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ABSTRACT 
Since 2009, SBM Offshore has been developing the S3 

Wave Energy Converter (S3 WEC). It consists in a long flexible 
tube made of an Electro-Active Polymer (EAP). Thus, the 
structural material is also the Power Take Off (PTO).  

In order to optimize the S3 WEC, a hydro-elastic 
numerical model able to predict the device dynamic response 
has been developed. The inner flow, elastic wall deformations 
and outer flow are taken into account in the model under the 
following assumptions: Euler equation is used for the inner 
flow. The flow is also assumed to be uniform. Elastic 
deformation of the wall tube is linearized. The outer flow is 
modeled using linear potential theory. These equations have 
been combined in order to build the numerical model. First, 
they are solved in the absence of the outer fluid in order to 
obtain the modes of response of the device. Secondly, the outer 
fluid is taken into account and the equation of motion is solved 
by making use of modal expansion.  

Meanwhile, experimental validation tests were conducted 
in the ocean basin at Ecole Centrale De Nantes. The scale 
model is 10m long tube made of EAP. The tube deformations 
were measured using the electro-active polymer. The model 
was also equipped with sensors in order to measure the inner 

pressure. Comparisons of the deformation rate between the 
numerical model and experimental results show good 
agreement, provided that the wall damping is calibrated. 

Eventually, results of a technico-economical parametric 
study of the dimensions of the device are presented. 

INTRODUCTION 

Since 2009, SBM offshore has been developing a radically 
new wave energy converter named S3 [1]. It consists in a long 
flexible tube which is made of an electro-active polymer. Thus, 
the structural material is also the power take off. A picture of a 
scale model of the device taken during experiments at Ecole 
Centrale de Nantes is shown in Figure 1. 

Figure 1. Underwater picture of the scale model of the S3 
WEC during experiments at Ecole Centrale De Nantes. 



The working principle of the S3 WEC is as follow: The 
tube is filled with sea water slightly pressurized. It is floating 
right beneath the free surface. Under wave action, the tube 
deforms: bulge waves are generated on the surface together 
with pressure waves inside the tube. They propagate with their 
own velocities depending on the dimensions and properties of 
the material. It results in a pressure difference between the 
inner and outer surface of the tube. The work done by the 
pressure difference and the deformation of the tube wall is the 
wave energy which is absorbed by the device. The EAP 
material converts the absorbed energy into electricity by change 
of the electric capacitance due to the wall thickness variations 
associated with the radial deformations. 

In comparison with other WEC technologies, the S3 WEC 
has many advantages. The most important ones are: 

• The PTO is also the structure of the device. Thus,
fabrication costs of the structure are avoided. That is
why the system is expected to be cost competitive
with respect to other conventional WECs (heaving
buoys, OWCs, overtopping devices…).

• The PTO is distributed over the whole surface of the
device. It allows avoiding stress concentration which
is the source of many reliability issues in conventional
WECs.

• In survival conditions, the WEC can be deflated. It
results in a long compliant structure which would not
have to deal with extreme loadings.

In the first section of this paper, a numerical model of the 
device able to predict the dynamic response of the device and 
its energy production is presented. Experimental validations are 
presented in the second section. Eventually, results of a 
technico-economical parametric study of the dimensions of the 
device are presented. 

1. NUMERICAL MODEL
In order to optimize the dimensions and parameters of the

system, SBM and Ecole Centrale De Nantes have been 
developing in collaboration a numerical Wave to Wire (W2W) 
model able to predict the dynamic response of the S3 WEC. 

The methodology is summarized in what follows. More details 
can be found in [2]. 

1.1. Notations and assumptions 
The length of the tube is denoted L. It is made of an elastic 

electro active material of density ρtube. The radius at equilibrium 
is denoted rS. zS is the vertical coordinate of the axis and hS is 
the wall thickness which is considered small with respect to rs. 
The tube mass can be approximated by 2tube tube S SM r h Lρ π= .

Let assume that the bulge deformation is homogeneous in 
the radial direction. Thus, it depends only on the horizontal 
coordinate x and on the time t. Let denote r(x,t) the radius et 
S(x,t)the cross section. 

The tube being reinforced in the horizontal direction with 
rigid fibers, let assume that it cannot be deformed in that 
direction. Therefore, the surge motion is a rigid body motion 
which is denoted X.  

Both ends of the tube are embedded in a rigid tow-head, 
with mass Mtowhead. Thus the tube cross-sections at both 

extremities are ( ) ( )2 2 S
L LS x S x S= − = = = , SS being the

area of the cross section at static equilibrium. Each tow-head is 
connected to a mooring system. 

In what follows, it is assumed that all dynamic quantities 
are small enough to allow linearization. 

1.2. Governing equations 

• Inner flow: It is assumed that viscosity effects are
negligible for the inner flow and that the flow is
homogeneous radially (the pressure and velocity
depends only on the x coordinate and on time).The
equations governing the inner flow result from Euler
equation and mass conservation yield:
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Figure 2.  Notations 



With U(x,t) the flow velocity in the tube and pi the 

dynamic part of the inner pressure. ρ is the water 

density. 
• Outer flow: The dynamic part of the outer pressure is

denoted pe. Let define ( ),ep x t  its average over the

external contour C(x) of the tube. 
The outer flow is modeled within the frame of linear
potential flow theory. Thus, the components of the
outer flow (diffraction, radiation) can be separated.
Pressure loads associated with diffraction are obtained
using standard approach [3]. For radiation loads,
generalized mode approach is employed [4]: the
boundary value problem is solved for each mode shape
(see section 2.3) and the total radiation load is
obtained by linear superposition.

• Wall equation: The wall equation is obtained by
considering the inner and outer forces applying on a
small piece of the tube wall and averaging on the
contour. One can show:
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With TS the wall pretension in the longitudinal 

direction and σθ(x,t)the wall constraint (
Sθσ being

its value at equilibrium). 

Let assume that the difference 
S

SS

S θ θσ σ − 
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can be 

modeled as a linear spring and damper whose 
coefficients are K and B. The linearised wall equation 
can be rewritten: 
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D is called the distensibility [5]. 
By looking at equation (3), one can see that the 
pressure difference between the outer and the inner 
surfaces of the tube is the sum of a bending stiffness, 
an elastic stiffness and a linear damping term. 

• Horizontal motion: It is assumed that the tube cannot
be deformed horizontally because of the reinforcing
fibers. Thus, the surge motion of the tube is a rigid
body motion. By applying Newton’s law to each tow-
head, by integrating Euler’s equation over the length
of the tube and by adding all these three equations, one
can show:

( )2 a i e SMX K X p p S= − + ∆ − ∆&&

(4) 

With 2tube towheadM M M= + , Ka is the horizontal 

mooring stiffness, 
2 2

L Li i ix x
p p p

= =−
∆ = −  is the inner

pressure difference between the both ends of the tube 
and 

2 2
L Le e ex x

p p p
= =−

∆ = −  is the outer pressure

difference.  

Equation (4) shows that the surge motion is governed 

by the mooring stiffness and the inner and outer 

pressure difference at both ends of the tube. 
• Boundary conditions: The tube is embedded in the

tow-heads at both ends. Thus, the tube cannot deform
at its ends. In addition, the tube being closed, the inner
flow velocity at the tube ends must be equal to the
tube horizontal velocity. Mathematically, these
conditions read:
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1.3. Mode shapes 
Let us look for the mode shapes of the tube (free 

oscillations in calm water 0ep =  without damping B=0). 

Radiation effects are not taken into account. 
Let us define a complimentary variable χ such as its time 

derivative is equal to the inner fluid velocity: 

U
t

χ∂ =
∂

(6) 

By using the second equation in (1), integrating over time 
and assuming that the tube is initially at rest, one can show that 

the relative deformation ( )SS S− is related to the 

complimentary variable χ: 

( )S SS S S
x

χ∂− = −
∂

(7) 

Thus, by combining equations (1), (3) and (7), one can 
obtain the propagation equation: 
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With the associated boundary conditions are obtained by 
combining (5), (6) and (7): 
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By using standard techniques for separating variables, the 
boundary conditions (9) and the surge motion equation (4), one 

can show that the solutions of (9) read( ) ( ) ( ) ( )
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The wave numbers ( ) ( ) ( ) ( )1 1 2 2, , ,n n n nK k K k are the solutions 

of the wave equations: 
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The natural frequencies ( )k
nω  can be obtained by applying

equation (8) to each mode( ) ( ) ( )k
nk i t

n x eωχ%  . 

To simplify the notations in what follows, let us define the 

set of modal responseŝmχ  corresponding with the mode

shapes ( ) ( )k
n xχ% ordered by their modal frequencies. 

Figure 3 shows the four first mode shapes ( )( )k

S n
S S− for

the case of the 200 m long tube of diameter 3 m. They have 
been obtained by applying equation (7) to each mode( ) ( )k

n xχ% .

As expected, the mode shapes look like sine or cosine functions 
with increasing number of oscillations as the mode number 
increases. However, one can observe the rapid change in the 
section close to both ends of the tube due to the embedment 
condition of the tube in the tow-heads. 

1.4 Forced oscillations 
Let’s look for the complete solution of the problem, i.e. the 

tube motion is forced by the waves and the radiation effects and 
linear damping (energy absorption) in the electro-active 
material are taken into account. The corresponding propagation 
equation is: 

2 2 4 2

2 2 2 4 2
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1 1 1 1 ep

t D x D K x x x

χ χ χ χη
ρ ρ ρ
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∂ ∂ ∂ ∂ ∂

&

(12) 

The solution is written under the form of a linear 
combination of the mode shapes whose coefficients depend on 
time: 

( ) ( ) ( )ˆ, m m
m

x t c t xχ χ=∑
(13) 

By using this expression in (12), by manipulating the 
equations and by defining the model projection χf of any 
function f such as: 

( ) ( ) ( )2

2 22
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one can show that the coefficients [ ]1m m N
c

≤ ≤
=C are solutions 

of the differential matrix equation (in frequency domain): 
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(14) 

With I the identity matrix, χχχχA the added mass matrix of the 
mode shapes, χχχχB the radiation damping matrix, 

2

2 1 ,1
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m l
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l N m N

dx
x x

χ χε
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≤ ≤ ≤ ≤

 ∂ ∂=  ∂ ∂ 
∫  the modal damping matrix 

and χχχχpex the column vector of the modal excitation coefficients
(due to the incident and diffracted waves). 

Equation (14) can be easily solved by standard matrix 
inversion techniques. The solution gives access to the dynamic 
response of the system to various wave conditions and thus to 
estimates for the energy production. 



2. EXPERIMENTAL VALIDATION
Tests have been carried out in July 2011 in the

Hydrodynamics and Ocean Engineering Tank of Ecole Centrale 
de Nantes in order to validate the numerical model. The 
experimental model is a 10m long tube made of silicone and 
covered with electro-active polymer sections. The tube 
deformations were measured using the electro-active material. 
The inner pressure was measured with sensors distributed along 
the tube. 

2.1. Experimental Model and instrumentation 
The experimental model was made of the following 

elements: 
• A main silicon tube, closed at both ends, filled

with water, reinforced with Aramid fibers in the
longitudinal direction to avoid axial deformations.

• 20 independent sections made of multiple layers
of electro-active polymer encapsulated in a
silicone shell and waterproof electric connections
to wire every section. These sections were slipped
onto the main tube (light stripes in Figure 1 and
Figure 4) and kept in place due to the frictional
effect once the tube is inflated.

• Silicon separations to hold in place the wire
connections (dark blue stripes on Figure 1 and
Figure 4)

• Two inflatable plugs to seal the main tube at both
ends, to fill up the inner chamber and transfer the
mooring tensions.

• Foam pads inserted inside the tube to provide the
necessary buoyancy to keep the system afloat. .

Figure 4. Experimental model during assembly – inflating test. 

The deformable element of the experimental model is 10m 
long for the first part of the tests and 7m long for the second 
part. The diameter at rest (not inflated) is 0.42m. 

The experimental model is moored at the center of the 
basin by means of 4 anchor lines set nearly horizontal and 
attached to springs. The entire system presents a surge motion 
(if the system was a rigid body) period which is much higher 
than the one of the tested waves (around 15s for the 10m long 
tube). 

In order to validate the numerical model, the following 
parameters were measured: 

• The tube radial deformations for every EAP
sections. Indeed, every layers of EAP have the

Figure 3. Four first mode shapes for the radial deformation (S-SS) of a 200 m long tube with diameter 3 m. 



property to change its capacitance when it is 
subject to deformations. For a considered 
deformation, the capacitance is given by the 

following relation: 0
pC C λ= with C the

capacitance under constraint, C0 the capacitance at 

rest and λ the hoop elongation ratio, ratio between
the deformed radius and the radius at rest, and p, a 
form factor. Every section had been previously 
calibrated and the values C0 and p defined. During 
the tests, the sections were wired to a capacitance 

meter yielding the instant λ values along the tube.
• The inner and outer pressures along the tube. Two

straps with 20 ceramic membrane pressure 
sensors were assembled. One was set inside the 
main tube chamber and the other was set on the 
outside of the tube. Magnets were stitched onto 
the straps in order to attach the two in opposition 
on both sides of the tube. 

• The point’s 3D coordinates underneath the
experimental model (light points on figure 1) with 
trajectography cameras. A “tinsel” of LEDs 
(active targets) was fixed underneath the 
experimental model using the same magnets that 
were used to attach the straps. Six underwater 
cameras were disposed on the basin bottom in 
order to record the trajectory of the targets and ad-
hoc software was used to calculate the target’s 
position. 

• The four anchor lines tensions with force sensors.
• Wave height at different positions around the

experimental model as well as the undisturbed
elevation at the center of the experimental model
measured at the beginning of the tests.

2.2. Wave tests 
Table 1 summarizes the wave tests series done during the 

tests. 
The tube length was modified during the model test. This 

variation helped visualize the effect on the eigen modes of the 
system.  

The inflation ratio corresponds to the static deformation of 
the main tube. The variation of this parameter affects at the 
same time the mass of the system and the wall stiffness (hyper-
elastic behavior of the silicon), and, in the same time the eigen 
modes.  

The different wave heights helped evaluating the 
importance of the non-linear terms (material heat losses, drag, 
etc…). The different headings confirmed that the system can 
operate when the swell is not aligned with the tube. 

Finally, using irregular waves validated that the system can 
work in a real environment. 

2.3. Numerical model comparison 
Comparisons could finally be achieved between the 

numerical and experimental results. An overview is shown on 
the following figure in terms of radial deformations in relation 
with the wave period (vertical axis) and the tube section 

Table 1 : Test series done during model test at ECN in July 2011 

Length [m] Inflation ratio [%] Heading [deg] Type Significant wave 
height [m] 

Wave Period Tp [s] 

10 30 0 regular 0.2 
1 to 3 (by steps 0.1s) 
3 to 4 (by steps 0.25s) 
4 to 5 (by steps 0. 5s) 

10 30 0 irregular 0.2 3.2;4.5 

10 30 0 regular 0.4 
2.2 to 3 (bys steps 0.1s) 
3 to 4 (by steps 0.25s) 
4 to 5 (by steps 0. 5s) 

7 30 0 regular 0.2 
2.6 to 3 (by steps 0.1s) 
3 to 3.75 (by steps 0.25s) 

7 30 0 regular 0.1 
1.4 to 3 (by steps 0.1s) 
3 to 3.75 (by steps 0.25s) 

7 30 30 regular 0.1 
1.1 to 3 (by steps 0.1s) 
3 to 3.75 (by steps 0.25s) 

7 30 0 irregular 0.1 2.4 
7 30 30 irregular 0.1 1.4 ; 1.8 ; 2.4 

7 20 0 regular 0.1 
1.4 to 3 (by steps 0.1s) 
3 to 3.75 (by steps 0.25s) 

7 40 0 irregular 0.2 1.8 ; 2.4 ; 3.2 



(horizontal axis). One can see a satisfactory agreement once the 
damping coefficient of the tube wall has been calibrated. 
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Figure 5. Comparison between experimental results (top) and 
numerical results (bottom) for a 10m long tube. 

As the inner pressure wave is a standing wave (due to the 
closed ends), the large circles (yellow and red areas) 
corresponds to the anti-nodes where the radial deformations are 
important. These anti-nodes appear at two different periods 
which corresponds to 2 different tube shape modes. The first 
shape mode period is at 2.1s, the second at 3.6s and both shape 
modes have different wave length. The first one presents 4 anti-
nodes and the second one 3. Outside these two resonance 
periods, the tube is barely deforming itself because there is no 
other deformation shape mode.  

The first resonance period is due to the coupling of the inner 
pressure wave with the elastic wave within the tube wall and 
the second period is due to the coupling of the inner pressure 
wave with the tube surge motion. 

These two resonance periods appear on both graphs. In both 
cases, the response is close, meaning that the W2W program 
can give a good prediction of the section deformations 

behavior. However, one can see that the W2W program predicts 
other modes at smaller periods (i.e. 1.6s) which were not 
measured in the experiments. This overestimation of the tube 
response at small periods is probably due to additional non 
linear effects which are not taken into account in the actual 
version of the numerical model. 

3. PARAMETRIC STUDY
The numerical model showed sufficient agreement with the

test data in this first phase and was considered validated. It was 
therefore further used to estimate the power output of a real 
system. The next phase was to find an optimum geometry in 
order to maximize the energy absorption with a minimum 
amount of active material and a satisfying fatigue life. 

3.1. Maximizing the energy absorption 
For a given configuration, the most important parameter 

determining the extracted energy is the wall damping 
coefficient B. This damping coefficient includes two distinct 
phenomena: 

• The viscous losses caused by the elastomeric
material which generates heat upon cycling (B1)

• The electro-active polymer energy conversion
strength (B2)

The first phenomenon is a physical property based on the 
material used which cannot be modified after fabrication; 
however, variations can be imposed on the second phenomenon 
to damp more or less the system in order to maximize the 
energy absorption. 

In order to increase the amount of energy extracted, the 
electro-active polymer rings need deformations with amplitudes 
of at least 10%. Below this range, the available mechanical 
power that can be converted is lost into heat due to energy 
leakages. Moreover, the conversion of energy by the electro-
active polymer rings damps out the system which in turn 
reduces the radial deformations. Hence, the maximum energy 
that can be extracted is a subtle balance between the tube radial 
deformations and the strength of the electro-active polymer 
rings for energy conversion. 

Figure 6 shows the variation of the different powers 
depending on the energy extraction damping coefficient (B2). 
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Figure 6. Evolution of the different average powers depending 
on the damping coefficient B2. 

The x line corresponds to the energy losses due to the 
deformations of the elastomer. When the EAP rings are not 
activated, all the energy is converted into heat due to the 
viscous effects. 

The triangles line corresponds to the total amount of 
energy available in the system. When the EAP rings are used, 
the radial deformations are inhibited leading to an overall 
decrease of the total energy. 

The squares bell curve corresponds to the mechanical 
energy available for conversion by the EAP rings. The average 
mechanical energy increases proportionally with the damping 
coefficient B2. However, if this coefficient becomes too 
important, the system is inhibited and less energy is available 
for conversion. 

The diamonds bell curve corresponds to the converted 
mechanical energy by the EAP rings. It follows the same 
pattern than the red curve and considers the deformation 
amplitudes that need to be at least above 10%. This curve is 
lower than the available energy because of the energy leakages 
during the conversion. This represents a very rough estimation 
of the power electronics converters efficiency. 

Once the damping coefficient for the EAP conversion has 
been tuned for maximum energy extraction, it is possible to 
estimate the fatigue life of EAP rings. The following relation 
gives a simple approach to the number of cycles allowed for a 
given deformation amplitude ε. 

Nbreak(ε)= aε-b

(15) 

The parameters a and b were established from tests carried 
out by SBM. 

Once the extracted energy is known, with the fatigue life 
and the amount of required material for multiple configurations, 
it is possible to look for an optimal solution for a given 
deployment site 

3.2. Optimal configuration 
A parametrical approach is used in order to find an optimal 

configuration. Multiple tube geometries were generated with 
different length, diameter and wall thickness with the following 
intervals: 

• Length: 20m to 500m
• Inflated diameter: 0.4m to 3m
• Wall thickness: 0.015m to 0.09m

Every configuration was then evaluated with the following 
relation: 

(16) 

The Net Present Value (NPV) is the remaining capital once 
the device has been exploited for Nyears. For this simulation, the 
operational time has been set to 20 years. 

The Internal Rate of Return (IRR) is a parameter to 
evaluate the desirability of a configuration. The higher the IRR, 
the more interesting a configuration is. 

The Income is the capital gained from the production of 
energy. In this case the targeted mean annual power production 
is 400kW for the wave climate of the EMEC test site in 
Scotland. It is considered that multiple tubes of the same 
configuration can be added together as an array to reach this 
target and have no influence over one another. 

The investment costs (CAPEX) correspond to the material 
and mooring costs times the number of tubes in an array to 
reach 400kW. It is conservatively assumed that no gain can be 
made on shared mooring. 

The operational costs (OPEX) correspond to the material 
costs if the WEC needs to be replaced during the 20 years of 
operation. Hence it depends on the lifetime of the specific 
configuration. 

The optimal configuration is the one with a positive NPV 
and the highest IRR. 

After using the previous relation on the different 
geometries, the optimal solution to generate 400kW would be 
the following: 

• Between 9 to 10 tubes
• Length of 290m
• Inflated diameter of 2.4m
• Thickness of 9cm

This implies that a long tube is more interesting than a 
short and very large tube. Indeed, theoretically, the available 
power inside the tube increases to the square of the diameter 
whereas it is only linearly proportional to the length. 

The proposed solution can still be improved by increasing 
the number of initial geometries or by changing the algorithm. 



CONCLUSIONS 

The tight collaboration between the LHEEA laboratory at 
Ecole Centrale de Nantes and the company SBM Offshore, in 
the context of the S3 project, financed by the agency ADEME, 
helped break through the first technological barriers required to 
design and optimize a revolutionary wave energy converter 
totally deformable and perfectly adapted to the complex nature 
of wave energy resources. 

SBM now possesses a numerical tool experimentally 
calibrated to predict the production of energy of a deformable 
wave energy converter made of electro-active polymers. It is 
possible to optimize its different geometrical parameters and 
physical characteristics. This will help predict the technical 
specifications for the design of a prototype. 

To bring this project up to an industrial scale, a 
technological leap will have to be done on the performance of 
electro-active polymers, their usage, fatigue life and their 
energy density. 
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