propagation of the incident waves is

β = 0. The excitation forces for arbitrarily selected bod-

ies in surge, sway and heave motion computed by the pro-

posed approach and direct BEM are shown in figures (8),

(9), (10), respectively. The added mass and damping coef-

ficients are shown in figures (11) and (12). It can be noticed

that the results for this array configuration are more accu-

rate than those of the first array consisting of rectangular

flaps. This is because the bodies are more distantly placed

in cylindrical array in comparison to rectangular flap ar-

ray. In this example also there is significant difference in

the computational time by the proposed approach and the

direct BEM approach. The presented approach took less

than 15 minutes, whereas the direct BEM took more than

10 hours. The number of iterations to attain convergence

for diffraction problem is shown in figure 6 (blue curve)

and the pattern is similar to the previous example.

We now investigate the dependence of separating dis-

5



2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

11
x 10

5

Period (s)

A
dd

ed
 m

as
s

2 4 6 8 10 12 14 16
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

5

Period (s)

D
am

pi
ng

FIGURE 4. Added mass (kN/m.s2) and wave damp-

ing (kN/m.s) coefficients [10,1;10,1]-red, [20,1;20,1]-blue,

[23,1;23,1]-green.

tance between the bodies on overall accuracy of the com-

putations. For this we consider an array consisting of 9

cylinders arranged in a square array with separating dis-

tance ranging from 25 to 125 meters. The dimensions of

the cylinders are same as in previous example. The relative

errors in excitation forces, i.e

Error =
|Fdirect

ex −F
present

ex |

|Fdirect
ex |

, (7)

in surge and heave motion on the cylinder positioned at the

center of the array are plotted in figure (13). The error is
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FIGURE 5. Added mass (kN/m.s2) and wave damp-

ing (kN/m.s) coefficients [5,2;5,1]-red, [10,2;10,1]-blue,

[20,2;20,1]-green.

less than 5% when the separating distance is greater than

five times the dimensions of the cylinder. As expected, the

error decrease as the separating distance increase.

Further to show that the approach can be useful for big-

ger arrays, we assess the computational time by the present

approach as a function of number of bodies. For simplic-

ity, the layout of the cylinders is again in a square array.

The comparison of computational time using present ap-

proach and direct BEM is shown in figure (14). The time

corresponding to direct BEM represents CPU time to solve

for one period using direct Gauss solver. Whereas for the

presented approach we plot average time for 12 periods
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x(m)

y(
m

)

0 100 200 300 400
0

100

200

300

400

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19

21 22 23 2524

20

FIGURE 7. Array layout and surface mesh representation of

cylindrical body
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FIGURE 8. Excitation forces in surge (kN/m) on cylinders 7-

red, 13-blue, 19-green.
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FIGURE 9. Excitation forces in sway (kN/m) on cylinders 3-

red, 9-blue, 16-green.

ranging from 3 to 14 seconds. This is because the num-

ber of iterations required to satisfy the convergence crite-

rion depends on the period, as shown in figure (6). Figure

(14) suggests that we can solve full hydrodynamic interac-

tion problem in bigger arrays in reasonable time, which is

clearly not feasible by direct BEM. We may point out that

the memory requirements using present approach are less

than the direct BEM even when we store the influence co-

efficients corresponding to a single body.
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4 Summary and outlook

We have proposed a simple approach to solve the hy-

drodynamic interaction in an array of multiple bodies by

coupling BEM and plane wave approximation. Instead of

considering an array as a single unit, the approach solves

for an isolated body in an iterative manner. The interac-

tions are taken into account by plane wave approximation.

The approach gives good results when the bodies are sep-

arated by approximately more than five times the dimen-

sions of the body. Numerical results on different array

configuration shows that the proposed method provide vi-

able results in comparison to the direct BEM. Most impor-

tantly, the approach is efficient in terms of computational

time and memory as well as easy to implement. In fact

very less efforts are required to modify the existing diffrac-

tion/radiation solvers. The approach now makes it possible

to make parametric studies and investigate the performance

of large number of WEC devices in reasonable time, which

is currently in progress. The other aspect of the develop-

ment would be to consider the interactions due to local

wave field through incorporating the evanescent and prop-

agating modes in the formulation.

Acknowledgements

The authors gratefully acknowledge the financial sup-

port from the French environmental agency ADEME

2 4 6 8 10 12 14 16
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

Period (s)

 A
dd

ed
 m

as
s 

2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

Period (s)

 D
am

pi
ng

FIGURE 11. Added mass (kN/m.s2) and wave damp-

ing coefficients (kN/m.s) [17,3;15,3]-red, [12,1;15,3]-blue,

[10,3;15,3]-green.

through the funding scheme “Démonstrateurs en énergies
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