
HAL Id: hal-01201933
https://hal.science/hal-01201933

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph kernels in chemoinformatics
Benoit Gaüzère, Luc Brun, Didier Villemin

To cite this version:
Benoit Gaüzère, Luc Brun, Didier Villemin. Graph kernels in chemoinformatics. Matthias Dehmer
and Frank Emmert-Streib. Quantitative Graph Theory Mathematical Foundations and Applications,
CRC Press, pp.425-470, 2015, 978-1-4665-8451-8. �hal-01201933�

https://hal.science/hal-01201933
https://hal.archives-ouvertes.fr

Dedication

This is the dedication.

Part I

This is a Part

1

Chapter 1

Graph Kernels in chemoinformatics

Benoit Gaüzère

GREYC CNRS UMR 6072, Université de Caen, France

Luc Brun

GREYC CNRS UMR 6072, Université de Caen, France

Didier Villemin

LCMT CNRS UMR 6507, ENSICAEN, France

1.1 Introduction . 4
1.1.1 General definitions . 5

1.2 Graph similarity measures . 8
1.2.1 Maximum common sub graphs . 9
1.2.2 Frequent graphs . 10
1.2.3 Graph edit distance . 11

1.2.3.1 Graph edit distance approximation . 11
1.2.3.2 Graph edit distance and machine learning methods 12

1.3 Graph embedding methods . 14
1.3.1 Empirical kernel map . 14
1.3.2 Isometric embedding . 15
1.3.3 Local approaches . 16
1.3.4 Global approaches . 16
1.3.5 Conclusion . 17

1.4 Kernel theory . 17
1.4.1 Definitions . 17
1.4.2 Kernel trick . 19
1.4.3 Kernels and similarity measures . 20
1.4.4 Kernel methods . 20

1.4.4.1 Support vector machines . 20
1.4.4.2 Support vectors machines for regression 22
1.4.4.3 Kernel ridge regression . 23

1.4.5 Graph kernels and chemoinformatics . 24
1.5 Graph kernels based on bags of patterns . 24

1.5.1 Complete graph kernel . 24
1.5.2 Linear pattern kernels . 25

1.5.2.1 Random walks . 25
1.5.2.2 Tottering . 25
1.5.2.3 Paths . 26

1.5.3 Non linear pattern kernels . 27
1.5.3.1 Graphlets . 27
1.5.3.2 Tree patterns . 29
1.5.3.3 Weisfeiler-Lehman . 29
1.5.3.4 Graph fragments . 30
1.5.3.5 Treelets . 31

3

4 Book title goes here

1.5.4 3D pattern kernel . 32
1.5.5 Cyclic pattern kernels . 33

1.5.5.1 Cyclic patterns . 33
1.5.5.2 Relevant cycle graph . 34
1.5.5.3 Relevant cycle hypergraph . 36

1.5.6 Pattern Weighting . 37
1.5.6.1 A priori methods . 38
1.5.6.2 Branching cardinality . 38
1.5.6.3 Ratio depth/size . 38
1.5.6.4 Multiple kernel learning . 39
1.5.6.5 Simple MKL . 39
1.5.6.6 Generalized MKL . 40
1.5.6.7 Infinite MKL . 40

1.6 Experiments . 40
1.6.1 Boiling point prediction . 41
1.6.2 Classification . 42

1.6.2.1 AIDS dataset . 42
1.6.2.2 PTC dataset . 43

1.7 Conclusion . 44

1.1 Introduction

Graphs provide a generic data structure widely used in chemo and bioin-
formatics to represent complex structures such as chemical compounds or
complex interactions between proteins. However, the high flexibility of this
data structure does not allow to readily combine it with usual machine learn-
ing algorithms based on a vectorial representation of input data.

Indeed, algorithms restricted to the graph domain are essentially restricted
to k-nearest neighbors or k-medians algorithms. These algorithms use different
measures of similarity based on the set of frequent sub graphs extracted from
graphs or from the size of the maximum common sub graph of two graphs. A
widely used graph similarity measure is based on a measure of the distortion
required to transform one graph into another. This measure of dissimilarity,
called graph edit distance, is NP-hard to compute. However, this complex-
ity can be reduced by computing a sub optimal, but usually effective, graph
edit distance. Nevertheless, graph edit distance does not usually fit all the
requirements of an euclidean distance and hence can not be readily applied in
conjunction with many machine learning methods.

Graph embedding methods aims to tackle this limitation by embedding
graphs into explicit vectorial representations which allow the use of any ma-
chine learning algorithm defined on vectorial representations. However, encod-
ing graphs as explicit vectors having a limited size induces a loss of information
which may reduce prediction accuracy.

Graph kernels are defined as similarity measures between graphs. Under
mild conditions, graph kernels correspond to scalar products between possi-
bly implicit graph embeddings into an Hilbert space. Thanks to this graph

Graph Kernels in chemoinformatics 5

embedding, machine learning methods which may be rewritten so as to use
only scalar products between input data, such as SVM, can be applied on
graphs. Graph kernels thus provide a natural connection between graph space
and machine learning.

A large family of kernel methods is based on a decomposition of graphs into
bags of patterns. The prototypical example of this last family, is the complete
graph kernel which is based on a decomposition of a graph into all its sub
structures (sub graphs). Such a kernel being NP-Hard to compute, kernels
based on bags of patterns must be restricted to the extraction of different
family of sub structures. Given a particular type of bag of patterns, each sub
structure of a bag encodes a different structural information. This information
may be weighted according to the property to predict. Such a weighting scheme
allows to highlight relevant patterns having an high influence on a particular
property.

1.1.1 General definitions

This first section aims to introduce some basics of graph theory required
to define graph similarity measures used in chemoinformatics.

Definition 1 (Graph) An unlabeled graph is a pair G = (V,E) such that V
corresponds to a set of nodes and E ⊂ V × V corresponds to a set of edges
connecting nodes. The size of the graph is defined by |V |. If (u, v) ∈ E, u is
said to be adjacent to v.

Definition 2 (Neighbourhood) Neighbourhood relationship is encoded by
the function Γ : V → P(V) with Γ(v) = {u ∈ V | (u, v) ∈ E} where P(V)
denotes all subsets of V .

Definition 3 (Degree) The degree of a node v ∈ V is defined as |Γ(v)|.

Definition 4 (Non oriented graph) A graph is non oriented if for any
pair of nodes (u, v) ∈ E, (v, u) ∈ E. In this case (u, v) denotes indifferently
the oriented edges (u, v) and (v, u).

In the following we will only use non oriented graphs. Hence unless otherwise
stated, graphs are supposed to be non oriented.

Definition 5 (Sub graph) A graph G′ = (V ′, E′) is a sub graph of G =
(V,E), denoted G′ v G, if V ′ ⊆ V and E′ ⊆ E. If E′ = E ∩ (V ′ × V ′), G′ is
called a vertex induced sub graph of G.

Definition 6 (Walks, Trails, Paths) A walk of a graph G = (V,E) is a
sequence of nodes W = (v1 . . . vn) connected by edges: (vi, vi+1) ∈ E for any
i ∈ {1, . . . , n− 1}. If each edge (vi, vi+1) appears only once in W , W is called
a trail. If each vertex (and thus each edge) appears only once, W is called a
path. The length of a walk is defined by its number of nodes.

6 Book title goes here

Definition 7 (Distance between nodes) The distance dG(u, v) between
two nodes u and v of a graph G = (V,E) is defined as the length of the
shortest path between u and v in G.

Definition 8 (Cycle) A cycle is a path whose first node is equal to the last
one. This node is the only one appearing twice in the sequence.

Definition 9 (Connected graph) Given a graph G = (V,E), a set U ⊂ V
is said to be connected if it exists a path between any pair of distinct nodes in
U . The set U is called a connected component of G if it is not included into a
larger connected set. The graph G is said to be connected if all its connected
components are equal to V .

Definition 10 (Tree) A tree is a connected graph without cycles.

Definition 11 (Bridge) A bridge in an edge whose removal increases the
number of connected components of the graph. The set of bridges of a graph
G is denoted B(G).

Definition 12 (Labeled graph) A non oriented labeled graph G =
(V,E, µ, ν) is a non oriented unlabeled graph G = (V,E) associated to a node
labeling function µ : V → LV and an edge labeling function ν : E → LE,
where LV and LE denote respectively sets of node and edge labels.

Two graphs are considered as equal if it exists a bijection between the
nodes of both graphs which respect adjacency relationships. In this case both
graphs are said to be isomorphic.

Definition 13 (Graph isomorphism) Two graphs G = (V,E) and G′ =
(V ′, E′) are structurally isomorphic, denoted G 's G′, if and only if it exists
a bijection

f : V → V ′

such that:
(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′.

If G and G′ correspond to labeled graphs, i.e. if G = (V,E, µ, ν) and G′ =
(V ′, E′, µ′, ν′). A structural isomorphism between G and G′ is called a graph
isomorphism, denoted by G ' G′, if

∀v ∈ V, µ(v) = µ′(f(v)) and
∀(u, v) ∈ E, ν(u, v) = ν′(f(u), f(v)).

Definition 14 (Partial sub graph isomorphism) Let G = (V,E, µ, ν)
and G′ = (V ′, E′, µ′, ν′) denote two graphs such that |V | ≤ |V ′|. It exists
a partial structural sub graph isomorphism between G and G′ if and only if it
exists an injection:

f : V → V ′

Graph Kernels in chemoinformatics 7

such that:

∀(u, v) ∈ V 2 (u, v) ∈ E ⇒ (f(u), f(v)) ∈ E′.

A partial structural sub graph isomorphism is a partial sub graph isomorphism,
denoted G jp G′, if:

∀v ∈ V, µ(v) = µ′(f(v)) and
∀(u, v) ∈ E, ν(u, v) = ν′(f(u), f(v)).

Note that the partial sub graph isomorphism relationship may also be denoted
as homomorphism relationship in other references.

Definition 15 (Sub graph isomorphism) Let G = (V,E, µ, ν) and G′ =
(V ′, E′, µ′, ν′) denote two graphs such that |V | ≤ |V ′|. It exists a structural
sub graph isomorphism if it exists a partial structural sub graph isomorphism
between G and G′ and:

∀(u, v) ∈ V ′2, (u, v) ∈ E′ ⇔ (u, v) ∈ E

A structural sub graph isomorphism is a sub graph isomorphism denoted G j
G′, if:

∀v ∈ V, µ(v) = µ′(f(v)) and
∀(u, v) ∈ E, ν(u, v) = ν′(f(u), f(v)).

Hypergraphs correspond to an extension of graphs which allows to define
an adjacency relationship between more than two nodes. Hypergraphs have
been introduced by Claude Berge [3].

Definition 16 (Hypergraph) An hypergraph H = (V,E) is a pair of sets
V , encoding hypergraph’s nodes, and E = (ei)i∈I ⊆ P(V) encoding hyperedges:

• ∀i ∈ {1, . . . , |E|}, ei 6= ∅,

• ∪i∈I ei = V

As for graphs, the size of an hypergraph H = (V,E) is defined as |V | and two
nodes u and v are adjacent if it exists e ∈ E such that {u, v} ⊆ e.

Oriented hypergraph [12] is an hypergraph where hyperedges connect two
sets of nodes (figure 1.1):

Definition 17 (Oriented hypergraph) An oriented hypergraph H =

(V, ~E) is a pair of sets V , encoding hypergraph’s nodes, and ~E = (ei)i∈I ⊆
P(V) × P(V) encoding oriented hyperedges. An oriented hyperedge e =

(su, sv) ∈ ~E with su = {u1, . . . , ui} ⊂ P(V) and sv = {v1, . . . , vj} ⊂ P(V)
encodes an adjacency relationship between the two sets of node su and sv (fig-
ure 1.1).

8 Book title goes here

FIGURE 1.1: Oriented hypergraph with oriented hyperedge e1 =
({v1, v2}, {v3}).

In the remaining part of this chapter we consider that an hyperedge (sv, su)

exists in ~E for each (su, sv) ∈ ~E and we thus do not differentiate (su, sv) from
(sv, su). Note anyway that an oriented hypergraph remains different from
an usual hypergraph since within an oriented hypergraph an edge connects
two sets of vertices while within the usual hypergraph framework an edge is
composed of a single set.

An usual molecular representation is defined by the molecular graph [15,
49] (figure 1.2). A molecular graph is a non oriented labeled graph encoding
adjacency relationships between atoms of a molecule. The set of nodes encodes
the set of atoms of a molecule while the set of edges encodes atomic bonds
connecting these atoms. Each vertex is labeled by the chemical element of the
corresponding atom and each edge is labeled by the type of the atomic bond
(simple, double, triple or aromatic) connecting two atoms. From a chemical
point of view, an atom may share pairs of valence electrons with a maximum
of 8 atoms. Therefore, a molecule is encoded by a molecular graph having a
degree bounded by 8. An usual convention consists in not encoding hydrogen
atoms within molecular graph since they are implicitly encoded by the valency
of other atoms. An other convention is to not explicitly represent carbon atoms
within graphical representation of a molecular graph (figure 1.2).

1.2 Graph similarity measures

Most of existing methods used in chemoinformatics are based on the sim-
ilarity principle which states that similar compounds have similar proper-
ties [24]. If we consider the molecular representation given by the molecular

Graph Kernels in chemoinformatics 9

N

N

O

FIGURE 1.2: A molecular graph

graph, comparing molecular compounds thus relies on comparing molecular
graphs. Therefore, in order to be able to predict physical or biological prop-
erties of molecular compounds, we have to define molecular graph similarity
measures.

1.2.1 Maximum common sub graphs

A first similarity measure between graphs based on graph theory is defined
from the maximum common sub graph. Intuitively, two graphs are considered
as similar if they share a large common structure and dissimilar otherwise. In
order to define the notion of maximum common sub graph, let us first define
the notion of common sub graph:

Definition 18 (Common sub graph) A graph G is a common sub graph
of two graphs G1 and G2 if it exists two sub graphs Ĝ1 and Ĝ2 of G1 and G2

such that:

G ' Ĝ1 ' Ĝ2

Common sub graphs correspond thus to sets of nodes and edges common
to two graphs. In order to formally define maximum common sub graphs, let
us additionally define the notion of maximal common sub graph:

Definition 19 (Maximal common sub graph) A common sub graph of
two graphs G1 and G2 is maximal if it is a common sub graph of G1 and G2

and if it is not itself a sub graph of another common sub graph of G1 and G2.

10 Book title goes here

The notion of maximal common sub graph corresponds to set of nodes and
edges common to two graphs which can not be enlarged. Using maximal com-
mon sub graphs, we can now define maximum common sub graph:

Definition 20 (Maximum common sub graph) A common sub graph G
is maximum if it is a maximal common sub graph of G1 and G2 and it does
not exist a larger common sub graph of G1 and G2.

A maximum common sub graph corresponds thus to the largest maximal
common sub graph.

The size of a maximum common sub graph of two graphs may be seen as
a similarity measure between these two graphs. Methods based on maximum
common sub graph consider two graphs as similar if they share a large common
structure. Conversely, graphs sharing a lot of small common structures but
not a large one are not considered as similar. This particularity may alter
the accuracy of methods based on maximum common sub graphs on chemical
prediction problems where molecular activity is due to a large number of small
structures.

1.2.2 Frequent graphs

A widely used approach in chemoinformatics consists in finding sub struc-
tures which are responsible of a particular activity. This family of methods
is thus more dedicated to activity prediction problems since from a chemical
point of view, a molecular compound may have a particular property if it con-
tains a sub structure, called a pharmacophore. This chemical consideration
has sustained the emergence of a family of methods based on the discovery
of frequent sub graphs [10, 56, 38]. These methods are based on the following
assumptions:

• A sub structure is considered as frequent if its number of occurrences
is greater than a frequency threshold σ within a set of positive molec-
ular compounds and is insignificant within a set of negative molecular
compounds;

• A sub structure of size k may be frequent if it is composed of at least
two frequent sub structures of size k-1.

Among the set of methods using such an approach, methods described in
[10, 56] are based on an iterative algorithm (algorithm 1) which aims to find
frequent sub graphs of size k from the set of frequent sub graphs of size k− 1.

These approaches obtain a good prediction accuracy on many datasets
within a reasonable computational time. However, the main drawback of these
approaches is the frequent sub graphs hypothesis. Indeed, the hypothesis that
one pharmacophore is responsible of an activity is no longer valid when the
activity of molecular compounds is induced by a set of differents pharma-
cophores. In this case, each pharmacophore is associated to few molecular

Graph Kernels in chemoinformatics 11

Algorithm 1: Generic algorithm used by frequent sub graphs methods

Find a set of sub graphs S2 having a size k = 2 and a frequency greater1

than σ. ;
for k = 3→ k-max do2

Build a set of candidates Ck of size k from Sk−1. ;3

Sk ← frequent sub graphs in Ck;4

compounds and each pharmacophore does not reach the minimal frequency
threshold in order to be considered as a frequent sub structure. Such config-
urations induce thus a poor prediction model.

1.2.3 Graph edit distance

Graph edit distance aims to define a distance between graphs. This dis-
tance is based on a measure of distortion induced by a transformation of one
graph into another. Graph edit distance between two graphs is defined by the
minimal cost associated to an edit path which transforms the first graph into
the second one. This distance is defined as a sequence of edit operations, each
of these elementary operations being defined as:

• a node/edge insertion: adding one node/edge to the graph;

• a node/edge deletion: removing one node/edge to the graph;

• a node/edge substitution: replace one node/edge label.

Each of these edit operations is associated to a cost c(.) ∈ R+. Considering
these edit costs, graph edit distance is defined as:

dedit(G,G
′) = min

(e1,...,ek)∈C(G,G′)

k∑
i=1

c(ei) (1.1)

where C(G,G′) encodes all edit paths transforming G into G′. Each edit path
encodes a sequence of edit operations e1, . . . , ek, each operation ei being as-
sociated to an edit cost c(ei).

Graph edit distance may be computed using A∗ algorithm [20]. This algo-
rithm consists in building a rooted tree where each path from the root to a
leaf encodes a possible edit path. Then, the root to leaf path corresponding
to the lowest sum of edit operation costs is defined as the optimal edit path.
However, the computational complexity induced by this method is exponen-
tial according to the number of graphs’ nodes which limits its application to
very small graphs.

12 Book title goes here

1.2.3.1 Graph edit distance approximation

In order to reduce the complexity required by the computation of graph
edit distance, Riesen proposed a polynomial algorithm [44] which reduces
graph edit distance complexity. Given two graphs G = (V,E) of size n = |V |
and G′ = (V ′, E′) of size m = |V ′|, this algorithm is based on a complete
bipartite graph Ga = (Va, Ea) where Va = VG∪VG′ , VG = {V ∪{ε1, . . . , εm}},
VG′ = {V ′ ∪ {ε′1, . . . , ε′n}} and Ea = {(u, v) | u ∈ VG and v ∈ VG′}. Bipartite
graph Ga encodes a node to node matching between the two sets VG and VG′ .
A matching u ∈ V → v ∈ V ′ encodes a substitution whereas a matching
u ∈ V → ε′i (resp. εi → v ∈ V ′) encodes a node deletion (resp. a node
insertion). Each edge (u, v) ∈ VG × VG′ is weighted by the cost associated
to the edit operation encoded by matching u → v. Therefore, each matching
εi → ε′j is associated to zero cost since they do not encode any edit operation.

Optimal matching, i.e. matching from V to V ′ having the lowest sum
of edge cost, is computed by means of Munkre’s algorithm (or Hungarian
algorithm) [36]. This optimal matching is then associated to an edit path, itself
being associated to a cost. However, the computed cost does not correspond
necessarily to graph edit distance since there is no guaranty that the computed
edit path is the optimal one. Therefore, one one hand the main drawback of
this algorithm is that the computed dissimilarity measure does not correspond
to exact graph edit distance. On the other hand, this dissimilarity measure
can be computed in polynomial time which allows the use of this approach on
chemoinformatics problem.

1.2.3.2 Graph edit distance and machine learning methods

If we consider that costs associated to elementary edit operations define a
distance (proposition 21), graph edit distance fulfills the four properties of a
metric and thus defines a distance [37].

Definition 21 (Distance) A function d : X 2 → R+ is a distance over X if,
for any (xi, xk) ∈ X 2, it fulfills the four following properties:

• non negativity: d(xi, xj) ≥ 0;

• self distance: d(xi, xj) = 0⇔ xi ' xj;

• symmetry: d(xi, xj) = d(xj , xi);

• triangle inequality: for any xk ∈ X , d(xi, xj) ≤ d(xi, xk) + d(xk, xj).

However, graph edit distance does not fulfill the fifth property of an euclidean
distance (Definition 22) [9] and hence does not correspond to a distance in an
euclidean space. From a practical point of view, this limitation induces that
the metric space defined by the edit distance on the set of graphs can not
be isometrically embedded (neither explicitly nor implicitly) into an Hilbert
space. This last point restricts drastically the set of machine learning algorithm
which may be used in conjunction with the graph edit distance.

Graph Kernels in chemoinformatics 13

FIGURE 1.3: Four point polyhedron and point to point distances. Distance
between x1 and x4 can not be retrieved from the four first properties of a
distance (example taken from [9]).

The need of a fifth property to define euclidean distances can be illus-
trated using a distance matrix completion problem. Let us consider four points
x1, x2, x3 and x4 forming a polyhedron (figure 1.3). Distance matrix D ∈ R4,4

encodes distances between the four points of this polyhedron. Let us consider
the following incomplete distance matrix D:

D =


0 1 5 d14

1 0 4 1
5 4 0 1
d41 1 1 0

 (1.2)

The first property of a distance induces that d14 ≥ 0 and d41 ≥ 0. The
third property induces that d14 = d41 and finally, the fourth property of a
distance allows us to bound d14 by

√
5 − 1 ≤ d14 ≤ 2. However, only one

value corresponds to an euclidean embedding since x4 is at a distance of 1
from x2 and x3. Moreover, x2 and x3 are separated by a distance of 2 which
induces that x2, x3 and x4 must be collinear. All others distance values fulfill
the first four distance properties but they do not correspond to an embedding
regardless of the number of dimensions [9]. Therefore, the four properties of a
distance are not sufficient to ensure that a distance corresponds to a distance
in an euclidean space.

Definition 22 (Relative angle inequality [9]) For any i, j, l 6= k, k =
{1, . . . , N}, i < j < l. For N ≥ 4, let consider a set of distinct points
Xk = {x1, . . . , xN}. Relative angle inequality property is fulfilled if all points
xk ∈ Xk fulfill the following inequalities:

14 Book title goes here

cos(θikl + θlkj) ≤ cos(θikj) ≤ cos(θikl − θlkj)
0 ≤ θikl, θlkj , θikj ≤ π

(1.3)

where θikj = θjki encodes angle between vectors
→
xkxi and

→
xkxj.

Proposition 1 (Euclidean distance) A function d : X 2 → R+ corre-
sponds to a distance in an euclidean space RN if d is a distance (proposi-
tion 21) and d fulfills the relative angle inequality (definition 22).

An alternative characterization of an euclidean distance function is pro-
vided by the following proposition [9]:

Proposition 2 (Euclidean distance matrix) The matrix D corresponds
to an euclidean distance iff:

D ∈ SNh and ∀c ∈ RN , s.t

{
etc = 0

‖c‖ = 1
ctDc ≤ 0 (1.4)

where e = (1, . . . , 1)t and SNh corresponds to the set of N × N symmetric
matrices having 0 main diagonal.

Since graph edit distance does not define a distance in an euclidean space
it can not be directly used in machine learning methods where an implicit or
explicit vectorial embedding is mandatory. Despite this, graph edit distance
encodes a dissimilarity measure between two molecular graphs which may
be used in conjunction with some algorithms such as k-nearest neighbors or
k-median.

1.3 Graph embedding methods

Methods presented in section 1.1 are defined within graph space. Despite
the fact that this space allows to encode complex structures, it suffers from a
lack of mathematical properties. Therefore, the use of many well know machine
learning methods is not possible within such a space. In order to use conjointly
graphs and usual machine learning methods, one possibility consists in defining
an explicit vectorial space where each graph is embedded. Using such a scheme,
each graph is encoded by a vector which can be used conjointly with any
machine learning method defined on vectorial representations. Such vectorial
representations of graphs are called graph embeddings.

Graph Kernels in chemoinformatics 15

1.3.1 Empirical kernel map

In order to combine graph edit distance and machine learning algorithms,
some methods aim to define a graph embedding based on graph edit distance.
Riesen has proposed to encode a graph by an explicit vector which encodes the
distances between an input graph and a set of graph prototypes [42]. Given
a set of prototype graphs denoted by Gref = {G1, . . . , GN}, each graph is
embedded into an explicit euclidean space by the following embedding function
ΦGEKM : G → RN :

Φ
Gref
EKM (G) = (d(G,G1), . . . , d(G,GN)) (1.5)

This method thus encodes each graph by a vector which may be used
in any machine learning method defined on euclidean spaces. Although this
method uses a widely used graph dissimilarity measure, the choice of prototype
graphs strongly impacts the embedding quality. Riesen [42] addressed this
last problem through different heuristics providing “good” sets of prototype
graphs.

1.3.2 Isometric embedding

Another approach aims to define a graph embedding such that this em-
bedding encodes a dissimilarity measure [25]. Let consider a set of graphs
G = {G1, . . . , Gn} and a function encoding a graph dissimilarity d : G×G → R.
We define a dissimilarity matrix D by Di,j = d(Gi, Gj)

2 ∈ Rn×n. The method
described in [25] consists in computing n vectors xi having p-dimensions such
that the distance between xi and xj is as close as possible from the dissimi-
larity measure between Gi and Gj encoded by Di,j .

In order to define vectorial representations (xi)i∈{1,...,n}, a method con-
sists in defining a matrix S which encodes scalar products between vecto-
rial representations of graphs. Considering a distance matrix D, matrix S
is defined by S = (I − eet)D(I − eet) with e = (1, . . . , 1)t and satisfies:
Di,j = Si,i + Sj,j − 2Si,j . This last equation corresponds to the well known
relationship between euclidean distance and scalar products: ‖xi − xj‖2 =<
xi, xi > + < xj , xj > −2 < xi, xj >. If S is a semi definite positive matrix,
then its spectral decomposition is given by S = V ΛV t where Λ is a diagonal
matrix containing the (positive) eigenvalues of S. Matrix S can then be writ-

ten as XXt with X = V (Λ
1
2). Each entry Si,j of S is then defined as a scalar

product between two rows of matrix X. Taking xi as an embedding of graph
Gi we indeed obtain: Di,j = d2(Gi, Gj) = ‖xi − xj‖2.

However, if the dissimilarity matrix D does not correspond to a distance
in an euclidean space (definition 22), matrix S is not necessarily semi definite
positive and we have to regularize it. One possibility is to use the constant
shift embedding method which consists in removing negative eigenvalues of
S by subtracting its lowest (negative) eigenvalue. Regularized matrix S′ is
then defined by: S′ = S − λn(S)I where λn(S) denotes the lowest negative

16 Book title goes here

eigenvalue of S. This regularization step alters the initial distances according
to the following equation: D′ = D − 2λn(S)(eet − I). The magnitude of this
alteration depends linearly on the lowest eigenvalue of S. Such a regularization
step should be performed only for small values of |λn(S)|.

1.3.3 Local approaches

Other graph embedding methods which are not based on graph edit dis-
tance can be defined using different approaches. A first family consists in
encoding each graph by a set of information describing local adjacency rela-
tionships and labeling information. Attribute statistics based embedding [19]
defines a graph embedding where each coordinate of the vectorial representa-
tion encodes either the number of occurrences of a node label, or the number
of edges incident to two node labels. For |LV | node labels and |LE | edge
labels, the size of a vector encoding a non oriented graph is thus equal to
1
2 |LE ||LV |(|LV |+ 1). This type of embedding limits the size of encoded paths
and thus the amount of encoded information. Indeed, including paths of size
3 induces a huge increase of the size of vector in order to encode all possible
labeled paths of size 3.

In order to encode more structural information, topological embedding [48]
encodes the number of occurrences of a set of unlabeled structures correspond-
ing to the set of isomorphic graphs having at most N nodes. Labeling informa-
tion is included within a matrix representation by means of histograms: For
each structure, an histogram encodes the distribution of node and edge labels
among all labeled subgraphs corresponding to the unlabeled structure. This
method allows to encode larger structures which encodes more structural in-
formation than paths of size 2. However, the multiple configurations of labels
within all subgraphs isomorphic to a given unlabeled structure is reduced to
a simple histogram of node and edge labels hence losing an important part of
the label information. This loss of information is induced by the limit on the
size of vectors used to encode graphs.

1.3.4 Global approaches

Instead of using local approaches, some methods aim to define an embed-
ding which globally encodes a graph rather than using a concatenation of local
characteristics. Fuzzy multilevel graph embedding [29] defines a vectorial rep-
resentation encoding both local characteristics, such as node degrees or node
and edge labels, and simple global information such as number of nodes and
edges of graphs. Vectorial representation provided by a fuzzy multilevel graph
embedding includes thus different levels of analysis of the graph.

Spectral embedding methods [28, 6, 27] base the vectorial representation
of a graph on different characteristics of the spectrum of the graph laplacian
matrix. The basic idea of this family of methods is that the spectrum of the
graph laplacian matrix is insensitive to any rotation of the adjacency matrix

Graph Kernels in chemoinformatics 17

and may thus be considered as a characteristic of the graph rather than a
characteristic of its adjacency matrix. The resulting graph embedding are
based on global characteristics of the graphs which are however often difficult
to interpret in terms of graph properties.

1.3.5 Conclusion

Graph embedding methods define graph vectorial representations. Con-
versely to methods defined within graph space, these vectorial representations
can be used in any machine learning methods defined on vectors. However, the
encoding of a graph by an explicit vector of limited size induces necessarily a
loss of information. This loss may alter prediction models since some relevant
information may not be encoded by a vector of limited size.

1.4 Kernel theory

Methods presented in previous sections are based on two different ap-
proaches. The first one consists in defining similarity measures between graphs
without reference to any embedding. Such similarity measures may be com-
bined with few machine learning algorithms such as the k-nearest neighbors
or the k-median algorithms. The second one consists in defining vectorial rep-
resentations of graphs. These methods may be combined with any machine
learning algorithm but the transformation from graphs to vectors may induce
important loss of information due to the limited vector size.

In order to combine a graph similarity measure with many machine learn-
ing algorithms we have thus to transform our graphs into vectors. In the same
time, the dimension of the embedding space must be sufficiently large (even
infinite) in order to avoid to loss most of the graph information by this trans-
formation. From this point of view, graph kernels provide a nice mathematical
framework which allows to define a similarity measure between graphs which
corresponds to a scalar product in some Hilbert space. The key point, known
as the kernel trick, is that many machine learning algorithms may be rewrit-
ten solely in terms of scalar products between input data. The substitution of
scalar products by graph kernels within these methods allows then to avoid
the explicit transformation of graphs into vectors, hence allowing to work in
Hilbert spaces of arbitrary dimension.

1.4.1 Definitions

Intuitively, a kernel k : X 2 → R between two objects x and x′ corresponds
to a similarity measure defined as a scalar product between two projections

18 Book title goes here

ΦH(x) and ΦH(x′) of x and x′ into an Hilbert space H:

∀(x, x′) ∈ X 2, k(x, x′) = 〈ΦH(x),ΦH(x′)〉. (1.6)

In order to define a valid kernel k, it is not mandatory to explicitly define the
embedding function ΦH : X → H. However, to ensure that such an embedding
does exist, the kernel k has to fulfill some properties.

Definition 23 (Positive definite kernel) A positive definite kernel on X 2

is a function k : X 2 → R symmetric:

∀(x, x′) ∈ X 2, k(x, x′) = k(x′, x) (1.7)

and semi definite positive (Mercer’s condition [34]):

∀ {x1, . . . , xn} ∈ Xn,∀ c ∈ Rn,
n∑
i

n∑
j

cik(xi, xj)cj ≥ 0. (1.8)

Some usual kernels defined on vectorial representations are listed in table 1.1.

TABLE 1.1: Usual definite positive kernels
between vectors.

Linear k(x, y) = xT y

Gaussian k(x, y) = exp(−‖x−y‖
2

2σ2)
Polynomial k(x, y) = (xT y)d + c, c ∈ R, d ∈ N
Cosine k(x, y) = (xT y)

‖x‖‖y‖
Intersection k(x, y) =

∑N
i=1min(xi, yi)

Definition 24 (Gram matrix) A Gram matrix K associated to a kernel k
on a finite set X = {x1, . . . , xN} is a N ×N matrix defined by:

∀(i, j) ∈ {1, . . . , N}2, Ki,j = k(xi, xj). (1.9)

For any finite set of objects X = {x1, . . . , xN}, the Gram matrix associated
to a positive definite kernel k is semi definite positive. Conversely, if for any set
X = {x1, . . . , xN}, the Gram matrix K associated to kernel k is semi definite
positive, then k is a positive definite kernel.

A positive definite kernel k can be built from a combination of positive
definite kernels k1, . . . , kn (proposition 3).

Proposition 3 (Kernel combination [2]) Let k1 and k2 denote two defi-
nite positive kernels defined on X 2, X corresponding to a non empty space.
We have:

1. The set of positive definite kernels is a closed convex cone. Therefore:

Graph Kernels in chemoinformatics 19

• let w1, w2 ≥ 0, kernel k3 := w1k1 + w2k2 is positive definite;

• let kn a sequence of positive definite kernels and k(x, x′) :=
lim
n→∞

kn(x, x′), then k is a positive definite kernel.

2. The product of two definite positive kernels is a positive definite kernel.

3. Let us consider that for i = 1, 2, ki is a positive definite kernel on X 2
i ,

Xi being defined as a non empty space and let us consider (x1, y1) ∈ X 2
1

and (x2, y2) ∈ X 2
2 . Then, the tensor product k1 ⊗ k2((x1, x2), (y1, y2)) =

k1(x1, y1)k2(x2, y2) and the direct sum k1 ⊕ k2((x1, x2), (y1, y2)) =
k1(x1, y1) + k2(x2, y2) correspond to positive definite kernels on (X1 ×
X2)2.

Following [1], if k is a positive definite kernel on X , then it exists an Hilbert
space H, having scalar product 〈·, ·〉H, and an embedding Φ : X → H such
that:

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉H (1.10)

The Hilbert space H is called the Reproducing Kernel Hilbert Space (RKHS)
of k or more usually the feature space.

1.4.2 Kernel trick

Let us consider a polynomial kernel k(x, y) = 〈x, y〉2 with x =
(x1, x2) and y = (y1, y2) ∈ R2. Kernel value k(x, y) is thus equals to:

k(x, y) = x2
1y

2
1 + x2

2y
2
2 +
√

2(x1x2)
√

2(y1y2) (1.11)

Despite the fact that this last equation does not correspond to the usual
equation of a scalar product, it indeed corresponds to a scalar product between
a mapping of x and y through the following function:

(
x1

x2

)
Φ→

 x2
1

x2
2√

2x1x2

 (1.12)

Note that, using a polynomial kernel of degree 2, we implicitly work in
a space of dimension 3, while our original data are of dimension 2. Let us
now suppose that we wish to combine our kernel with a k-nearest neighbors
algorithm. We have thus to compute distances between vectors in the feature
space of dimension 3. Such distances may be computed as follows:

d2
k(x, y) = ‖Φ(x)− Φ(y)‖2 =< Φ(x),Φ(x) > + < Φ(y),Φ(y) >

−2 < Φ(x),Φ(y) >
= k(x, x) + k(y, y)− 2k(x, y)

(1.13)

Therefore, the k-nearest neighbors algorithm, may be applied in the feature

20 Book title goes here

space of dimension 3 without computing the transformation Φ but by using
solely our kernel between data of dimension 2. This trick, known as the kernel
trick allows us to avoid the explicit transformation of our original input data
in many machine learning algorithms. This last point allows us to avoid to
compute and to store vectors of very large or even infinite dimension, e.g. for
the gaussian kernel (table 1.1).

Applied to graphs, the kernel trick allows us to avoid the explicit trans-
formation of graphs into vectors and to focus our attention on the definition
of a similarity measure. The fact that the implicit Hilbert space may be of
very large dimension, allows to reduce the loss of information induced by the
transformation from graphs to vectors.

1.4.3 Kernels and similarity measures

From a mathematical point of view, a kernel is defined as a scalar prod-
uct between objects embedded into an Hilbert space. However, kernels are
generally considered as similarity measures. This relationship between scalar
product and similarity measure may be explained by the relationship between
scalar product and euclidean distance (equation 1.13):

‖Φ(x)− Φ(y)‖2 = k(x, x) + k(y, y)− 2k(x, y)
⇒ k(x, y) = 1

2 (‖Φ(x)‖2 + ‖Φ(y)‖2 − ‖Φ(x)− Φ(y)‖2)
(1.14)

If we consider normalized vectorial representations, i.e. ‖Φ(x)‖ = 1 ∀x ∈ X ,
we obtain:

k(x, y) = 1− 1

2
d2
k(x, y)

where d2
k(x, y) = ‖Φ(x)− Φ(y)‖2.

In this case, kernels are defined as the opposite of the euclidean distance
between vectors in the feature space. Intuitively, euclidean distance encodes
a dissimilarity between objects. Therefore, a kernel function defined as a de-
creasing function of the distance encodes a similarity measure between objects.
An high value corresponds to an high similarity whereas a low value, close to
0, encodes a high dissimilarity between objects.

1.4.4 Kernel methods

1.4.4.1 Support vector machines

Problem definition Support Vector Machines [5] (SVM) corresponds to
a machine learning algorithm. The classification problem addressed by SVM
is the following: Given a set of objects labeled by a class {xi, yi}ni=1, xi ∈ Rd
and yi ∈ Y = {−1,+1}, learn a function f : Rd → Y such that f(xi) = yi.
SVM algorithm consists in finding an hyperplane having d − 1 dimensions
which separates data points according to their classes (figure 1.4). The optimal
hyperplane is the one which maximizes the distance between the hyperplane

Graph Kernels in chemoinformatics 21

w

FIGURE 1.4: Hyperplane splitting data according to their classes (green
circles and red crosses). Dashed lines encode margins.

and the closest data points of each class. Such a distance is called the margin.
Considering the hyperplane defined by 〈w, x〉+b = 0, this distance is inversely
proportional to the norm of vector w. Finding the best hyperplane thus relies
to solve:

minimize
w

1
2‖w‖

2

subject to:
yi(〈w, x〉+ b) ≥ 1,∀i ∈ {1, . . . , n}

(1.15)

Considering a non linear separable case, i.e. where it does not exist an hy-
perplane having d − 1 dimensions which separates data, Cortes and Vapnik
proposed to include slack variables ξi ∈ R+ [8] . These variables allows to take
into account classification errors during training. The addressed problem is
then defined by:

minimize
w

1
2‖w‖

2 + C
∑n
i=1 ξi

subject to:
yi(〈w, x〉+ b) ≥ 1− ξi,∀i ∈ {1, . . . , n}
ξi ≥ 0,∀i ∈ {1, . . . , n}

(1.16)

where C ∈ R+ is a regularization parameter which allows to weight the influ-
ence of errors made during training. An high C value favors a learning without
errors, and thus potentially an over learning. Conversely, a low C value allows
more errors during training and thus a greater generalization.

Using a kernel k together with SVM allows to find a linear hyperplane
which solves equation 1.16 in the feature space associated to kernel k. Thanks
to the kernel trick, this hyperplane may be a non linear separator in original
data space. For example, let consider the kernel defined by equation 1.12. The
hyperplane equation 〈w, x〉+b = 0 is computed within the kernel feature space

22 Book title goes here

FIGURE 1.5: Hyperplane associated to an ε-tube (shaded).

and corresponds to a non linear equation in R2:

w1x
2
1 + w2x

2
2 + w3

√
2x1x2 + b = 0 (1.17)

Note that such an equation corresponds to a quadric.

1.4.4.2 Support vectors machines for regression

Regression problems consist in predicting a continuous value, conversely
to classification problems which aim to predict a discrete value encoding a
class. More formally, a regression problem is defined as: Given a learning set
{xi, yi}ni=1, composed of a set of n objects X = {x1, . . . , xn} with xi ∈ Rd,
each object being associated to a value yi ∈ R, learn a prediction function
f : Rd → R such that ŷi ' f(xi).

Support vector machines are initially defined as a solver for classification
problems. In order to handle regression problems, SVM have been adapted [11]
by including an ε-insensitive cost function such as defined in [51]. Instead of
computing an hyperplane splitting data according to their classes, SVM for
regression consists in computing an hyperplane w associated to an ε-tube
which includes data points to predict.

Formally, the minimization problem addressed by SVM for regression is
defined by:

minimize
w

1
2‖w‖

2

subject to:{
yi − 〈w, xi〉 − b ≤ ε,∀i ∈ {1, . . . , n}
〈w, xi〉+ b− yi ≥ ε,∀i ∈ {1, . . . , n}

(1.18)

Minimizing equation 1.18 relies to compute a linear function which approxi-
mates y values with an accuracy ε. In order to allows errors during training,
slack variables for regression have been introduced into minimization problem.
Similarly to SVM classification, these slacks variables allows to weight, accord-
ing to C, prediction errors made during the learning step. The minimization

Graph Kernels in chemoinformatics 23

problem is then defined as:

minimize
w

1
2‖w‖

2 + C
∑m
i=1(ξi + ξ∗i)

subject to:

∀i ∈ {1, . . . , n}


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≥ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(1.19)

This regression algorithm allows to compute a prediction function up to an
accuracy defined by ε. This parameter is particularly interesting in chemoin-
formatics since it may encode inaccuracies of physical properties induced by
experiments which are not predictable using molecular graphs.

1.4.4.3 Kernel ridge regression

Considering ridge regression framework, a regression problem can be ad-
dressed by computing a linear function which encodes relationships between
data x and responses y. This function may be computed by minimizing the
following objective function:

minimize
w

J(w)

with:
J(w) = ‖y −Xw‖2 + λ‖w‖2

(1.20)

Minimizing the first term of equation 1.20 relies to solve a least squares prob-
lem corresponding to the minimization of prediction errors. The second term
(λ‖w‖2) corresponds to a regularization term which aims to penalize vectors
w having an high norm. The factor λ allows to weight the influence of the reg-
ularization term into the minimization problem. Therefore, an high λ value
may prevent prediction model from over learning which may induce a better
generalization of the prediction model when applied on test sets.

The objective function to minimize, defined by equation 1.20, corresponds
to a sum of L2 norms which thus defines a convex function. Global minimum
is reached for a value w satisfying ∂J

∂w = 0. This optimal w is obtained by the
following analytic form:

w? = Xt(XXt + λI)−1y (1.21)

Predicting property value of a new data x′ relies thus on computing ŷ = w?tx′.
Let us consider that it exists a vector α ∈ Rn such that w = Xtα. We have

thus α = (λI+XXt)−1y and prediction of a new data is given by ŷ = XXtα.
We can notice that the access to data X is only performed through XXt.
Therefore, minimizing objective function can be performed without accessing
directly to raw data {x1, . . . , xn} but only through the scalar product defined
on this data since the matrix XXt ∈ Rn×n encodes scalar product 〈xi, xj〉 for
each pair of objects (xi, xj) ∈ X 2. Within the kernel framework, XXt corre-
sponds to the Gram matrix K associated to the kernel k(xi, xj) = 〈xi, xj〉.

24 Book title goes here

Given a non linear kernel kH, associated to a feature space H and an em-
bedding function ΦH : X → H, ridge regression using kH relies to compute a
vector w lying on feature space H, instead of original data space X .

1.4.5 Graph kernels and chemoinformatics

Considering conclusions of sections 1.2 and 1.3, graph kernels provide a
solution to both limitations involved by methods based on graph embeddings
and methods defined in graph space. On one hand, graph kernels allow to
define a similarity measure which is not limited by vector sizes since graph
vectorial representations are not required to be explicitly and exhaustively
defined. On the other hand, graph kernels guarantee that a vectorial repre-
sentation exists hence allowing the conjoint use of kernels with many machine
learning methods. Therefore, graph kernels define a natural connection be-
tween molecular graphs and machine learning algorithms. From this point of
view, many graph kernels have been defined to solve QSAR/QSPR problems
in chemoinformatics.

1.5 Graph kernels based on bags of patterns

A graph kernel family widely used in chemoinformatics consists in defining
similarity between graphs from a set of sub structures extracted from graphs
to be compared. Formally, given a set of sub structures P and a sub kernel
k′ : P × P → R, a convolution kernel [21] K : G × G → R is defined as a sum
of sub kernel values. For each pair of sub structures (p, p′) ∈ P2 extracted
from graphs by a decomposition function D : G → P, sub kernel k encodes
the similarity between two molecular graphs according to p and p′. Kernel k
is thus equal to:

k(G,G′) =
∑

p⊆D(G)

∑
p′⊆D(G′)

k′(p, p′) (1.22)

Kernels presented in this section are defined as convolution kernels. Although
these kernels use a same approach, they mainly differ on the set of sub struc-
tures used to define them.

1.5.1 Complete graph kernel

A first trivial approach consists in defining the set of sub structures by all
possible sub graphs.

Definition 25 (Complete graph kernel) Let G and G′ two graphs. Com-

Graph Kernels in chemoinformatics 25

plete graph kernel is defined by:

kcomplete(G,G
′) =

∑
pvG

∑
p′vG′

kiso(p, p
′) (1.23)

with

kiso(p, p
′) =

{
1 iff p ' p′

0 otherwise .
(1.24)

Complete graph kernel [14] relies on embedding graphs into an Hilbert space
where each dimension encodes the number of occurrences of a sub graph of the
considered graph. However, computing this kernel is NP-hard since it relies
on determining if two graphs are isomorphic. Therefore, this kernel can not be
efficiently computed which avoid using such an approach to chemoinformatics
problems.

1.5.2 Linear pattern kernels

1.5.2.1 Random walks

A less complex approach consists in deducing graph similarity from the
number of random walks common to both graphs to be compared. Two meth-
ods [14, 26] have been proposed both based on the bag of random walksW(G)
of a graph G. Kernels defined using random walks are based on the following
formulation:

Definition 26 (Marginalized kernel) Given two graphs G and G′, W(G)
andW(G′) encode the sets of random walks in G and G′ and kW :W×W → R
is defined as a kernel between walks. Marginalized kernel is then defined as:

krw(G,G′) =
∑

w∈W(G)

∑
w′∈W(G′)

pG(w)pG′(w′)kW(w,w′) (1.25)

where pG(w) corresponds to the probability of traversing w in G.

Kernel kW corresponds to a kernel encoding a similarity between walks ac-
cording to their labeling. Usually, this kernel is binary, i.e. kW is equal to 1
if label sequences are similar and 0 otherwise. Method defined in [14] uses a
different approach based on a direct product graph but is based on the same
feature space and thus encodes the same information. Different implementa-
tions have been proposed [26, 53, 14, 31] and this kernel may be computed in
polynomial time with the number of nodes of both graphs.

1.5.2.2 Tottering

A random walk corresponds to a node sequence which may oscillate be-
tween two connected neighbours (figure 1.6). This phenomenon, called totter-
ing, induces random walks which are not representative of the corresponding

26 Book title goes here

1

2

3 4

FIGURE 1.6: A path traversal altered by tottering corresponds to a label
sequence equals to 1, 2, 4, 2, 4, 2,

molecular graph structure since a same information may be repeated indef-
initely. In order to limit the influence of this non representative structures,
Mahé and al. [31] proposed to transform a molecular graph into an oriented
graph in O(|V |2). Then, kernel is computed on this new molecular representa-
tion which allows to avoid oscillations between two connected nodes and thus
to reduce tottering phenomenon.

1.5.2.3 Paths

Instead of using random walks which may suffer from tottering, others
kernels base their similarity measure on paths extracted from graphs to be
compared. Although enumerating all paths of a graph remains a NP-Hard
problem [4], a kernel can be defined using all paths composed of at most n
nodes [40]. This path enumeration is performed using a depth first traversal
from each node of the graph. Computing the kernel on two graphs G = (V,E)
and G′ = (V ′, E′) relies on extracting paths from G and G′ which induces
O(n(|V ||E|+ |V ′||E′|)) operations. Enumerated paths are encoded by a vector
which can be seen as a molecular descriptor where each descriptor encodes the
number of occurrences of a path. The similarity between these vectors may be
computed using usual kernels such as Tanimoto kernel or MinMax kernel [40].

Another approach consists in computing similarity between graphs from
the lengths of shortest paths between any pair of nodes. This method is based
on Floyd’s transformation [13] which consists in transforming a graph G =
(V,E, µ, ν) into a complete graph GF = (V,EF , µ, νF) where each edge ef =
(vi, vj) ∈ V 2 is labeled by the length of a shortest path between vi and vj
in G. Considering the two graph transformations GF = (V,EF , µ, νF) and
G′F = (V ′, E′F , µ

′, ν′F) of two graphs G = (V,E, µ, ν) and G′ = (V ′, E′, µ′, ν)′,
the shortest paths kernel is defined by:

ksp(G,G
′) =

∑
e⊆EF

∑
e′⊆E′

F

k1
path(e, e′) (1.26)

where k1
path(e, e′) is a kernel defined between edges. This kernel may be defined

Graph Kernels in chemoinformatics 27

FIGURE 1.7: Two different oriented graphs having a same representation
in a feature space based on linear patterns.

FIGURE 1.8: All graphlets of size 3 and 4 [46].

as a Dirac function which considers two edges e = (u, v) and e′ = (u′, v′)
as similar if and only if µ(u) = µ′(u′), µ(v) = µ′(v′) and νF (e) = ν′F (e′).
Intuitively, two edges are similar if they connect two pairs of nodes having
same labels and separated by the same distance in G and G′. This kernel can
be computed in polynomial time (O(|V |4)), most of the time being dedicated
to the computation of Floyd’s transformation and to the comparison of the
|V |2 edges of transformed graphs. However, this approach only encodes the
length of a shortest path connecting two nodes, but not the sequences of node
and edge labels composing these shortest paths. This loss of information leads
to a less accurate kernel.

1.5.3 Non linear pattern kernels

Although linear patterns allows to define a kernel which can be computed
in polynomial time, most of the structural information included within molec-
ular graphs can not be encoded using only linear patterns (figure 1.7).

1.5.3.1 Graphlets

In order to increase the structural information encoded within bags of pat-
terns, graphlet kernel [46] has been introduced. This kernel is based on bags
of patterns defined as all unlabeled graphs having k nodes, k ∈ {3, 4, 5} (fig-
ure 1.8). This kernel may be efficiently computed for graphs having a bounded
maximum degree (say by d). Note that a molecular graph (section 1.1.1) has
a maximal degree bounded by 8.

Graphlet enumeration is divided in two steps. The first one corresponds to
the enumeration of connected graphlets and the second one to the enumeration
of disconnected graphlets. Connected graphlets are divided into two classes.
The first class corresponds to graphlets of size k containing at least a path of

28 Book title goes here

size k− 1 and the second class to others graphlets. The first class of graphlets
is enumerated from paths of length k − 1, themselves enumerated using a
depth first traversal. The second class of graphlets is enumerated from 3-star
graphlets which correspond to graphlets having 4 nodes with a central node
having a degree equals to 3. Others graphlets are then enumerated by looking
at the neighborhood of 3-stars.

Concerning disconnected graphlets of size 3, their enumeration is based on
pairs of nodes (v1, v2) ∈ E. If we consider a third node v3 distinct from v1 and
v2, three differents configurations are possible (figure 1.9). These different
configurations may be distinguished using the neighborhood of (v1, v2). We
have thus:

• v3 /∈ Γ(v1) ∪ Γ(v2)→ F1 configuration;

• v3 ∈ Γ(v1) \ Γ(v2) ∨ v3 ∈ Γ(v2) \ Γ(v1)→ F2 configuration;

• v3 ∈ Γ(v1) ∩ Γ(v2)→ F3 configuration;

The method defined to enumerate graphlets of size 4 and 5 is based on
the same scheme then the one used for graphlets of size k = 3: the set of
11 graphlets having 4 nodes is enumerated from the set of graphlets having
3 nodes. Similarly, the 34 graphlets having 5 nodes is enumerated from the
ones composed of 4 nodes. This method allows to compute the distribution of
graphlets of size k in O(ndk−1) operations which corresponds to a linear com-
plexity with the number of nodes of graphs if the maximum degree is bounded.
Graphlet kernel is then defined as a scalar product between normalized vectors
encoding the number of occurrences of each graphlet:

Definition 27 (Graphlet kernel) Let G = (V,E) ∈ G and G′ = (V ′, E′) ∈
G two graphs and DG a vector encoding the number of occurrences of graphlets
in G:

DG(i) =
#graphlet(i) ⊆ G∑
j #graphlet(j) ⊆ G

(1.27)

Graphlet kernel is then defined by:

kgraphlets = D>GDG′ (1.28)

FIGURE 1.9: Differents possible topological configurations involving a pair
of nodes and a third node.

Graph Kernels in chemoinformatics 29

Although this kernel allows to encode more structural information than
kernels based on linear patterns, it does not encode the similarity involved
by labeling. Therefore, this kernel is limited to unlabeled graphs which corre-
sponds to a limited application domain in chemoinformatics. Indeed, atom’s
chemical elements are an important information and must be taken into ac-
count in order to define an accurate similarity measure.

1.5.3.2 Tree patterns

In order to include molecular graphs labeling into kernel computation, tree
pattern kernel [41, 32] is defined as a kernel based on non linear and labeled
patterns. This method deduces the similarity between two graphs from the
number of their common tree patterns.

Definition 28 (Tree pattern) Let G(V,E) ∈ G. If it exists a node r ∈
V , then r is a tree pattern of G rooted in r and having an height equals to
1. let t1, t2, . . . , tn n tree patterns respectively rooted in r1, r2, . . . , rn, with
ri 6= rj ,∀i 6= j. If (r, r1), (r, r2), . . . , (r, rn) ∈ E, then r(t1, t2, . . . , tn) is a tree
pattern rooted in r. r is defined as the parent of each ri.

Each tree pattern is associated to a dimension in the feature space. Each
dimension encodes the number of tree patterns included within the two graphs
to be compared.

Definition 29 (Neighborhood matching set) Let G = (V,E, µ, ν) and
G′ = (V ′, E′, µ′, ν′) denote two graphs and let us consider two nodes r ∈ V
and s ∈ V ′. Neighborhood matching set Mr,s is defined by:

Mr,s = {R ⊆ Γ(r)× Γ(s) | (∀(a, b), (c, d) ∈ R : a 6= c ∧ b 6= d)∧
(∀(a, b) ∈ R : µ(a) = µ′(b) ∧ ν(r, a) = ν′(s, b))}

(1.29)

Definition 30 (Kernel between tree patterns) Let G = (V,E, µ, ν) and
G′ = (V ′, E′, µ′, ν′) denote two graphs, the kernel value between two tree pat-
terns of height h and rooted in r and s is defined by:

k(r, s, h) = λrλs
∑

R∈Mr,s

∏
(r′,s′)∈R

k(r′, s′, h− 1). (1.30)

For h = 1, k(r, s, 1) is equals to 1 if µ(r) = µ′(s), 0 otherwise.

Kernel value is strictly greater than 0 if the two tree patterns are isomorphic.
Parameters λr and λv are defined as positive real numbers lower than 1 such
that large tree patterns have a low contribution. Tree pattern kernel is then
defined as:

Definition 31 (Tree pattern kernel) Let G = (V,E, µ, ν) ∈ G and G′ =
(V ′, E′, µ′, ν′) ∈ G. Tree pattern kernel for an height h is defined by:

k(G,G′, h) =
∑
r∈V

∑
s∈V ′

k(r, s, h) (1.31)

30 Book title goes here

1

2

3 4

(a) Tree of
size 4

1

2

3 4

1

2

41

1

2

3 1

(b) Tree patterns of size 4 included in (a)

FIGURE 1.10: Difference between tree patterns and trees : graph (a) in-
cludes only one sub tree of size 4 rooted in 1 (itself) but 3 different tree
patterns (b), all rooted in 1.

1.5.3.3 Weisfeiler-Lehman

Weisfeiler-Lehman kernels [47, 45] correspond to graph kernels based on
a subset of tree patterns corresponding to tree structures encoding all nodes
within a given radius. This algorithm, based on Weisfeiler-Lehman isomor-
phism test, allows to compute a kernel based on a sub family of tree patterns
with a linear complexity according to the number of nodes of both graphs.
It thus provides faster computational times than the tree pattern kernel (sec-
tion 1.5.3.2). Moreover, Weisfeiler-Lehman kernels computes an explicit repre-
sentation of the feature space associated to kernels. This explicit enumeration
allows to perform pattern enumeration only N times where N is the size of
the training set. Using an implicit enumeration, pattern enumeration has to
be performed for each pair of graph, i.e. N2 times.

One has to notice that tree patterns differ from trees (figure 1.10). Similarly
to the difference between paths and walks, a sub tree pattern may include a
same node twice. Therefore, information encoded by tree patterns may also be
altered by tottering (section 1.5.2.2). However, graph transformation proposed
by Mahé and al. to prevent tottering in random walks kernel can also be
applied to kernels based on tree patterns.

1.5.3.4 Graph fragments

Graph fragment kernel [55] corresponds to a kernel based on a set of pat-
terns defined as all connected sub graphs having at most l edges. This set of
subgraphs, denoted GF , can be divided into different subsets:

• PF (Path Fragments): encodes all linear patterns;

• TF (Tree Fragments): encodes all sub trees having at least one node v
such that d(v) ≥ 2.

Graph Kernels in chemoinformatics 31

G0 G1 G3

G12

G2

G5G4 G7

G8

G6

G9
G10 G11

G13

FIGURE 1.11: Set of treelet’s structures

• AF (Acyclic Fragments) is defined as AF = TF ∪ PF which thus cor-
responds to all sub trees.

• The fourth sub set corresponds to the set difference GF \AF . This sub
set encodes all sub graphs containing at least one cycle.

This set of patterns defines the feature space associated to this kernel where
each coordinate Φi(G) encodes either the absence/presence or the number of
occurrences of a given sub graph in G. A molecular graph G is thus encoded by
a vector Φ(G) = {Φ1(G), . . . ,Φd(G)}, where d encodes the number of different
patterns enumerated for a given length l. The kernel between two graphs G
and G′ is then defined as a Min-Max kernel [40] between the two vectors Φ(G)
and Φ(G′).

This method, based on an exhaustive enumeration of all sub graphs, relies
to compute the complete graph kernel for a l big enough (section 1.5.1). Since
this problem is a NP-hard problem and thus not feasible for large graphs,
graph fragment is generally defined for l = 7 in order to obtain reasonable
computational times. Moreover, no significant accuracy gain is observed for
length l ≥ 5.

1.5.3.5 Treelets

Conversely to methods based on tree patterns, treelet kernel [16] uses a
bags of patterns defined as a sub set of strict sub trees, called treelets. Treelets
are defined as the set of all labeled trees having at most 6 nodes (figure 1.11).
Conversely to methods based on a non limited set of substructures, such as
the tree pattern kernel, considering a set of predefined structures allows to
define an efficient ad hoc linear enumeration. This enumeration is performed
in two steps:

The first step consists to identify treelet’s structure in a graph. This step

32 Book title goes here

is based on the method used to enumerate connected graphlets [46] (sec-
tion 1.5.3.1). Graphlet enumeration method is extended to enumerate tree
structures up to 6 nodes while keeping a linear complexity when considering
degree bounded graphs. This first step allows to associate a structure index
(G0, . . . , G13) (figure 1.11) to each treelet.

The second step consists to encode the labels of each instance of treelet
found within a graph. This step is based on a tree traversal of each instance
of treelet based on Morgan algorithm [35]. This traversal provides a string
which, as shown in [16], identifies the label of each node and each edge of a
treelet given the index of its structure. Note that, since the size of treelet’s
structure is bounded, the computation of the string encoding treelet’s labels
is performed in constant time. This last point is an important advantage
over alternative encodings used for example by frequent subgraphs or graph
fragments methods [10].

The concatenation of treelet’s index and treelet’s key defines an unique
code for each treelet which allows to perform an explicit enumeration of all
treelets composing a graph. Based on this enumeration, we define a function
f which associates to each graph G a vector f(G) whose components encode
the number of occurrences of each treelet t found in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(t j G)| (1.32)

where T (G) denotes the set of treelets extracted from G and j the sub graph
isomorphism relationship. Then, similarity between treelet distributions is
computed using a sum of sub kernels between treelet’s frequencies:

kT (G,G′) =
∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (1.33)

where k(., .) defines any positive definite kernel between real numbers such
as linear kernel, gaussian kernel or intersection kernel. Note that, conversely
to tree pattern kernel (section 1.5.3.2), this kernel explicitly enumerates sub
trees by computing the number of occurrences of each pattern.

1.5.4 3D pattern kernel

Three-dimensional molecular information may be an important and useful
information for some chemoinformatics problems such as docking or optical
angle rotation. Among the few existing kernels including such information,
3D pharmacophore kernel [30] encodes a set of patterns corresponding to
triplets of distinct atoms. Each pattern can thus be understood as a potential
pharmacophore and encodes euclidean distances between each pair of nodes
included within a corresponding triplet. These distances are measured on the
most stable 3D conformation of a molecule. Pharmacophore kernel is defined
as a convolution kernel based on a kernel kP defined on atom triplets. This
last kernel is defined as a combination of two kernels:

Graph Kernels in chemoinformatics 33

• A first kernel which compares nodes labels of the two triplets to be
compared;

• a second kernel which encodes spatial information by comparing dis-
tances between atoms by means of gaussian kernels. More formally, if
p = (xi)i={1,...,3} and p′ = (x′i)i={1,...,3} are two atom triplets. This
kernel is defined as:

kspatial(p, p
′) =

3∏
i=1

kdist(‖xi − xi+1‖, ‖x′i − x′i+1‖) (1.34)

Kernel kdist may be defined as a gaussian kernel and aims to compare
two distances.

This kernel encodes spatial information of molecular compounds and al-
lows to define a relevant similarity measure for chemoinformatics problems
including 3D information. However, distances used in this kernel are relative
to a priori 3D conformations of both molecules while some alternative confor-
mations may better explain the property to predict.

1.5.5 Cyclic pattern kernels

Similarly to 3D information, cyclic information may have a particular influ-
ence on molecular properties since cycles reduce the atom’s degrees of freedom.

1.5.5.1 Cyclic patterns

A first approach consists in defining a kernel based on the set of simple
cycles of a molecular graph (figure 1.12). Considering a graph G, cyclic pattern
kernel [23] is based on a decomposition of G into two sub sets:

• A first subset C(G) corresponding to the set of simple cycles included
within G (figure 1.12);

• and a second subset B(G) defined as the set of bridges of G and corre-
sponding to atoms and edges not included in C(G). B(G) corresponds
thus to a forest.

Considering these two sub sets, cyclic pattern kernel is defined as the sum of
a tree pattern kernel applied on B(G) together with a kernel applied on C(G).
Considering two graphs G and G′, cyclic pattern kernel is thus defined as:

kC(G,G′) = kTP (B(G),B(G′)) + kinter(C(G), C(G′)) (1.35)

where kTP (B(G),B(G′)) corresponds to tree pattern kernel (section 1.5.3.2)
and kinter(C(G), C(G′)) is defined as an intersection kernel which computes

34 Book title goes here

N

N

O

O

O

O

O

O

O

FIGURE 1.12: Decomposition of a molecular graph into its set of simple
cycles.

the number of common cycles in C(G) and C(G′). Similarity between molec-
ular graphs is thus deduced from a sum of two kernels encoding respectively
similarities between their cyclic and acyclic parts.

However, computing the set of simple cycles of a graph is a NP-hard
problem which may however be addressed in chemoinformatics problem since
molecular graphs generally include a low number of simple cycles. In order to
tackle this complexity, cyclic pattern kernel has been defined using the set of
relevant cycles (denoted CR) [22, 54] instead of the set of simple cycles. The
enumeration of relevant cycles can be performed in polynomial time which
reduces kernel computational complexity. Relevant cycles can be understood
as a set of cycles which defines a basis for encoding all cycles included in a
molecular graph (figure 1.13).

Cyclic pattern kernel allows to explicitly encode cyclic similarity into kernel
computation which may provide an accurate similarity measure for chemoin-
formatics problems. However, although this approach allows to catch some
cyclic information, it does not encode relationships between molecular cycles.

1.5.5.2 Relevant cycle graph

In order to encode more cyclic information, relevant cycle relationships
may be encoded using relevant cycle graph [18]. This graph representa-
tion aims to encode adjacency relationships between relevant cycles and
thus to encode the cyclic system of a molecule. This graph is defined as
GC = (CR, ECR , µCR , νCR) where each vertex encodes a relevant cycle and
two vertices are connected by an edge if corresponding cycles share at least

Graph Kernels in chemoinformatics 35

N

N

O

O

O

O

FIGURE 1.13: Decomposition of a molecular graph into its set of relevant
cycles.

one vertex of the initial graph (figure 1.14). Relevant cycle graph labeling
functions are defined as follows:

• µCR(C): Each cycle C is defined by a sequence of edge and vertex labels
encountered during the traversal of C. In order to obtain a sequence in-
variant to cyclic permutations, µCR(C) is defined as the sequence having
the lowest lexicographic order.

• νCR(e): An edge e in GC encodes a path shared by two cycles and cor-
responds to a sequence of edge and node labels. Since such a path may
be traversed from its two extremities, we define νCR(e) as the sequence
of lowest lexicographic order.

In order to compute a cyclic similarity using relevant cycle graphs, treelet
kernel (section 1.5.3.5) may be applied on the set of treelets extracted from
relevant cycle graphs. This kernel is thus defined as follows:

kC(G,G
′) =

∑
tC∈T (GC)∩T (G′

C)

k(fGC (tC), fG′
C
(tC)) (1.36)

Where tC encodes a configuration of adjacent cycles present both in G and
G′.

Then, using cyclic pattern kernel, a kernel based on relevant cycle graph
may be defined as a sum of a kernel encoding acyclic similarity, such as treelet
kernel kT applied on the original molecular graphs, and a kernel kC applied
on their relevant cycle graphs:

k(G,G′) = kT (G,G′) + λkC(G,G
′) (1.37)

where λ ∈ R+ allows to weight the contribution of cyclic kernel.

36 Book title goes here

N

N

O

O

O

FIGURE 1.14: Relevant cycle graph computed from a molecular graph.

This kernel allows to take into account more cyclic information since, con-
versely to cyclic pattern kernel, relationships between relevant cycles are en-
coded in the relevant cycle graph. However, such as cyclic pattern kernel,
global similarity measure is based on a sum which splits cyclic information
and acyclic information. This last point constitutes a drawback since within
the chemoinformatics framework, relationships between a cycle and its sub-
stituents may have an influence on molecular properties and must be encoding
in kernel definition.

1.5.5.3 Relevant cycle hypergraph

Relevant cycle hypergraph [17] (figure 1.15) corresponds to an oriented hy-
pergraph representation [3, 12] which allows to encode both cyclic and acyclic
informations into a single representation. This molecular representation is
based on relevant cycle graph which encodes molecular cyclic systems. Rele-
vant cycle graph may be augmented by adding acyclic parts in order to obtain
the relevant cycle hypergraph. Given a graph G = (V,E, µ, ν) , its correspond-
ing relevant cycle hypergraph HRC(G) = (VRC , ERC) is defined as follows:

• The set of nodes VRC is defined as an union of two subsets:

1. A first subset corresponding to the set of relevant cycles,

2. and a second subset corresponding to the set of atoms not included
within a cycle of G.

All atoms of the original molecular graph are thus encoded in the rel-
evant cycle hypergraph either by a vertex encoding a cycle or by the
atom itself. In the same way as for vertices,

• the set of hyperedges ERC is composed of two subsets:

Graph Kernels in chemoinformatics 37

N

S

S

C

O

(a) Cyclic molecular graph.

N

S

S

C

O

(b) Relevant cycle hypergraph

representation of (a).

FIGURE 1.15: Relevant cycle hypergraph representation of a molecule. We
can note that hyperedge (in dashed green) encodes an adjacency between
oxygen atom in one hand and two cycles in the other hand.

1. A set of edges composed of:

– edges between relevant cycle vertices, corresponding to the set
of edges of the relevant cycle graph,

– edges of G which connect two acyclic atoms or connect a single
relevant cycle to another single relevant cycle (C1 and C2 in
figure 1.15) or an acyclic part of G (C1 and S in figure 1.15),

2. and a set of hyperedges which allows to encode special cases where
an edge connects at least two distinct relevant cycles to another
part of the molecule. For example, an hyperedge is required to
encode adjacency relationship between C1 and C2 in one hand and
an oxygen atom on the other hand in figure 1.15.

Similarly to vertices, each atomic bond of a molecular graph is encoded
within its relevant cycle hypergraph. Therefore, a relevant cycle hyper-
graph encodes all information of a molecular graph.

Considering such a new hypergraph representation, similarity must be
computed using an hypergraph kernel. In order to encode local relationships
between cycles and substituents, treelet kernel has been adapted [17] to enu-
merate treelets included in relevant cycle hypergraphs. This kernel defines a
similarity based both on an enumeration of relevant cycles of both graphs
(pattern G0 in figure 1.11) and on an enumeration of more complex treelets
encoding relationships between cycles and relationships between cyclic and
acyclic parts of a molecule.

38 Book title goes here

1.5.6 Pattern Weighting

Considering graph kernels based on bags on patterns, it may be interesting
to weight each pattern according to its influence for a given property. Similarly
to the notion of pharmacophore, some patterns may have a particular influence
whereas some do not encode any information about the property to predict.
Considering a kernel defined as a sum of sub kernels, where each sub kernel
encodes a similarity according to a given pattern p ∈ P, pattern weighting
relies on computing a weight for each term of the sum. The weighted kernel
is defined as:

kweight(x, x
′) =

∑
p∈P

w(p) ∗ kp(x, x′) (1.38)

where w : P → R+ encodes the influence of each pattern: an high value
w(p) encodes an high influence of pattern p and thus corresponds to an high
contribution to the similarity measure. Conversely, a w(p) close to or equals to
0 consists in removing the contribution of pattern p to the similarity measure.

1.5.6.1 A priori methods

Tree pattern kernel as defined by Mahé [33] (Section 1.5.3.2) includes a
tree pattern weighting. This kernel is defined on the same feature space than
the original kernel but includes a weighting of each pattern:

Definition 32 (Weighted tree pattern kernel) Let us consider two graphs
G = (V,E) ∈ G and G′ = (V ′, E′) ∈ G together with the set of tree patterns
of size h : Th a counting function of tree patterns: φt : G → N and a weighing
function: w : Th → R+. The weighted tree pattern kernel is defined by:

kh(G,G′) =
∑
t∈Th

w(t)φt(G)φt(G
′). (1.39)

This tree pattern kernel definition corresponds to an adaptation of equa-
tion 1.38 to tree pattern kernel. Two weighting functions based on structural
information included in tree patterns have been proposed [33].

1.5.6.2 Branching cardinality

The first one is based on branching cardinality. Branching cardinality is
defined as the number of leaves −1. Given a tree pattern t = (V,E), branching
cardinality is defined by:

branch(t) =
∑
v∈V

1(Γ(v) = 1)− 1 (1.40)

where 1(x) is equals to 1 if x is true. Weighting function is then defined by:

wbranch(t) = λbranch(t) (1.41)

where λ ∈ R∗+. This weighting function aims to favor linear patterns if λ < 1.
Conversely, structurally complex patterns will be favored if λ > 1.

Graph Kernels in chemoinformatics 39

1.5.6.3 Ratio depth/size

The second weighting function is based on a ratio between the height and
size of a tree pattern. For a given tree pattern t = (V,E) rooted in r ∈ V , the
size-based weighting function is defined by:

wsize(t) = λ|V |−h (1.42)

Similarly to section 1.5.6.2, λ < 1 favors tree patterns having similar sizes
and heights, which correspond to linear patterns. Conversely, λ > 1 favor
more structurally complex tree patterns.

These two weighting functions allow to weight tree pattern influence ac-
cording to their structural information. Parameter λ must be tuned using a
priori chemical knowledge or cross validation. However, this weighting frame-
work does not allow to weight specifically each tree pattern according to a
property to predict.

1.5.6.4 Multiple kernel learning

Considering a pattern weighting problem as defined in equation 1.38, Mul-
tiple Kernel Learning (MKL) aims to compute an optimal weighting function
w according to a given dataset. Considering a finite set of m patterns, weight-
ing function w is encoded by a vector d ∈ Rm+ where each coordinate di encodes
a weight associated to a pattern. The weighted kernel is then defined as:

kMKL(x, x′) =

m∑
i=1

di ∗ ki(x, x′) (1.43)

Multiple kernel learning methods consist in computing an optimal vector d
according to a prediction task.

1.5.6.5 Simple MKL

Simple MKL [39] consists in optimizing problems addressed by SVM (sec-
tion 1.4.4.1) by computing an optimal weighting. Considering a kernel as de-
fined in equation 1.43, simple MKL consists in solving:

minimize
d

J(d) such that

{∑m
i=1 di = 1

di > 0, ∀i ∈ {1, . . . ,m}
(1.44)

with

J(d) =


min
w,b,ξ

1
2‖w‖

2 + C
∑n
i=1 ξi

subject to: yi(〈w, x〉+ b) ≥ 1− ξi,∀i ∈ {1, . . . , n}
ξi ≥ 0, ∀i ∈ {1, . . . , n}

(1.45)

This minimization problem includes a constraint on the L1 norm of vector d
which induces sparsity on vector d. This sparsity allows to keep only most rel-
evant patterns into kernel computation and to remove irrelevant ones. Simple

40 Book title goes here

MKL problem is resolved by alternating a classical SVM resolution together
with a projected gradient descent according to vector d. This projected gradi-
ent step allows to minimize objective function while ensuring that constraints
on vector d are fulfilled. Since problem defined in equation 1.44 is convex,
iterating these two steps leads to the optimal vector d.

1.5.6.6 Generalized MKL

In order to allow more flexibility on sparsity constraint, generalized
MKL [52] defines an objective function which includes a Tikhonov regular-
ization on vector d instead of an equality constraint in simple MKL. Corre-
sponding minimization problem is defined as:

minimize
d

J(d) such that di > 0, ∀ i ∈ {1, . . . ,m} (1.46)

with

J(d) =


min
w,b,ξ

1
2‖w‖

2 + C
∑n
i=1 ξi + σ‖d‖1

subject to : yi(〈w, x〉+ b) ≥ 1− ξi,∀i ∈ {1, . . . , n}
ξi ≥ 0, ∀i ∈ {1, . . . , n}

(1.47)

Parameter σ allows to weight the influence of L1 norm regularization into
the minimization problem. An high σ favors vector d having a low L1 norm
and thus sparse vectors. Conversely, a low σ relaxes sparsity constraint. The
method used to resolve this problem is closely similar to the one proposed
to solve simple MKL method. The main difference is that the gradient is no
longer projected on simplex since equality constraint no longer exists.

1.5.6.7 Infinite MKL

In order to be able to deal with thousands of patterns, one have to either
compute each gram matrix for each sub kernel at each iteration or store each
gram matrix. When considering thousands of patterns and graphs, these two
options induce too much computational time or memory space to be appli-
cable. In order to be able to handle such datasets, infinite MKL [57] defines
a MKL method based on Simple MKL which only considers a sub set of sub
kernels at each iteration.

This method only performs optimization using a sub set of active kernels,
that is to say kernels having a weight di strictly greater than 0. At the end
of each Simple MKL optimization, active kernel set is updated by removing
kernels having a null weight and potentially active kernels are added to the set
of active kernels. Potentially active kernels may be determined using an oracle
based on KKT conditions and gradients associated to each sub kernel [57].

This approach allows to consider an high, possibly infinite, number of
sub kernels and allows to select most relevant ones according to a particular
property to predict.

Graph Kernels in chemoinformatics 41

TABLE 1.2: Boiling point prediction on acyclic molecule dataset
using 90% of the dataset as train set and remaining 10% as test set.
Execution times are displayed in seconds.

Method RMSE(◦C) Gram matrix (s)

learning prediction

(1) Edit Distance 10.27 1.35 0.05
(2) Graph embedding 10.19 2.74 0.01
(3) Path kernel 12.24 7.83 0.18
(4) Random walks kernel 18.72 19.10 0.57
(5) Tree pattern kernel 11.02 4.98 0.03
(6) Treelet kernel 8.10 0.07 0.01
(7) Treelet kernel with MKL 5.24 70 0.01

1.6 Experiments

Differents kernels presented in section 1.5 have been tested on several
chemoinformatics datasets. These datasets are divided in regression and clas-
sification problems1

1.6.1 Boiling point prediction

The first prediction problem used to test different methods is based on a
dataset composed of 185 acyclic molecules [7]. This prediction problem con-
sists in predicting boiling point of molecules. Table 1.2 shows prediction ability
of different methods together with execution times. The first line of table 1.2
shows results obtained by a gaussian kernel applied on approximate edit dis-
tance (section 1.2.3.1). Note that since graph edit distance does not define
an euclidean distance, Gram matrix is regularized in order to be semi-definite
positive. The second line corresponds to the embedding method described in
section 1.3.1. We can first note that methods based on edit distance obtains
intermediate results on this dataset. These results may be due either to the
approximation of edit distance or the loss of information induced by regu-
larization or embedding. Next lines correspond to graph kernels defined in
section 1.5.3. Line 3 corresponds to a kernel based on paths (section 1.5.2.3)
and line 4 corresponds to a random walks kernel (section 1.5.2.1). These two
kernels suffer from the low expressiveness of linear patterns and we can note
that tottering phenomenon degrades prediction accuracy. Finally the third
last lines correspond to kernels based on non linear patterns. As we can see
line 7, best results are obtained thanks to the combination of multiple ker-
nel learning (section 1.5.6.4) which allows to only consider relevant patterns.

1All these dataset are available on the IAPR TC15 Web page: https://iapr-
tc15.greyc.fr/links.html

42 Book title goes here

TABLE 1.3: Results on AIDS dataset.

Method Classification Accuracy

(1) KNN using graph edit distance 97.3%
(2) Graph embedding 98.2%
(3) Edit distance 99.7%
(4) Path kernel 98.5%
(5) Random walks kernel 98.5%
(6) Treelet kernel 99.1%
(7) Treelet kernel with MKL 99.7%

Execution times show that explicit enumeration of treelets allows to compute
Gram matrix in less time than tree pattern kernel or random walks kernels.
Conversely, pattern weighting allows to define a more accurate similarity mea-
sure while requiring the highest computational time. Note that prediction time
is not altered since weighting is only computed during learning step.

This first experiment highlights the gain obtained by using non linear
patterns instead of linear patterns. Moreover, pattern weighting step allows
to greatly increase prediction accuracy by removing irrelevant patterns from
similarity measure computation. This weighting step allows to get best results
among tested methods

1.6.2 Classification

The two next experiments correspond to binary classification problems
which consist in predicting if a molecule has a particular activity or not.

1.6.2.1 AIDS dataset

First classification experiment has been performed on a graph database
provided by [43]. This dataset, defined from the AIDS Antiviral Screen
Database of Active Compounds, is composed of 2000 chemical compounds
some of them being disconnected. These chemical compounds have been
screened as active or inactive against HIV and they are split into three sub
sets:

• A train set composed of 250 compounds used to train SVM;

• a validation set composed of 250 compounds used to find parameters set
giving the best accuracy result;

• A test set composed of the remaining 1500 compounds used to test the
classification model.

This dataset is composed of a large set of different chemical compounds
including both cyclic and acyclic molecules and composed of several het-
eroatoms.

Graph Kernels in chemoinformatics 43

Table 1.3 shows results obtained by different methods on this dataset. First
line of table 1.3 corresponds to a classifier defined as a k-nearest neighbors
algorithm using approximate graph edit distance. Line 2 corresponds to a
graph embedding as described section 1.3.1 and line 3 corresponds to a gaus-
sian kernel applied on graph edit distance and regularized. We can first note
that the use of k-nearest neighbors or graph embedding approach does not
lead to good results on this dataset. Conversely, gaussian kernel on edit dis-
tance (table 1.3, line 4) combined with SVM obtains the best results on this
dataset. Note that the regularization added to Gram matrix does not alter
prediction accuracy. This may be explained by the fact that classification re-
sults may not be altered by a reasonable distortion of the graph edit distance
induced by the regularization step. Conversely regression problems which con-
sists in predicting a real value instead of a binary class may be altered by any
modification of the initial distance. Next lines correspond to kernels using dif-
ferents bags of patterns. Kernels corresponding to line 4 and line 5 are based
on linear patterns (section 1.5.2). As seen in regression experiment, the low
expressiveness of kernels based on linear patterns leads to poor results on this
dataset. Conversely, methods based on non linear patterns (lines 6 and 7) ob-
tain better results since they encode more structural information than kernels
based on linear patterns. Moreover, as observed in regression experiment, mul-
tiple kernel learning step allows to reach the best results on this classification
problem. Note that structures having biggest weights can be assimilated to
pharmacophores. These relevant patterns according to MKL may be analyzed
by chemical experts.

This experiment confirms the conclusions drawn in section 1.6.1 on a re-
gression problem with only acyclic molecules.

1.6.2.2 PTC dataset

The second classification experiment is a classification problem taken from
the Predictive Toxicity Challenge [50] which aims to predict carcinogenicity
of chemical compounds applied to female (F) and male (M) rats (R) and mice
(M). This experiment is based on ten different datasets, each of them being
composed of one train set and one test set. Table 1.4 shows the number of
correctly classified molecules over the ten test sets for each method and for
each class of animal.

Table 1.4 shows results obtained by different kernels encoding cyclic in-
formation in different ways. The first line of this table corresponds to treelet
kernel which does not encode any cyclic information since it is only based on
acyclic patterns. Lines 2 to 4 correspond to methods encoding different levels
of cyclic information. Line 2 corresponds to cyclic pattern kernel which sim-
ply compares common cycles (section 1.5.5.1). Line 3 corresponds to a treelet
kernel applied on relevant cycle graph (section 1.5.5.2) which encodes cycle
relationships. Line 4 corresponds to results obtained by treelet kernel adapted
to relevant cycle hypergraph (section 1.5.5.3) comparison [17]. First, we can

44 Book title goes here

TABLE 1.4: Classification accuracy on PTC dataset.

Method # correct predictions

MM FM MR FR

(1) Treelet kernel (TK) 208 205 209 212
(2) Cyclic pattern kernel 209 207 202 228
(3) TK on relevant cycle graph 211 210 203 232
(4) TK on relevant cycle hypergraph (TCH) 217 224 207 233

(5) TK + MKL 217 224 223 250
(6) TC + MKL 216 213 212 237
(7) TCH + MKL 225 229 215 239

(8) TK + λTCH 225 230 224 252

note that best results are obtained by kernel encoding both cyclic and acyclic
relationships which validates the relevance of including cyclic information, and
more particularly adjacency relationships between cyclic and acyclic parts of
a molecule.

Then, lines 5 to 7 correspond to different kernels combined with multiple
kernel learning. This weighting step shows that kernel based on cyclic infor-
mation obtains best results on two datasets over four (line 7, datasets MM and
FM) and kernel only based on acyclic patterns obtains best results over the
two others datasets (line 5, datasets MR and FR). Note that pattern weighting
step allows us to reduce the number of patterns included within kernel compu-
tation from about 3500 to 150, depending on dataset. Finally, since differents
kernels obtain best results over the four datasets, weighted combination of
kernel encoding cyclic information and a kernel encoding acyclic information
leads to the best results on this dataset (line 8). This combination shows the
flexibility of kernel approaches by means of multiple kernel learning and linear
combinations of kernels.

1.7 Conclusion

Graph kernel framework allows to define scalar products between implicit
or explicit vectorial representations of graphs in a given feature space. On one
hand, conversely to methods based on graph theory, graph kernels can be used
in well known and widely used machine learning methods such as SVM. On the
other hand, exemption of an explicit vectorial representation allows to encode
more information than methods based on an explicit and fixed size vectorial
representation. This characteristic allows to define accurate graph similarity
measures which encode most of structural and labeling information encoded by

Graph Kernels in chemoinformatics 45

molecular graphs. Therefore, graph kernels allow to combine efficient machine
learning methods with accurate and expressive similarity measures.

Defining a graph kernel consists in defining a graph similarity measure
which encodes a maximum of useful information and which fulfills all prop-
erties required to define a positive definite kernel. Kernels based on bags of
patterns deduce molecular graph similarities from similarities of bags of pat-
terns extracted from these graphs. Kernels based on bags of patterns aim to
encode a maximum of information while keeping an efficient computational
time in order to be applicable to datasets encountered in chemoinformatics.
Kernels based on non linear patterns encode more structural information than
kernels based on linear patterns and can be computed in linear time when ap-
plied on molecular graphs. Moreover, some bags of patterns are defined such
as they explicitly encode cyclic information into similarity measure. This in-
formation is particularly useful in chemoinformatics since molecular cycles
have a great influence on molecular properties. Among kernels based on bags
of patterns, relevant cycle hypergraph encodes both acyclic and cyclic parts
and their relationships into a single representation which allows to explicitly
encode adjacency relationships between a cycle and its substituents.

Kernel theory allows to define a kernel from a linear combination of sub
kernels. Considering kernels based on bags of patterns, each sub kernel may
be defined as a kernel encoding a molecular similarity according to a particu-
lar pattern. From this point of view, multiple kernel learning methods allow
to compute an optimal weight for each sub kernel according to a property to
predict. This weight corresponds to the contribution of each pattern to kernel
computation and may be understood as a measure of the influence of each
pattern. On one hand, this weighting step allows to increase accuracy of pre-
diction models by removing irrelevant patterns from the kernel computation.
On the other hand, patterns corresponding to high weights may be seen as
pharmacophores. These pharmacophores obtained without a priori chemical
knowledge may be analyzed by chemical experts to understand some chemical
or biological properties.

In conclusion, graph kernels provide an useful framework which may obtain
accurate prediction results by combining expressive similarity measures and
powerful machine learning methods.

Bibliography

[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the Amer-
ican Mathematical Society, 68(3):337–404, 1950.

[2] C. Berg, J.P.R. Christensen, and P. Ressel. Harmonic Analysis on Semi-
groups: Theory of Positive Definite and Related Functions. Applied Math-
ematical Sciences. Springer-Verlag, 1984.

[3] C. Berge. Graphs and hypergraphs, volume 6. Elsevier, 1976.

[4] K.M. Borgwardt and H. Kriegel. Shortest-Path kernels on graphs. Fifth
IEEE International Conference on Data Mining (ICDM’05), pages 74–
81, 2005.

[5] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 144–152. ACM, 1992.

[6] T. Caelli and S. Kosinov. An eigenspace projection clustering method
for inexact graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26:515–519, 2004.

[7] D. Cherqaoui, D. Villemin, A. Mesbah, J. M. Cense, and V. Kvasnicka.
Use of a Neural Network to Determine the Normal Boiling Points of
Acyclic Ethers, Peroxides, Acetals and their Sulfur Analogues. J. Chem.
Soc. Faraday Trans., 90:2015–2019, 1994a.

[8] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, September 1995.

[9] J. Dattorro. Convex optimization & Euclidean distance geometry. Meboo
Publishing USA, 2005.

[10] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-
based approaches for classifying chemical compounds. In Proceedings of
the Third IEEE International Conference on Data Mining, ICDM ’03,
pages 35–, Washington, DC, USA, 2003. IEEE Computer Society.

[11] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Sup-
port vector regression machines. Advances in neural information process-
ing systems, pages 155–161, 1997.

47

48 Book title goes here

[12] A. Ducournau. Hypergraphes: clustering, réduction et marches aléatoires
orientées pour la segmentation d’images et de vidéo. PhD thesis, École
Nationale d’Ingénieurs de Saint-Étienne., 2012.

[13] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345,
June 1962.

[14] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness
results and efficient alternatives. In Proceedings of the 16th Annual Con-
ference on Computational Learning Theory and the 7th Kernel Workshop,
2003.

[15] J. Gasteiger, editor. Handbook of Chemoinformatics. Wiley-VCH, 1.
edition, 2003.

[16] B. Gaüzère, L. Brun, and D. Villemin. Two New Graphs Kernels in
Chemoinformatics. Pattern Recognition Letters, 33(15):2038–2047, 2012.

[17] B. Gaüzére, L. Brun, and D. Villemin. Relevant cycle hypergraph rep-
resentation for molecules. In W. G. Kropatsch, N. M. Artner, Y. Hax-
himusa, and X. Jiang, editors, Graph-Based Representations in Pattern
Recognition, volume 7877 of Lecture Notes in Computer Science, pages
111–120. Springer Berlin Heidelberg, 2013.

[18] B. Gaüzére, L. Brun, D. Villemin, and M. Brun. Graph kernels based
on relevant patterns and cycle information for chemoinformatics. In Pro-
ceedings of ICPR 2012, pages 1775–1778. IAPR, IEEE, November 2012.

[19] J. Gibert, E. Valveny, and H. Bunke. Graph embedding in vector spaces
by node attribute statistics. Pattern Recognition, 45(9):3072–3083, 2012.

[20] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100–107, 1968.

[21] D. Haussler. Convolution kernels on discrete structures. Technical report,
University of California at Santa Cruz, 1999.

[22] T. Horváth. Cyclic pattern kernels revisited. In Springer-Verlag, editor,
Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery
and Data Mining, volume 3518, pages 791 – 801, 2005.

[23] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for pre-
dictive graph mining. In Proceedings of the 2004 ACM SIGKDD inter-
national conference on Knowledge discovery and data mining - KDD ’04,
page 158. ACM Press, 2004.

[24] M. A. Johnson and G. M. Maggiora, editors. Concepts and Applications
of Molecular Similarity. Wiley, 1990.

Graph Kernels in chemoinformatics 49

[25] S. Jouili and S. Tabbone. Graph embedding using constant shift embed-
ding. In Proceedings of the 20th International conference on Recognizing
patterns in signals, speech, images, and videos, ICPR’10, pages 83–92,
Berlin, Heidelberg, 2010. Springer-Verlag.

[26] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
labeled graphs. In International Conference on Machine Learning, vol-
ume 3, pages 321–328, 2003.

[27] B. Luo, R. C. Wilson, and E. Hancock. A spectral approach to learning
structural variations in graphs. Pattern Recognition, 39(6):1188–1198,
2006.

[28] B. Luo, R. C. Wilson, and E. R. Hancock. Spectral embedding of graphs.
Pattern Recognition, 36(10):2213 – 2230, 2003.

[29] M. M. Luqman, J.-Y. Ramel, J. Lladós, and T. Brouard. Fuzzy multilevel
graph embedding. Pattern Recognition, 46(2):551–565, 2013.

[30] P. Mahé, L. Ralaivola, V. Stoven, and J.-P. Vert. The pharmacophore
kernel for virtual screening with support vector machines. Journal of
chemical information and modeling, 46(5):2003–14, 2006.

[31] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of
marginalized graph kernels. In Twenty-first international conference on
Machine learning - ICML ’04, page 70. ACM Press, 2004.

[32] P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for
molecules. Machine Learning, 75(1):3–35, October 2008.

[33] P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for
molecules. Machine Learning, 75(1)(September 2008):3–35, 2009.

[34] J. Mercer. Functions of Positive and Negative Type, and Their Con-
nection with the Theory of Integral Equations. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 83(559):69–
70, November 1909.

[35] H. L. Morgan. The generation of a unique machine description for chem-
ical structures-a technique developed at chemical abstracts service. J. of
Chem. Doc., 5(2):107–113, 1965.

[36] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–
38, 1957.

[37] M. Neuhaus and H. Bunke. Bridging the Gap Between Graph Edit Dis-
tance and Kernel Machines. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2007.

50 Book title goes here

[38] G. Poezevara, B. Cuissart, and B. Crémilleux. Discovering emerging
graph patterns from chemicals. In Proceedings of the 18th International
Symposium on Methodologies for Intelligent Systems (ISMIS 2009), pages
45–55, Prague, 2009. LNCS.

[39] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL.
Journal of Machine Learning Research, 9:2491–2521, 2008.

[40] L. Ralaivola, S. J Swamidass, H. Saigo, and P. Baldi. Graph kernels
for chemical informatics. Neural networks : the official journal of the
International Neural Network Society, 18(8):1093–1110, October 2005.

[41] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels.
In First International Workshop on Mining Graphs, Trees and Sequences,
pages 65–74, 2003.

[42] K. Riesen. Classification and Clustering of Vector Space Embedded
Graphs. PhD thesis, Institut für Informatik und angewandte Mathematik
Universität Bern, 2009.

[43] K. Riesen and H. Bunke. Iam graph database repository for graph based
pattern recognition and machine learning. In Proceedings of the 2008
Joint IAPR International Workshop on Structural, Syntactic, and Sta-
tistical Pattern Recognition, SSPR & SPR ’08, pages 287–297, Berlin,
Heidelberg, 2008. Springer-Verlag.

[44] K. Riesen and H. Bunke. Approximate graph edit distance computation
by means of bipartite graph matching. Image and Vision Computing,
27(7):950–959, 2009.

[45] N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs.
In Advances in Neural Information Processing Systems, pages 1660–1668,
2009.

[46] N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and
S. Viswanathan. Efficient graphlet kernels for large graph comparison. In
International Conference on Artificial Intelligence and Statistics, pages
488–495, 2009.

[47] N. Shervaszide. Scalable Graph Kernels. PhD thesis, Universität
Tübingen, 2012.

[48] N. Sidere, P. Héroux, and J.-Y. Ramel. Vector representation of graphs:
Application to the classification of symbols and letters. In ICDAR, pages
681–685. IEEE Computer Society, 2009.

[49] R. Todeschini and V. Consonni. Molecular Descriptors for Chemoinfor-
matics, volume 41. WILEY-VCH, Weinheim (Allemagne), 2009.

Graph Kernels in chemoinformatics 51

[50] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statis-
tical evaluation of the predictive toxicology challenge 2000-2001. Bioin-
formatics, 19(10):1183–1193, 2003.

[51] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[52] M. Varma and D. Ray. Learning the discriminative power-invariance
trade-off. In IEEE 11th International Conference on Computer Vision,
2007 (ICCV 2007), pages 1–8. IEEE, 2007.

[53] S.V.N. Vishwanathan, K.M. Borgwardt, and N.N. Schraudolph. Fast
computation of graph kernels. Advances in Neural Information Processing
Systems, 19:1449, 2007.

[54] P. Vismara. Union of all the minimum cycle bases of a graph. The
Electronic Journal of Combinatorics, 4(1):73–87, 1997.

[55] N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces
for chemical compound retrieval and classification. Knowledge and In-
formation Systems, 14(3):347–375, 2008.

[56] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining,
ICDM ’02, pages 721–, Washington, DC, USA, 2002. IEEE Computer
Society.

[57] F. Yger and A. Rakotomamonjy. Wavelet kernel learning. Pattern Recog-
nition, 44(10):2614–2629, 2011.

