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Darmstadt, Germany
3LEM3-UMR 7239 CNRS, Arts et Métiers ParisTech Metz-Lorraine, Metz, France

Size effects in a system composed of a polymer matrix with a single silica nanoparticle are studied using molecular dynamics and surface-en-
hanced continuum approaches. The dependence of the composite’s mechanical properties on the nanoparticle’s radius was examined. Mean
values of the elastic moduli obtained using molecular dynamics were found to be lower than those of the polystyrene matrix alone. The sur-
face-enhanced continuum theory produced a satisfactory fit of macroscopic stresses developing during relaxation due to the interface tension
and uniaxial deformation. Neither analytical nor finite-element solutions correlated well with the size-effect in elastic moduli predicted by
the molecular dynamics simulations.

Introduction

Molecular dynamics (MD) simulations have been used exten-
sively to analyse size dependent properties of nanocomposite
(NC) systems (1–8). Such NCs are widely used in industry
due to their attractive mechanical properties. Their behavior,
however, cannot be predicted from mechanical properties of its
components alone. Reliable quantification is only possible if the
significant role of the interphase is taken into account.

Several experimental studies have demonstrated an increase
in NC Young’s modulus with decreasing nanoparticle (NP) size
(9, 10). The same trend has been observed in MD simulations (6,
7, 11). On the other hand, the non-monotonic behavior of elastic
modulus with respect to the mass-fraction of the NP filler was
also reported (12). In some cases, the NC’s elastic moduli are
even lower than those of the matrix (13, 14). From the experimen-
tal perspective, NCs could have inferior mechanical properties
due to the poor dispersion (15).

Fully resolved atomistic or even coarse-grained (CG) MD
simulations of microscale systems are still computationally
expensive. To overcome this limitation several continuum

mechanics (CM) approaches have been developed. One possi-
bility is to introduce an effective interphase (11, 16, 17), which is
based on the observation that the polymer particles in the vicin-
ity of the NP exhibit properties that are distinct from those of the
bulk polymer (1, 2, 8, 13, 14, 18). The width of the interphase
depends on the chosen polymer matrix but may be insensitive to
the NP size (18). For this reason a fixed value is typically assumed
in micromechanical models (17). Given a constant NP volume
fraction, this implies that the volume fraction of the interphase
increases as the size of the NP decreases. This in turn introduces
size-dependence to the solution. Isotropic elastic moduli of the
interphase are usually identified by comparing MD and CM
predictions (14, 17). An alternative approach that introduces size-
effects dates back to works of Gurtin and Murdoch (19) where
surface elasticity theory was introduced. At the boundary of the
domain this theory introduces an independent surface free energy
that depends on the curvature of the manifold, surface deforma-
tion gradient and surface stress. This approach allows different
effects related to surface energy in solids and liquids to be cap-
tured [see (20) and references therein]. This will be referred to as
surface-enhanced continuum (SEC) theory. Its application to NC
systems is the focus of the present contribution. The validation
of the SEC theory as compared to atomistic simulations has been
performed by the authors for a copper plate with a nano hole (21,
22). The basis for such validation is a theoretical link between
the atomistic and the continuum formulation (23–25) that pro-
vides expressions for local continuum fields (velocity, Cauchy
stress, energy) in terms of atomistic quantities. There are also
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analytical approaches to predict effective moduli within the SEC
theory (26–28).

In this contribution we discuss size dependent mechanical
properties of a NC composed of a bare silica NP embedded into
an atactic polystyrene (PS) matrix. Local structural and dynami-
cal properties of such systems have been studied extensively both
in atomistic and coarse-grained resolution (1, 2). While there has
been a number of studies on the mechanical properties of NCs
(6–8), to our best knowledge no work has been conducted using
the MD model employed here for the purpose of studying the
size-effect in mechanical properties. Moreover, often it is only
Young’s modulus (3, 8) or elastic constants from unidirectional
and hydrostatic loading (7) that are reported for NC systems.
Marcadon et al. (17) performed three tensile tests and three shear
tests for polymer nanocomposites; however only the eqvivalent
isotropic moduli were presented. In a previous study (3), the
Young’s modulus of a silica-PS composite has been reported for
different filling densities. The size effect, however, has not been
studied. In the present work, we determine the complete set of
elastic moduli for NCs.

This contribution serves two purposes. First, we utilize MD
simulations to observe the macroscopic size effects for the con-
sidered NC systems. Several NCs with different NP radii are
considered in order to observe size dependent mechanical prop-
erties. Second, we apply SEC theory to describe the observed
size effect. To the best of our knowledge this has not been previ-
ously documented. In this work, it is hypothesized that the NC’s
volume-fraction needs to be interpreted differently in the con-
text of MD and SEC theories. SEC is proven to be a promising
approach to consider nanoscale problems (20–22, 29–31). For
both the MD and CM simulations we avoid any constraints, such
as making NPs rigid (8).

The paper is organized as follows: The Molecular Dynamics
Methods section provides all details related to the MD sim-
ulations. In the Surface-Enhanced Continuum Theory section
we briefly remind the reader of the fundamentals of SEC the-
ory. The Mean Field Homogenization section provides a brief
introduction to analytical homogenization methods. In the Initial
Configurations in MD and SEC section, we discuss core dif-
ferences between SEC and MD initial configurations for NC
systems. A method to consistently relate the two approaches, as
well as to study size-effects, is proposed. In the final sections,
results are discussed and conclusions are presented.

Molecular Dynamics Methods

The nanocomposites considered in this work consist of a sin-
gle bare silica nanoparticle dispersed in an atactic polystyrene
matrix. Each polymeric chain has a length of 200 monomers
with a molecular weight of 20845 amu. The systems are studied
in the glass state, i.e., below their glass transition tempera-
ture, Tg. Furthermore, we consider two additional systems from
which we extract the bulk mechanical properties of the individ-
ual phases. The first system consists of 300 polystyrene chains
where each chain is 200 monomers long, i.e., they have the same
length as the polymer matrix of the NCs. The second system
is a trigonal α-quártz silica crystal composed of 10125 SiO2

units.

The nanocomposites are represented in a coarse-grained (CG)
formulation. Two different types of CG beads are employed in
the description of the SiO2 units of the nanoparticle which dif-
fer in their coordination number (1). We have so-called core
beads with full coordination as well as surface beads. Similar to
previous studies (1, 3, 32), each styrene monomer is described
by a CG bead where the interaction center is located at the
center-of-mass of the monomer. Two different beads (R and S)
are required to maintain the information on the chirality of a
PS chain. The employed CG force field has been obtained by
Iterative Boltzmann Inversion (33) at 590 K and 101.3 kPa; more
details are given in Ghanbari et al. (1).

Initial configurations of all systems were prepared at the melt
state with a temperature and pressure of 590 K and 101.3 kPa,
respectively. The silica nanoparticle is cut from an α-quartz crys-
tal structure by defining a sphere with radius R∗ and removing
all atoms outside this sphere. The NP, with a mass of Mnp, is
inserted into an empty simulation box. The surrounding polymer
chains, with a total mass of Mp, are distributed by a self-avoiding
random walk method (1). The systems are equilibrated in the
isothermal-isobaric (N,P,T) statistical ensemble for 20 ns. The
Nosé-Hoover thermostat and barostat are employed to control the
temperature and the pressure of the system (34) with coupling
times of 0.2 ps and 5.0 ps. The equations of motion are inte-
grated using the velocity-Verlet scheme (35) with a time step of
0.005 ps. A 1.5 nm cutoff for the summation of the non-bonded
interactions is employed. All MD simulations were performed
using the LAMMPS code (36).

The nanocomposites are cooled down below their Tg in order
to obtain amorphous glass structures. The Tg of pure PS in CG
resolution has been reported to be 170 K (3). The tempera-
ture is decreased with a constant cooling rate of 9.8 K/ns for
50 ns, which is in line with the one employed in a previous
study (3). The systems are allowed to further relax for 5 ns in
the isothermal-isobaric (N, P, T) ensemble once the final temper-
ature of 100 K is reached. The NP radius at the final temperature,
RMD, see Fig. 1(a), differs in general from the initial radius that
has been used to create the nanoparticle, R∗. The length of the
simulation box of a system at the final temperature is denoted by
LMD.

The mechanical properties and the elastic moduli of the
nanocomposites are computed by applying small-strain defor-
mations to the amorphous glass structures without making
the assumption that the materials are isotropic (37). Four
different deformation modes, namely uniaxial tension, uniaxial
deformation, volumetric deformation, and simple shear, are
employed; they are presented schematically in Fig. 2. The
reported elastic moduli are averaged for both positive and neg-
ative strains. A deformation rate of 10 nm/ns was applied in
all cases until a 1% deformation was achieved. After the box
was deformed, the system was allowed to relax for 10 ns1 in
the canonical (N, V, T) ensemble. For uniaxial tension the Nosé-
Hoover barostat was considered in transversal directions. The

1In [5] the authors concluded that NCs might have viscoelastic
behavior. Thus, the averaged stresses and the resulting elastic moduli
could also depend on the chosen relaxation time.
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Fig. 1. (a) Initial configuration of the system for the MD simulations; (b) The continuum solution after relaxation required due to the
introduction of the interface energy; (c) Initial configuration used in the SEC theory. In the absence of the interface energy, the CM system
would have been in a stress free state. � denotes the macroscopic Cauchy stress, Mnp and Mp are masses of NP and PS, respectively; LMD

denotes the representative volume element (RVE) size in the fully relaxed state, whereas L0 and R0 denote the RVE characteristic length
and NP radius in the material configuration of the SEC theory. R′ indicates the NP radius after relaxation due to interface tension. Note,
L0 �= LMD and R′ �= R0, R0 �= RMD, R′ �= RMD.

(a) uniaxial tension (b) uniaxial deformation

(c) volumetric deformation (d) simple shear

Fig. 2. Illustration of different deformation modes considered in
this study. Solid and dashed lines denote initial and deformed
configurations, respectively.

Cauchy stress tensor � is computed on the basis of the atomic
Virial pressure (34), which is recorded for the last 5 ns of the
relaxation period and is sampled every 25 ps. The elastic proper-
ties of the α-quartz silica are obtained at 0 K. They are computed
as the first derivatives of the macroscopic stress with respect to
shear and uniaxial deformation gradients of 1%.

For those moduli that linearly depend on random variables,
the standard deviation can be calculated.2 Note the sum of
two independent random variables with normal distribution X ∼

2For nonlinear cases, the resulting standard deviation of the nor-
mal distribution could be estimated by sampling random variables.
However, in order to keep on figures easy to digest, we did not
indicate results from this approach.

N
(
μx, σ 2

x

)
and X ∼ N

(
μy, σ 2

y

)
has normal distribution X +

Y ∼ N
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x + σ 2
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)
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General anisotropic elastic moduli obtained from uniaxial
deformation and simple shear (in Voight notation) are denoted by
Cij, i, j = 1, 6; the resulting Cij are symmetrised. Thus, the stan-
dard deviation related to off-diagonal components is expected be
higher. Young’s moduli obtained from uniaxial tension in each
direction will be denoted by Ei, i = 1, 3; finally the bulk modu-
lus is denoted by K. Recall that under the assumption of isotropy
any pair of elastic moduli determine all the others. For example,
when expressed in terms of Lamé moduli λ and μ, the elas-
tic moduli read: C12 = C13 = C23 = λ, C44 = C55 = C66 = μ, and
C11 = C22 = C33 = λ + 2μ, and the others are zero. The isotropic
elastic moduli are obtained by a least square fit of (generally
anisotropic) elastic moduli resulting from uniaxial deformation
and shear.

Surface-Enhanced Continuum Theory

This section provides a brief introduction to the SEC theory.
Theoretical and numerical details can be found elsewhere (38,
39).The notation adopted in the present study is explained in
Appendix 1.

Consider a continuum body that takes material (reference)
configuration B0 at time t0, as illustrated in Fig. 1(c). For the
NC systems, the material configuration is defined by the repre-
sentative volume element (RVE) size L0 and the NP radius R0.
At this reference configuration, both NP and PS are considered to
be homogeneous in space with density equal to the bulk phase: ρp

and ρnp, respectively. Consequently, the volume occupied by each
phase is provided by Vp = Mp/ρp and Vnp = Mnp/ρnp, respec-
tively. Thus, mass fraction is constant if and only if the volume
fraction of phases, or equivalently R0/L0, is constant.

The body is mapped to the spatial (current) configuration Bt

at time t > t0 via volume deformation map ϕ = ϕ(X). Material
points in the material and spatial configurations are denoted by X
and x, respectively. The (bulk) deformation gradient is denoted
by F, and maps material line elements of dX ∈ B0 to spatial line
elements dX ∈ Bt via dX = F · dX .



Let S0 and St denote a zero thickness interface in the material
and spatial configurations respectively. The outward unit normal
in the material configurations is denoted by N . Material points
at the interface are denoted X̂ and x̂ in the material and spatial
configurations and are attached to the volume, i.e., X̂ = X |S0 .
Furthermore, it is assumed that the interface is of a material type,
i.e., it remains attached to the body and thus x̂ = x|St .

In ordinary first gradient continuum theory, the bulk free
energy is postulated to be a function of the (bulk) deformation
gradient � = �(F). In the current study, a hyperelastic neo-
Hookean material model is employed. It is parametrised by the
Lamé moduli3 λ and μ as �(F) = 1/

2λ ln2J + 1/
2μ[F : F −

3 − 2 ln J ], where J = det F denotes the (bulk) Jacobian. The
corresponding values for each phase in the NC will be discussed
later.

In the SEC theory the surface free energy �̂ = �̂(F̂) is
introduced, where F̂ denotes the surface deformation gradient.
In the absence of body forces, the quasistatic balances of linear
momentum are given by:

DivP = 0 in B0, (1)

D̂ivP̂ = P · N on S0, (2)

where P = ∂�/∂F and P̂ = ∂�̂/∂F̂ denote the bulk and surface
Piola stress, respectively.

The surface free energy is considered to be of
neo-Hookean hyperelastic type: �̂(F̂) = 1/

2̂λ ln2 Ĵ +
1/

2μ̂
[
F̂ : F̂ − 2 − 2 ln Ĵ

] + γ̂ Ĵ , where Ĵ denotes the surface
Jacobian. The parameter γ̂ accounts for interface tension.

To solve CM problem, the following strategy was employed:
i) rewrite Eq. (1) and Eq. (2) in the weak form; ii) introduce a
finite element basis for bulk and interface displacements; iii) lin-
earize and apply the Newton-Raphson method; and iv) solve the
resulting sparse system of linear algebraic equations. The con-
tinuum formulation is implemented using the open-source finite
element (FE) method library deal.II (40). The current implemen-
tation is an extension of the surface-elasticity code, developed by
McBride et al. (38), to interface problems.

If the interface tension γ̂ is not zero, even in the absence of
macroscopic loading, the material configuration is not in equilib-
rium. In other words, the reference state does not satisfy Eq. (1)
and Eq. (2). The equilibrium configuration is found by solving
Eq. (1) and Eq. (2) under zero boundary conditions. If the size of
the RVE is fixed, for isotropic problems, only the NP radius will
change, but not its shape (Fig. 1b). It is important to note that in
this configuration the macroscopic stresses are not zero. We call
this initial solution step ‘relaxation under interface tension’.

Also note that the surface parameters introduce a length scale
into the boundary value problem; namely, the ratio between sur-
face elastic parameters and bulk has a dimension of length.
Therefore, the solution will be size dependent. This size effect
will be studied by considering different material configurations
where R0/L0 is constant. This implies a constant mass fraction
of the two phases as discussed earlier. In particular, we will focus

3For isotropic materials the Hooke’s law reads σ = 2με + λtr(ε)I ,
where σ is stress, ε is the strain tensor and I is the second order
identity tensor.

on stresses developing due to relaxation under interface tension
as well as macroscopic elastic moduli of the NCs. The latter
are obtained by applying an uniaxial deformation gradient and
assuming isotropic macroscopic behavior.

Mean Field Homogenization

In addition to the FE implementation of the SEC theory, analyt-
ical homogenization strategies are also considered in this work
(Fig. 3). One of the widely used approaches to obtain properties
of a matrix-inclusion composite is the Mori-Tanaka (MT) mean-
field theory (41), which is based on Eshelby’s solution of an inho-
mogeneity in an infinite medium (42). Note that this approach
does not take into account properties of an interface/interphase,
but rather it indicates the limiting values at a length scale where
the size-effect is not pronounced.

Analytical homogenization schemes have been recently
extended to a SEC scenario (28) (Fig. 3a), however the
surface/interface tension is not considered. Results obtained by
this analytical method will be denoted by SECAN.

Finally, it is interesting to apply micro-mechanics mean-
field theories that explicitly consider interphases in the NC (see
Fig. 3b). The relevance of their application is based on the obser-
vation that the polymer particles in the vicinity of the NP exhibit
properties that differ from those of the bulk polymer (1, 2, 8,
13, 14, 18). Therefore, such an interphase is considered to have
distinct elastic properties. For the current study we utilize the
approach proposed in Marcadon et al. (17) and denote its results
by MM. Based on a previous study (1), the interphase thickness
of NC systems is assumed to be 2.0 nm, whereas the NP radius
is assumed to be equal to R0.

In all analytical solutions, isotropic small strain elastic behav-
ior is assumed.

Initial Configurations in MD and SEC

As it is clear from the two preceding sections, MD and SEC con-
sider principally different initial configurations (Fig. 1a and 1c).
In particular, SEC starts from the NC configuration consistent
with the macroscopic case, i.e., the total mass of PS and NP and
their volumes are related by bulk densities. In contrast, in the

Ψp

Ψnp

̂Ψ

(a) interface

Ψp

Ψnp

Ψip

(b) interphase

Fig. 3. RVEs as considered in different analytical homogenization
approaches. In interphase approaches, three phases with different
mechanical properties are considered: NP, bulk PS, and interphase.
In contrast the interface description introduces a free energy associ-
ated with the interface. By � we denote the free energy associated
with the matrix �p, the inclusion �np, the interface �̂, or the
interphase � ip.



Table 1. A summary of NC systems considered in this study to observe the size-effect.

# SiO2 beads R∗ [nm] # PS chains R0 [nm] L0 [nm] LMD [nm] Mnp

Mnp+Mp

4πR3
0

3L3
0

1 1174 2.2 75 2.359 13.190 13.364 0.04584 0.02394
2 1719 2.5 110 2.679 14.991 15.153 0.04577 0.02390
3 2312 2.75 148 2.957 16.549 16.745 0.04575 0.02389
4 3000 3.0 192 3.225 18.050 18.227 0.04576 0.02390
5 4372 3.4 280 3.656 20.469 20.594 0.04573 0.02388
6 7108 4.0 455 4.299 24.065 24.240 0.04576 0.02389

R∗ denotes the trimming radius and LMD denotes the equilibrium length of the simulation domain. Mp and Mnp denote the total mass of PS and NP, respectively.
Finally, L0 and R0 define the NC in the reference CM configuration, where its density is considered to be homogeneous.

MD approach the initial configuration is fully equilibrated and
the densities of each phase are not homogeneously distributed in
space.

Nonetheless, the same mass of each phase should be con-
sidered in both MD and SEC. Thus, knowing Mp and Mnp and
bulk densities ρnp and ρp, from trivial geometrical considerations,
one could obtain the corresponding values for L0 and R0 that
define the domain in the material configuration of the SEC the-
ory (Fig. 1c). This approach is similar to a Gibbs dividing surface
construction (43), which was used by Shenoy (44) to determine
the thickness of the crystalline slab.

Within the MD framework, the NC size-effect is stud-
ied by producing different configurations with R0

/
L0 ≈ const

(Table 1). This implies that the number of chains has to be
adjusted to obtain configurations with close-to-constant mass
fraction Mp

/
Mnp ≈ const. As the length of PS chains is kept

fixed, the total mass of PS varies discretely and thus it is gen-
erally possible to keep the mass-fraction only approximately
constant. However, as it is evident from Table 1, variations
are low.

Following our previous SEC work (21), a single configuration
with a constant mass fraction is chosen (row 4 in Table 1). As the
length scale is introduced to the problem by surface parame-
ters, the size effect is studied by solving the CM equations on
the same mesh while appropriately scaling the surface elastic
parameters.

In order to arrive at comparable configurations for both
approaches, one needs to deform volumetrically the relaxed MD
configuration (Fig. 1a) to attain the same volume as in the mate-
rial continuum configuration (Fig. 1b). This is achieved using the
Nosé-Hoover thermostat coupled with the change of the RVE in
2.5 ns. Comparing LMD and L0 in Table 1, we conclude that the

required volumetric deformation is compressive. At this point
both CM and MD configurations are expected to be fully equiva-
lent with comparable macroscopic quantities such as the Cauchy
stress and elastic moduli.

Note that one could allow the RVE size to relax in the CM
formulation and thus obtain a stress-free configuration. However,
such an approach is inconvenient from the implementation point
of view because the FE approach is displacement driven. In par-
ticular, given the specified boundary conditions Eq. (1) and
Eq. (2) are solved. The resulting macroscopic stress is obtained
as an integral over B0 and S0.

Results and Discussion

Bulk Properties

The initial bulk density of silica in CG representation has been
determined on the basis of the atomic positions in α-quartz
at zero temperature. During equilibration at 100 K we have
observed a 14% reduction in the bulk density relative to the ini-
tial state. In particular, the density of CG silica (2.268 g/cm3)
differs from the density of natural quartz [2.649 g/cm3 (45)]. The
bulk density for PS has been obtained as 1.158 g/cm3 and com-
pares favorably with the findings of a previous CG study (32) in
which a density of 1.020 ± 0.00043 g/cm3 at 300K was reported
(Tables 2 and 3).

Elastic moduli of the bulk PS are reported in Appendix 2.
The isotropic constants obtained by the least-square fit read:
Young’s modulus Ep = 725 MPa, Poisson’s ratio vp = 0.336, bulk
modulus Kp = 736 MPa, Lamé’s first modulus λp = 555 MPa,
shear modulus μp = 271 MPa. The specified values are in a good

Table 2. A summary of the off-diagonal (C12, C13, C23) elastic moduli, as well as the Young’s moduli in each direction (E1, E2, E3) and
the bulk (K) modulus (in MPa) for the NCs and bulk PS (first row) as obtained from MD simulations.

R0 C11 C13 C23 K E1 E2 E3

− 550 ± 27 556 ± 28 564 ± 29 727 ± 9 724 ± 46 712 ± 39 703 ± 42
23.59 488 ± 98 485 ± 95 476 ± 98 650 ± 34 720 ± 140 658 ± 150 694 ± 147
26.79 487 ± 87 516 ± 85 497 ± 81 649 ± 26 663 ± 120 708 ± 123 679 ± 131
29.57 508 ± 73 541 ± 75 514 ± 72 655 ± 23 652 ± 101 656 ± 99 680 ± 103
32.25 511 ± 67 486 ± 65 486 ± 67 642 ± 22 668 ± 95 717 ± 93 673 ± 89
36.56 510 ± 53 493 ± 50 505 ± 51 658 ± 16 685 ± 67 665 ± 72 672 ± 70
42.99 519 ± 44 513 ± 44 534 ± 43 665 ± 13 687 ± 58 694 ± 60 655 ± 56



Table 3. A summary of the diagonal (C11, C22, C33, C44, C55, C66) elastic moduli (in MPa) for the NCs and bulk PS (first row) as
obtained from MD simulations.

R0 C11 C22 C33 C44 C55 C66

− 1102 ± 43 1098 ± 41 1088 ± 40 281 ± 28 259 ± 28 283 ± 26
23.59 990 ± 146 970 ± 136 1031 ± 134 246 ± 97 219 ± 96 253 ± 87
26.79 1039 ± 121 1057 ± 123 993 ± 129 248 ± 75 268 ± 85 248 ± 78
29.57 1002 ± 102 983 ± 107 1002 ± 108 250 ± 61 242 ± 63 238 ± 64
32.25 989 ± 103 963 ± 97 979 ± 80 247 ± 57 261 ± 54 225 ± 51
36.56 991 ± 72 986 ± 79 1030 ± 77 251 ± 48 260 ± 50 256 ± 47
42.99 1019 ± 64 1017 ± 63 1015 ± 61 266 ± 36 261 ± 38 265 ± 43
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Fig. 4. The observed size effect for the nanocomposite system in terms of macroscopic Cauchy stress. (a) corresponds to the configuration
that is common to both SEC and MD (see Fig. 1b). Negative pressure indicates negative interface tension; (b) corresponds to the 1% uniaxial
deformation applied to the state depicted in (a).

agreement with Young’s and bulk moduli obtained from addi-
tional simulations (Table 2). Our results also agrees with the
Young’s modulus of approximately 715 MPa reported in Rahimi
et al. [3, see Figure 8].

Elastic moduli of the bulk CG SiO2 (in Voight notation) are
obtained as4 (in GPa) C11

np = 195.75, C12
np = 71.47, C13

np = 84.20,

C16
np = −17.93, C33

np = 208.21, C44
np = 75.75. Those values are

different from the experimental elastic moduli of α–quartz (in
GPa) C11 = 86.8, C12 = 7.04, C13 = 11.91, C14 = −18.04,
C33 = 105.75, C44 = 58.20 (45). For the comparison between
MD and SEC results, however, this issue is not relevant as long as
bulk properties used in CM simulations are consistent with those
obtained from the MD simulations.

To allow a better comparison of FE-SEC results to analyti-
cal approaches that consider isotropic behavior only, the NP is
described as an isotropic neo-Hookean hyperelastic material with
μnp = 63.72 GPa and λnp = 76.21 GPa. These values are obtained
by the least-square fit of the anisotropic elastic moduli.

Relaxation Under Interface Tension

We focus first on the stress state developed in two scenar-
ios, namely, the configuration relaxed due to interface tension
(Fig. 1b), and its uniaxial deformation of 1%. The results for

4Note the absence of error ranges as the results are obtained at zero
temperature.

MD and SEC approaches are compared in Fig. 4. As is evident
from the MD results, the macroscopic behavior of the system
during relaxation under interface tension is close to isotropic
even though the silica NP has an anisotropic elastic tensor.
In particular, principal components of the resulting macroscopic
stresses developing due to interface tension are nearly the same.
Similarly, the transverse components of stress are almost equal
upon application of uniaxial deformation. This justifies the use
of neo-Hookean models for both interface and NP.

For the SEC model, the three unknown interface

parameters μ̂
/
μnp = 1.1453 nm, λ̂

/
λnp = 3.8306 nm,

and γ̂
/
μnp = −0.5221 nm are obtained by the least square fit

of the MD results. To that end, the Nelder-Mead derivative-free
simplex method (46) provided by Octave (47) was utilized.
To minimize computational costs, only the three highest radii
are considered during optimization and the ratio μ̂

/̂
λ was kept

fixed. The SEC theory provides a satisfactory fit of MD data
(Fig. 4).

Macroscopic Elastic Moduli

The variation of the normalized components of the stiffness
matrix C as well as of the bulk and Young’s moduli as a function
of the NP radius is shown in Fig. 5 and Fig. 6. Normalization was
performed using the corresponding bulk PS moduli. The exact
values and their standard deviations are tabulated within Tables
2 and 3.
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With reference to Fig. 5 and Tables 2 and 3, for a given radius,
we observe that the differences among C11, C22, C33; and C44,
C55, C66; and C12, C13, C23, as determined by MD simulations,
are rather small. In consideration of the statistical uncertainties,
the studied NC materials can be classified as isotropic.

As it is evident from Fig. 5, the overall elastic moduli are lower
than those of the bulk PS. From this result, it is hypothesized that
improved NC properties can only be observed by utilizing surface
treated NPs. One possible way to achieve this would be to graft
polymer chains onto the NP surface (48, 49).



With regard to continuum approaches, the change of elas-
tic moduli for different radii as predicted using SECAN and
SECFEM are negligible at this scale. The micro-mechanical three
phase model results in a satisfactory fit to the observed elas-
tic moduli (Fig. 5 and Fig. 6). The interphase elastic moduli
are fitted in a least-square sense using Octave (47) and resulted
in μint

/
μp = 0.244 and λint

/
λp = 0.325. Although the size

dependence is clearly pronounced, this approach does not show
a perfect correlation with the MD data either. In the limit, values
predicted by SECAN, MM , and MD appear to converge to those
predicted by the MT approach.

To gain further insights into the elastic moduli size depen-
dence, local structural and dynamical properties of the interphase
have to be studied.

Discussion on the Application of the SEC Theory

The lack of correlation between elastic moduli as predicted by
SEC and MD suggests the importance of the PS-NP interphase,
which is in this instance assumed to be of zero thickness in SEC
theory. Indeed, the estimated NC’s interphase thickness of 2.0 nm
is not negligible when compared to the NP radius and the RVE
size that are in the order of 10 nm (Table 1).

As can be observed from Fig. 4, the imposed stresses are of
a compressive nature. In terms of the SEC theory, this implies a
negative interface energy. Negative values for the surface elastic
constants are admissible. From a mathematical point of view, the
admissible range for the surface elastic constants could be cal-
culated from an instability analysis similar to that in the bulk.
These types of local analyses verify that wave-like instabilities
occur beyond the point where the surface elasticity moduli loose
pointwise stability (50). It should be emphasized that, critically,
the admissible range for the surface material properties in the
local SEC theory does not necessarily include the values as esti-
mated from inherently non-local atomistic models. Note that the
latter are of higher accuracy from a physical point of view. In par-
ticular, surface material parameters can be negative, whereas the
analogous bulk material parameters are strictly positive. This can
be justified by the fact that the surface cannot exist independent
of the bulk and the overall response of the bulk together with the
surface needs to be positive definite (44).

It is known that negative values of the interface elastic con-
stants may result in numerical problems (38). Ultimately this
leads to the restriction of a minimum mesh size, below which
calculations are unstable. This length scale required for stabil-
ity has no physical justification. For the current studies a rather
coarse mesh had to be considered in order to perform SEC sim-
ulations with the resulting negative interface tension. This raises
the question as to whether the FE-SEC results are meaningful.
However, the analytical SEC homogenization method does not
suffer from such restrictions. Nonetheless it was not possible
to attain a satisfactory correlation between its results and MD.
To that end, a least square fit of bulk and shear moduli was
attempted using gradient and simplex minimization routines in
Octave (47). Note, the adopted analytical model does not con-
sider interface tension, but only bulk and shear surface moduli,
both of which are positive in the current study. This simplifi-
cation could be a contributing factor to the lack of correlation
with the MD results. Additionally, the FE-SEC calculations with

zero surface tension and parameters specified in the aforemen-
tioned were performed. The results are only marginally different
from the analytical SEC homogenization approach and do not
exhibit a pronounced size effect either. Thus, we can conclude
that the local SEC theory does not provide satisfactory results as
compared to the non-local MD simulations.

The failure of the SEC approach to capture the size effect in
this case is due to the large difference in the mechanical prop-
erties between PS and NP. In porous media it has been shown
(51) that, although the surface properties can provide a size effect
with respect to the pores diameter, such an influence has an upper
limit. For mechanically strong surfaces a void behaves almost as a
rigid particle, a result that has been confirmed both by the SECFE

and the SECAN (51). When considering a particulate composite,
a particle such as the NP is already very strong compared to the
matrix (PS), and thus the surface cannot attribute further to the
NC’s response.

Conclusions

In the present work we have analyzed the influence of nanopar-
ticle size on the mechanical properties of systems composed
of a bare spherical silica nanoparticle and a glassy polystyrene
matrix. We employ coarse grained molecular dynamics simu-
lations and surface enhanced continuum theory, as well as the
micro-mechanical model.

The anisotropic elastic moduli are obtained by applying small-
strain deformation modes to the glassy structures. From the
computed data, we conclude that the nanocomposites exhibit
near isotropic mechanical behavior. Equivalent isotropic con-
stants are estimated using the least-square fit of the obtained
stiffness matrix. The elastic moduli of the nanocomposites are
lower than those of the pure polymer matrix. In the limit, the
observed elastic moduli appear to converge from below toward
those predicted by a macroscopic Mori-Tanaka model.

An attempt was made to fit the molecular dynamics results
using the surface enhanced continuum approach. It is argued
that in order to study size-effects consistently, one needs to con-
sider nanocomposites of the same mass fraction. Assuming a
neo-Hookean behavior, bulk elastic moduli of nanoparticle and
polystyrene matrix were estimated from the molecular dynam-
ics simulations. The development of negative stresses in the
molecular dynamics results indicates that the nanocomposites
studied here have a negative interface energy. Interface parame-
ters for the surface constitutive model were obtained by the least
square fit of molecular dynamics results using the Nelder-Mead
simplex method (46). A satisfactory fit of macroscopic stresses
developing during relaxation due to the interface tension, as
well as during uniaxial deformation, were obtained for all radii.
However, it was not possible to quantify with confidence the
dependence of the nanocomposites’ elastic moduli on nanopar-
ticle’s radius. Both finite elements and analytical solutions of
surface enhanced continuum theory produced results conflicting
with those obtained from the molecular dynamics simulations.
The observed deviations for the systems under consideration
could be attributed to the large difference in the mechanical prop-
erties of the polymer matrix and the nanoparticle. In addition,
a micro-mechanical analytical model was examined. Although



its results are somewhat better, both quantitative and qualitative
discrepancy to the previously mentioned results is evident.

Finally, note that a higher order non-local continuum theory
would also lead to a size-dependent solution. It was shown using
detailed atomistic simulations that characteristic length scales in
strain gradient elasticity are not negligible for polymeric materi-
als (52, 53). A second-order interface description would require
a third-order bulk theory (54). In such a case both the continuum
and discrete models are non-local; thus, a better agreement is
expected. Only the combined (surface and bulk) size-effect could
be observed from MD using the aforementioned methodology.
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Appendix 1. Notation and Definitions

Direct notation is adopted throughout. The scalar product of two
vectors a and b is denoted a · b = [a]i [b]i. The scalar prod-
uct of two second-order tensors A and B is denoted A :B =
[A]ij [B]ij. The composition of two second-order tensors A and
B, denoted A · B, is a second-order tensor with components
[A · B]ij = [A]im [B]mj. The action of a second-order tensor A on
a vector a is provided by [A · a]i = [A]ij [a]j. The gradient of a
quantity {•} with respect to the material configuration is denoted
as {•} ⊗ ∇X . Let I denote the identity tensors in the material
configuration. Divergence operator with respect to the material
configuration is denoted as Div and is defined by Div {•} =
{•} · ∇X . All quantities attributed to the surface/interface are
denoted with {̂•}.


	Abstract
	Introduction
	Molecular Dynamics Methods
	Surface-Enhanced Continuum Theory
	Mean Field Homogenization
	Initial Configurations in MD and SEC
	Results and Discussion
	Bulk Properties
	Relaxation Under Interface Tension
	Macroscopic Elastic Moduli
	Discussion on the Application of the SEC Theory

	Conclusions
	Acknowledgement
	Funding
	References
	Appendix 1. Notation and Definitions



