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Certified Descent Algorithm for shape optimization driven by
fully-computable a posteriori error estimators

M. Giacomini *f, O. Pantz * and K. Trabelsi

Abstract

In this paper we introduce a novel certified shape optimization strategy -named Certified De-
scent Algorithm (CDA) - to account for the numerical error introduced by the Finite Element
approximation of the shape gradient. We present a goal-oriented procedure to derive a certified
upper bound of the error in the shape gradient and we construct a fully-computable, constant-free
a posteriori error estimator inspired by the complementary energy principle. The resulting CDA
is able to identify a genuine descent direction at each iteration and features a reliable stopping
criterion. After validating the error estimator, some numerical simulations of the resulting certi-
fied shape optimization strategy are presented for the well-known inverse identification problem of
Electrical Impedance Tomography.

Keywords: Shape optimization; A posteriori error estimator; Certified Descent Algorithm; Electrical Impedance
Tomography

1 Introduction

Shape optimization is a class of optimization problems in which the objective functional depends on the
shape of the domain in which a Partial Differential Equation (PDE) is formulated and on the solution
of the PDE itself. Thus, we may view these problems as PDE-constrained optimization problems of
a shape-dependent functional, the domain being the optimization variable and the PDE being the
constraint. This class of problems has been tackled in the literature using both gradient-based and
gradient-free methods and in this work we consider a strategy issue of the former group by computing
the so-called shape gradient.

In most applications, the differential form of the objective functional with respect to the shape
depends on the solution of a PDE which usually can only be solved approximately by means of a
discretization strategy like the Finite Element Method. The approximation of the governing equation
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for the phenomenon under analysis introduces an uncertainty which may prevent the shape gradient
from being strictly negative along the identified descent direction, that is, the approximated direction
may not lead to any improvement of the objective functional we are trying to optimize. Moreover, due
to the aforementioned approximation, stopping criteria based on the norm of the shape gradient may
never be fulfilled if the a priori given tolerance is too small with respect to the chosen discretization.
Within this framework, a posteriori error estimators provide useful information to improve gradient-
based algorithms for shape optimization.

Several works in the literature have highlighted the great potential of coupling a posteriori error
estimators to shape optimization algorithms. In the pioneering work [6], the authors identify two
different sources for the numerical error: on the one hand, the error arising from the approximation of
the differential problem and on the other hand, the error due to the approximation of the geometry.
Starting from this observation, Banichuk et al. present a first attempt to use the information on the
discretization of the differential problem provided by a recovery-based estimator and the error arising
from the approximation of the geometry to develop an adaptive shape optimization strategy. This
work has been later extended by Morin et al. in [20], where the adaptive discretization of the governing
equations by means of the Adaptive Finite Element Method is linked to an adaptive strategy for the
approximation of the geometry. The authors derive estimators of the numerical error that are later used
to drive an Adaptive Sequential Quadratic Programming algorithm to appropriately refine and coarsen
the computational mesh. Several other authors have used adaptive techniques for the approximation
of PDE’s in order to improve the accuracy of the solution and obtain better final configurations in
optimal structural design problems. We refer to [2,17,25,27] for some examples. We remark that in
all these works, a posteriori estimators only provide qualitative information about the numerical error
due to the discretization of the problems and are essentially used to drive mesh adaptivity procedures.
To the best of our knowledge, no guaranteed fully-computable estimate has been investigated and the
error in the shape gradient itself is not accounted for, thus preventing reliable stopping criteria to be
derived.

In the present paper, the derivation of a fully-computable upper bound for the error in the shape
gradient is tackled. We neglect the contribution of the approximation of the geometry and we focus
on the error arising from the discretization of the governing equation. The quantitative estimate
of the error due to the numerical approximation of the shape gradient allows to identify a genuine
descent direction and to introduce a reliable stopping criterion for the overall optimization strategy.
We propose a novel shape optimization strategy - named Certified Descent Algorithm (CDA) - that
generates a sequence of minimizing shapes by certifying at each iteration the descent direction to be
genuine and automatically stops when a reliable stopping criterion is fulfilled.

The rest of the paper is organized as follows. First, we introduce the general framework of shape
optimization and shape identification problems and the so-called Boundary Variation Algorithm (Sec-
tion 2). In section 3, we account for the discretization error in the Quantity of Interest using the
framework presented in [21]. Then, we introduce the resulting Certified Descent Algorithm that cou-
ples the a posteriori error estimator and the Boundary Variation Algorithm to derive a genuine descent
direction for the shape optimization problem (Section 4). In section 5, we present the application of
the Certified Descent Algorithm to the inverse problem of Electrical Impedance Tomography (EIT):
after introducing the formulation of the identification problem as a shape optimization problem, we
derive a fully-computable upper bound of the error in the shape gradient using the complementary
energy principle. Eventually, in section 6 we present some numerical tests of the application of CDA



to the EIT problem and section 7 summarizes our results.

2 Shape optimization and shape identification problems

We consider an open domain Q C R? (d > 2) with Lipschitz boundary 9. Let Vg be a separable
Hilbert space depending on ), we define ug € Vg to be the solution of a state equation which is a
linear PDE in the domain €:

aq(uq,du) = Fo(du) Vou € Vo (2.1)
where aq(-,-) : Vo x Vo — R is a continuous bilinear form satisfying the inf-sup condition

inf sup 220 e W)
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and Fq(-) is a continuous linear form on Vg, both of them depending on 2. Under these assumptions,
problem (2.1) has a unique solution ug.

We introduce a cost functional J(2) = j(€2, uq) which depends on the domain €2 itself and on the
solution ugq of the state equation. We consider the following shape optimization problem

i Q 2.2
qzin T (22)

where U,q is the set of admissible domains in R?. Within this framework, problem (2.2) may be viewed
as a PDE-constrained optimization problem, in which we aim at minimizing the functional j(£2,u)
under the constraint u = uq, that is the minimizer u is solution of the state equation (2.1).

In the following subsections, we recall the notion of shape gradient of J(2) in the direction § and we
apply the Steepest Descent Method to the shape optimization problem (2.2).

2.1 Differentiation with respect to the shape

Let X C W1°(Q; R?) be a Banach space and 6 € X be an admissible smooth deformation of . The
cost functional J(€2) is said to be X-differentiable at 2 € U,q if there exists a continuous linear form

dJ(€) on X such that V0 € X
J((Id+6)Q) = J(Q) + (dJ(2),0) + o(6).

Several approaches are feasible to compute the shape gradient. Here we briefly recall the fast deriva-
tion method by Céa [9] and the material derivative approach [28]. Let us introduce the Lagrangian
functional, defined for every admissible open set 2 and every u, p € V by

L(2,u,p) = j(Q,u) + ag(u, p) — Fa(p)- (2.3)

Let pq € Vo be the solution of the so-called adjoint problem, that is

94
aq(pa, 0p) + <({9i(9, uQ), 5p> =0 Vop € Vo (2.4)
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where ag,(p, dp) = aq(dp,p) is the adjoint bilinear form. By applying the fast derivation method by
Céa, we get the following expression of the shape gradient:

(@(2).6) = (G5 unpn). 0 25)

An alternative procedure to compute the shape gradient relies on the definition of a diffeomorphism
¢ : RY — R? such that for every admissible set Q

Qy = ().

Moreover, all functions u, p € Vg defined on the reference domain €2 may be mapped to the deformed

domain €, by

1 1

Up = U0 P~ and Pp =pOoY .
We admit that u — u, is a one-to-one map between Vo and V). The Lagrangian (2.3) is said to

admit a material derivative if there exists a linear form % such that

oL
£ 1p100) = £ p) + { GO p).0) +o(6)
where ¢ = Id +6. Provided that u, is differentiable with respect to ¢ at ¢ = Id in V@), from the
fast derivation method of Céa we obtain the following expression for the shape gradient:

oL
2
A variant of the latter method consists in computing the shape gradient via the Lagrangian for-
mulation without explicitly constructing the material derivative of the state and adjoint solutions. We
refer to [19] for additional information about this approach.

Volumetric and surface expressions of the shape gradient

The most common approach in the literature to compute the shape gradient is based on an Eulerian
point of view and leads to a surface expression of the shape gradient.

The main advantage of this method relies on the fact that the boundary representation intuitively
provides an explicit expression for the descent direction. Let us assume that the shape gradient has
the following form

(dJ(Q),0) = /m ho - nds

then §# = —hn on 02 is a descent direction. Moreover, by Hadamard-Zolésio structure theorem it
is well-known that the shape gradient is carried on the boundary of the shape [11] and using this
approach the descent direction has to be defined only on 9f). Nevertheless, if the boundary datum
of the state problem is not sufficiently smooth, the surface expression of the shape gradient may not
exist or the descent direction # may suffer from poor regularity.

Starting from the surface representation of the shape gradient, it is possible to derive a volumetric
expression as well. Though the two expressions are equivalent in a continuous framework, they usually
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are not when considering their numerical counterparts, i.e. their Finite Element approximations: as a
matter of fact, in [16] Hiptmair et al. prove that the volumetric formulation generally provides better
accuracy when using the Finite Element Method. Moreover, we may be able to derive the volumetric
expression of the shape gradient even when its boundary representation fails to exist.

In this work, we consider the volumetric expression of the shape gradient in order to take advantage
of the better accuracy it provides from a numerical point of view and to construct an estimator of the
error in a Quantity of Interest using the procedure described by Oden and Prudhomme in [21].

We remark that in order to derive a descent direction 6 on €2 from the volumetric expression of the
shape gradient, an additional variational problem has to be solved, as described in next subsection.

2.2 The Boundary Variation Algorithm

From now on, we consider X to be a Hilbert space. Starting from the formulation (2.6), we seek a
descent direction for the functional J(£2). For this purpose, we solve an additional variational problem
and we seek 6 € X such that

(0,80)x + (dJ(Q),80) =0 V60 € X. (2.7)

Remark 2.1. The choice of the scalar product in (2.7) is a key point for the development of an efficient
shape optimization method. In [5], the authors propose the so-called traction method to get rid of some
irregularity issues in shape optimization problems. This approach is based on the regularization of
the descent direction by means of a scalar product inspired by the linear elasticity equation. In recent
years, a comparison of the L?, H' and H~! scalar products defined on a surface was presented [12]
but, as the authors state, the best choice is strongly dependent on the application of interest.

In this section, we present the application of the Steepest Descent Method to a shape optimization
problem. After computing the solution of the state equation, we solve the adjoint problem to derive
the expression of the shape gradient. Then, a descent direction is identified through (2.7) and is
used to deform the domain. The resulting shape optimization strategy is known in the literature as
Boundary Variation Algorithm [3] and is sketched in script 1.

Algorithm 1: Continuous gradient method - The Boundary Variation Algorithm

Given the domain )y, set £=0 and iterate:

Compute the solution ugp, of the state equation;

Compute the solution pg, of the adjoint equation;

Compute a descent direction 6y € X solving (0y,00)x + (dJ(€),00) =0 Véb € X;
Identify an admissible step puy;

Update the domain Q1 = (Id +uefr)Q;

While [(dJ(9),0)| >tol, {={¢+1 and repeat.

O Ok W

We remark that this method relies on the computation at each iteration of a direction # such that the
shape gradient of the objective functional in this direction is strictly negative, that is we seek 6 such
that (dJ(Q2),0) < 0. In next subsection, we discuss the modifications that occur when moving from
the continuous to the discretized formulation of the problems and consequently the conditions that
the discretization of # has to fulfill in order to be a genuine descent direction for the functional J(€2).



2.3 The discretized Boundary Variation Algorithm

Let us denote by u}é and p}é the approximations of the state and adjoint equations arising from a
Finite Element discretization. The discretized direction #" € X is obtained by solving problem (2.8)

(0",00)x + (dp J(Q),60) =0  Vi0 e X (2.8)
where (dp,J(2),60) reads as follows:

(dpJ(Q),60) = <gi(9,ug,pg),59>. (2.9)

The discretized version of the Boundary Variation Algorithm is derived by substituting the continuous
functions ug, po with their approximations ug, pg and 0 with 6"

Algorithm 2: Discretized gradient method - The discretized Boundary Variation Algorithm

Given the domain )y, set £=0 and iterate:
Compute the solution u}ée of the state equation;

Compute the solution pg[ of the adjoint equation;

Identify an admissible step puy;
Update the domain Q1 = (Id —l—ug@?)ﬂg;
While [(dpJ(Q),02) >tol, £={¢+1 and repeat.

D O W N

We remark that due to the numerical error introduced by the Finite Element discretization, even
though (d,J(Q),6") < 0, 6" is not necessarily a genuine descent direction for the functional J(Q).
Moreover, it is important to notice that the stopping criterion (Algorithm 2 - step 6) will usually not
be fulfilled if the required tolerance tol is too sharp with respect to the chosen discretization.

In the following sections, we present a strategy to bypass these issues by providing a computable upper
bound of the error E” in the approximation of the shape gradient (Section 3). Then, in section 4 we
couple the information embedded in the estimator with the Boundary Variation Algorithm (Script 1)
by introducing the novel Certified Descent Algorithm in which at each iteration we seek a certified
descent direction, that is 6" that satisfies (dj,J(£2),0") + |E"| < 0.

3 Numerical error in the shape gradient
Let us consider the error E” in the shape gradient:
E" = (dJ(Q) — dpJ(Q),6"). (3.1)

The strategy presented in this section to estimate the a posteriori error in a Quantity of Interest -
namely, the shape gradient - is derived from the work [21] by Oden and Prudhomme. Basic idea relies
on the definition of an adjoint problem whose right-hand side is the quantity whose error estimate is
sought.

Compute a descent direction 6} € X solving (00,60)x + (dnJ(),00) =0 V0 € X;



3.1 Variational formulation of the error in the Qol

Let us rewrite the numerical error E” in the shape gradient as follows

oL oL
Eh: 7(Quuﬂvpﬂ)_7(gaugup6)’0h
dp D
82‘6 h , h h h 82£ h , h h h h <32)
~ Q — —— (2 — = F".
Bcp(?u( 7uQﬂpQ)[9 , UQ uQ] + 8(p8p( auﬂva)[e y PQ pQ]

The computation of an upper bound of the error (3.2) is performed using the well-established
framework of a posteriori error estimators in a Quantity of Interest [21]. For this purpose we introduce
two adjoint problems, each of which is associated with one term on the right-hand side of (3.2). Thus,
we seek rq, s € Vo such that

* _ 82‘6 0 h _h Hh
ag(rq, or) = m( ,ug, pGy) (0", or] Yor € Vo

2 (3.3)

£, uly 0" 65 Vos € Va

ag(sq,ds) = 900p

where, as previously stated, ag(+, -) is the adjoint bilinear form. We remark that in order for the afore-
mentioned adjoint problems to be well-posed, their right-hand sides have to be linear and continuous
forms on V. Several works as [13] and [26] have dealt with an extension of the original framework
in [21] to the case of non-linear Quantities of Interest. We follow the approach proposed by these au-
thors by performing a linearization of the functional whose error estimate is sought and we introduce
the linearized error E” in (3.2).

We denote by 7"6, 36 the approximations of the solutions rq, sq of equations (3.3) arising from a
Finite Element discretization. By plugging (3.3) into (3.2), we may derive the following upper bound
E for the numerical error in the shape gradient:

B o~ | B < |agy(rq — ré, up — ug)| + |ag(sa — s, pa — pb)] (3.4)
h h h h . ’
< [lra =ralle lua = uglle + llse = sqlla llpa = polle = £

where ||-||o is the energy-norm induced by the bilinear form agq(-,-). The first inequality follows
from triangle inequality and Galerkin orthogonality whereas the upper bound FE is derived exploiting
Cauchy-Schwarz inequality.

Remark 3.1. In (3.4) we derived an upper bound for the numerical error in the linearized shape gradient
and not in the shape gradient itself. For the rest of this paper, we will follow the framework in [13] by
assuming the linearization error to be negligible and E to be an upper bound of the numerical error
E™ itself and not of its linearized version E". In section 6.1, a validation of the error estimator is
presented for the case of Electrical Impedance Tomography: we will verify that the linearization error
is indeed negligible with respect to the error due to the Finite Element discretization and thus the
previous assumption stands.

In order to fully compute the error estimator (3.4), we have to estimate the energy-norm of the
error for:

e the state equation;



e the adjoint equation used to compute the shape gradient;
e the two adjoint equations associated with the Quantity of Interest.

Several strategies are possible to tackle these issues. In this paper, we propose a method inspired by
the complementary energy principle which allows to derive fully-computable, constant-free estimators
by solving an additional variational problem for each term under analysis in order to retrieve a flux
estimate. These estimates are problem-dependent and will be detailed in section 5 when presenting
the case of Electrical Impedance Tomography.

3.2 Computing a certified descent direction

In the previous section, we derived a guaranteed upper bound of the error (3.1) due to the numerical
approximation of the shape gradient. As previously stated, (d.J(£2),0") < 0 does not imply that
the direction 6" is a genuine descent direction. Nevertheless, we may bypass this issue using the
information carried by the upper bound E of the error E”, thus seeking a direction #”* such that

(dpJ(9),0" +F < 0. (3.5)

The direction " fulfilling condition (3.5) is said to be certified because owing to the a posteriori
error estimator it is guaranteed that the original functional J(2) decreases along 6" whenever the
linearization error introduced in (3.2) is negligible. We remark that the criterion (3.5) ensures that 6"
is a genuine descent direction, whether it is the solution of equation (2.8) or not. In particular, this
also stands when the latter problem is only solved approximately.

Hence, on the one hand the computation of the upper bound of the numerical error in the shape
gradient provides useful information to identify a certified descent direction at each iteration of the
optimization algorithm and to construct a certified shape optimization strategy. On the other hand,
the fully-computable and constant-free error estimator allows to establish a quantitative criterion to
derive a reliable stopping criterion for the overall optimization procedure.

4 The Certified Descent Algorithm

We are now ready to introduce the novel Certified Descent Algorithm, arising from the coupling of the
Boundary Variation Algorithm for shape optimization (Section 2.2) and the goal-oriented estimator
for the error in the shape gradient (Section 3.1).

In script 3, we present a variant of algorithm 1 that takes advantage of the previously introduced
a posteriori estimator for the error in the shape gradient in order to bypass the issues due to the
discretization of the problem.

First, the procedure constructs an initial computational domain. At each iteration, the algorithm
solves the state and adjoint problems [steps 1 and 2] and computes a descent direction 6" solving
equation (2.8) [step 3]. Then, the adjoint problems (3.3) are solved and an upper bound of the
numerical error in the shape gradient along the direction 6" is computed [step 4]. If condition (3.5)
is not fulfilled, the mesh is adapted in order to improve the error estimate. This procedure is iterated
until the direction 6" is a certified descent direction for .J(2) [step 5]. Once a certified descent direction
has been identified, we compute a step [step 6] such that the following Armijo condition is fulfilled:



let us consider the iteration ¢, given 0 < o < 1 we use a backtracking strategy to identify the step
ie € R* such that

J (10412067 ) 90) < T (90) + aueldnT () ,0F).

An alternative bisection-based line search technique has been proposed by Morin et al. in [20].

Then the shape of the domain is updated according to the computed perturbation of the identity
Id 441007 [step 7]. Eventually, a novel stopping criterion is proposed [step 8] in order to use the
information embedded in the error bound E to derive a reliable condition to end the evolution of the
algorithm.

Algorithm 3: Discretized gradient method - The Certified Descent Algorithm

Given the domain €y, set /=0 and iterate:

1. Compute the solution ugl of the state equation;

2. Compute the solution pgé of the adjoint equation;

3. Compute a descent direction 6} € X solving (0},00)x + (dnJ(%),60) =0 V0 € X;
4. Compute an upper bound E of the numerical error |Eh\:

(a) Compute the solutions rgg and sg

(b) Compute E = [Irg, —rg,llallua, —ug,lo + lIsa, — st,lle llpe, — p6,llo;
If (dpJ(%),00) + E >0, refine the mesh and go to 1;
Identify an admissible step us;

Update the shape Qi1 = (Id+u00)Q;

While [(dyJ(Q),00)+E >tol, {=(+1 and repeat.

to estimate the error in the QoIl;

0 N O O;

5 An inverse identification problem: the case of Electrical Impedance
Tomography

Let us consider an open domain P C R%. We suppose that there exists an open subdomain  CC D
such that some given physical properties of the problem under analysis are discontinuous along the
interface 02 between the inclusion €2 and the complementary set D\ Q2. The location and the shape of
the inclusion are to be determined, thus {2 acts as unknown parameter in the state equations and in the
inversion procedure. Our aim is to identify the inclusion (2 by performing non-invasive measurements
on the boundary 0D of the domain D. This problem is well-known in the literature and is often
referred to as Calderén’s problem. Several review papers on Electrical Impedance Tomography have
been published in the literature over the years. We refer to [7,8,10] for more details on the physical
problem, its mathematical formulation and its numerical approximation.

Let xq be the characteristic function of the open set 2, we define the conductivity kq as a piecewise
constant function such that ko = krxo + kg(1— xq), k1, kg > 0. We introduce two Boundary Value



Problems on the domain D, respectively with Neumann and Dirichlet boundary conditions on 9D:

— kgAug Ny +ugn =0 in D\ 00
[ua,n] =0 on 0f) (5.1)
[kaVuq n -n] =0 on 0N
kEeVugn-n=g on 9D
— koAuq p +ugp =0 in D\ 0Q
[ug,p] =0 on 0} (5.2)
[kaVuqp-n] =0 on 9f)
uQ,p = UD on 9D

where the boundary data g € L?(9D) and Up € H %(813) arise from the performed physical mea-
surements. As previously stated, we are interested in identifying the shape and the location of the
inclusion, fitting given boundary measurements g and Up of the flux and the potential.

5.1 State problems

In order to approximate problems (5.1) and (5.2) by means of the Finite Element Method, first we
introduce their variational formulations.

Let aq(-,-) be the bilinear form associated with both the problems and Fgq;(-), ¢ = N, D the linear
forms respectively for the Neumann and the Dirichlet problem:

aq(u, du) = / (kJQVu -Vou + u5u> dx (5.3)
D
Fo n(0u) = / gou ds and Fo.p(du) = 0. (5.4)
oD

We consider uq n, uo,p € Hl(D) such that ug p = Up on 0D, solutions of the following Neumann
and Dirichlet variational problems Vduy € H(D) and Yéup € HZ(D):

(IQ(UQJ;, 5ui) = Fg,i(éui) , t=N,D. (5.5)

For the Dirichlet problem, the non-homogeneous boundary datum is taken care of by means of a
classical substitution technique. The corresponding discretized formulations of (5.5) may be derived
by replacing the analytical solutions uq ny and ug p with their approximations u?z N and ug p Which
belong to the space of Lagrangian Finite Element functions. In a similar fashion, 6" is the solution of
equation (2.8) computed using a Lagrangian Finite Element space. The degree chosen for the Finite
Element basis functions will be discussed in section 6.

5.2 A shape optimization approach

Let us consider the Kohn-Vogelius functional first introduced in [31] and later investigated by Kohn
and Vogelius in [18]:

1
J(Q) = / (k‘Q |V (ua,n — UQ,D)|2 + |ugN — UQ,D|2>dm. (5.6)
D
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In (5.6), ug,n and uq p respectively stand for the solutions of the state problems (5.1) and (5.2).
Owing to (5.3), we may rewrite the objective functional (5.6) as:
1

J(Q) = §a(2 (UQ,N —UQ,D,UQ,N — UQ,D)-

The inverse identification problem of Electrical Impedance Tomography may be written as the PDE-
constrained optimization problem (2.2) in which we seek the open subset 2 that minimizes (5.6).

In order to solve this problem, we consider the Certified Descent Algorithm using the shape gradient
of J(£2). First, we need to determine the adjoint solutions po y and po p associated with the states
ug,n and ug p: the Kohn-Vogelius problem is self-adjoint and we get that po n = uq N — ug,p and
pa.p = 0. Let § € WH*°(D;R?) be an admissible deformation of the domain such that 6§ = 0 on 9D.
As previously mentioned, the most common approach in the literature to compute the shape gradient
leads to the surface expression

060 = [ (ol (P20 [0 o a2 -
(5.7)

where n is the outward normal to 99, 7 is the tangential direction to 9 and [kq] = kg — kr and
[kq, 1= kgl — kl_l are the jumps across 0f2. Let us now introduce the following operator:

(G(,u),0) = ;/D (kQM(e)vu Vu—V-0 u2>da; (5.8)

where M () = VO + VOT — (V- §)1d. From (2.6), we get the volumetric expression of the shape
gradient of (5.6):
(dJ(Q),0) = (G(QuqnN) — G(Quq,p),0). (5.9)

We refer to [22] for more details on the differentiation of the Kohn-Vogelius functional and its appli-
cation to the identification of discontinuities of the conductivity parameter.
5.3 A posteriori error estimate for the shape gradient

Since the Kohn-Vogelius problem is self-adjoint, (3.4) reduces to

E = |ran = ronlle luen —ut vle + Irep =6 ple llugp = ut ple (5.10)

where rq n and ro p are the solutions of the adjoint problems introduced to evaluate the contributions
of the Neumann and Dirichlet state problems to the error in the Quantity of Interest. Thus, we seek
ro,N € H!(D) and rQ,D € H&(D) such that respectively Vory € HY(D) and Vérp € H&(D)

aq(ra,i, 6r;) = Hoi(0r;) , i=N,D (5.11)

where the linear forms on the right-hand sides of equations (5.11) read as

Hoi(6r) = S0 (@,uls ) 0", 00] i = N,D. (5.12)

In order to obtain a computable upper bound for the error in the shape gradient, we seek an
estimate of the energy-norm of the error for the state and adjoint solutions in (5.10).
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Let eq; = uq; — u’{h and eq; = ro; — r?“ for ¢ = N,D. In the following subsections, we derive
the estimates of the’energy—norm of the eévi’s and the eq;’s using a strategy inspired by the so-
called complementary energy principle [24]. In practice, we introduce a dual flux variable for every
problem and each bound is computed by solving an additional adjoint problem thus leading to a
better approximation of the numerical fluxes Veq ;’s and Veq ;’s. For additional information on this
approach, we refer to [30].

5.3.1 Error estimates based on the complementary energy principle: the case of the
state equations

For the sake of readability, let us rename H'(D) as Viy and H{(D) as Vp. We consider the residual
equations such that Youy € Vy and Yéup € Vp

aq(eq,i, du;) = Foi(du;) — ag(u&h dui) , 1=N,D. (5.13)

We recall that solving equation (5.13) is equivalent to the following minimization problem, that is we
seek w € V; such that
Eqi(eq,) = min Eq;(w) , i=N,D (5.14)

wevV;

where the global energy functional associated with the Neumann and Dirichlet problems reads
1
Eqi(w) = 2/ (kQ|Vw\2 + |w|2)dx + / (k:QVu?M -Vw + ugﬂ-w) dz — Foi(w). (5.15)
D D

By introducing an additional variable 2 = Vw and a dual variable oq; € L*(D; R?), we may construct
the Lagrangian functional Lq; : Vi x L?(D) x L?(D;R%) — R which has the following form

1

Lai(w,z,00;) == <k:g]z\2+ \wP)dm—i— (kQVu’{”-z—i—ug iw)d:z:—Fm(w)
| R D | | | (5.16)

+ / oqi- (Vw — 2)dz.
D

Thus the minimization problem (5.14) may be rewritten as a min-max problem and owing to the
Lagrange duality, we get

min Fo ;(w) = min max  Lo;(w,z 00;)
weV; wGVVi UQ’iELQ(D;Rd)
zZ=Vw
. (5.17)
= max min Lq;(w, z,00,).
o0, /€L3(DiRd) weli
z= w

We consider the space H(div) = {0 € L*(D;RY) : V.o € L%(D)}. Let oq; € H(div) for i =
N, D, from the system of first-order optimality conditions for Lq ;(w, z,0q,;) we derive the following
relationships among the variables:

z = kélagﬂ- - Vu?m in D
w=V o0, —ub; in D (5.18)
OQN "N =4g on 9D

12



Hence, by plugging (5.18) into (5.17), we get the following maximization problems for i = N, D

1 _
Eqi(eq;) = max / (]CQ]'|O'Q71' - k:QVu?Z Z»|2 +1|V-oq;— ugiP)da@ (5.19)
UQ’iEH(dlv) 2 D ) 5
(o0, N-1=9)

where the objective functional is known as the dual complementary energy associated with the prob-
lems.

In order to compute the dual flux variables, we derive the first-order optimality conditions for
the dual complementary energy functional in (5.19). Thus, we seek o n, 0qp € H(div) such that
oq,N -n = g on 0D which satisfy Yooy, dop € H(div) such that don -n =0 on 0D

N
/ (k‘s_ZIUQ,i 200 + (V- 0q,) (V- 50i)>da? = {O ! (5.20)
D

f@D UD((SO'Z' . n)ds y i1=D

Let 05’37 N and 067 p be the dual fluxes discretized using Raviart-Thomas Finite Element functions. By
combining the definition of energy-norm induced by the bilinear form (5.3) with the information in
(5.18) and (5.20), we get the following upper bound for the energy-norm of the error in the state
equations:

s — il < [ (k5o — kWl + 1V - o — ) o (5.21)

5.3.2 Error estimates based on the complementary energy principle: the case of the
adjoint equations

As in the previous section, we present the formulation of the dual complementary energy associated
with the discretization error of the adjoint problems (5.11). In a similar fashion, we introduce the
dual fluxes £q; € H(div) for ¢ = N, D and we retrieve the following relationships

z=kq '+ M(Gh’)VUgJ — Vrg’l- in D
w=V-Eai~ (V0" )uby; — b, in D (5.22)
Son-n=0 on 0D

The maximization problem for the dual complementary energy associated with the adjoint problems
for i = N, D reads as

1 _
max =5 / (kg 60 + koM (0" Vuls; — kaVrl 2 + |V - i — (V- 0"y — 1ty 1) da. (5.23)
fgq€H(V) 2 Jp v ; ; :
(&g, N =0)

In order to compute the dual flux variables, we seek £q v, &n,p € H(div) such that {o v -n =0 on
0D satisfying Vo€, 0&p € H(div) such that 6§y - n =0 on 9D

/D (k‘g_zlfﬂ,i -0& + (V- ‘SQ,@')(V ) 5§i))d:ﬁ _ /

((v Oyl V- 56 — M (0"l 5§i)d:v (5.24)
D
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and via their Raviart-Thomas Finite Element approximations fg ;’s, we derive the upper bound of the
adjoint errors in the energy-norm

Iras = rhllb < /D (kg6 + ka M (0")Vufy s — kaVrly 2 + |V - &y — (V- 0)ult = v 2 da.

(5.25)
Eventually, by plugging (5.21) and (5.25) into (5.10), we are able to explicitly compute the upper
bound F of the error in the shape gradient.

6 Numerical results

We present some numerical results of the application of the Certified Descent Algorithm (CDA) to
the problem of Electrical Impedance Tomography. We remark that the simulations presented in this
paper are based on a mesh moving approach for the deformation of the domain (Algorithm 3 - step
7). Thus, the procedure does not allow for topological changes and the correct number of inclusions
within the material has to be fixed at the beginning of the algorithm. In order to account for the
nucleation of new inclusions or the merging of existing ones, a mixed approach based on topological
and shape gradients may be followed as suggested in [15]. For the rest of this section, we will consider
several examples where the shape and the location of the inclusions evolve under the assumption that
the number of subregions inside D is a priori fixed and known.

Before running the shape optimization algorithm, we identify a set of consistent boundary condi-
tions (g, Up) for the state problems (5.5). First, we set a Neumann boundary condition g on 9D for
the flux; in order to impose the Dirichlet condition on the potential, we iteratively solve the Neumann
state problem by subsequently refining the mesh until a very fine error estimate in the energy-norm
is achieved. The trace of the resulting solution ug xy on 0D is eventually picked as boundary datum
Up for the Dirichlet state problem.

All the numerical results were obtained using FreeFem++ [14].

6.1 Numerical assessment of the goal-oriented estimator

We consider the configuration in figure 1, where D = {(z,y) | 2°+y* < p%} and Q == {(z,y) | 2°+y* <
p?—} The values for the physical parameters are pp = 5, py =4, kg = 1 and k; = 10. The boundary
datum for the Neumann problem (5.1) reads as g = cos(Mv) , M = 5. Using a polar coordinate
system (p, 1), we can compute the following analytical solution:

_1
Cous (iph; ) cos(ara) pelpl

uQ7N == _ _l
[ClJM <—ipkE > + CoYu (—ipkﬁ)] cos(M3) , p € (p1, pE]

(SIS

where Jys(+) and Y/ (+) respectively represent the first- and second-kind Bessel functions of order M.
The constants CY, ..., Cy are detailed in table 1.

For the approximation of the state equations (5.5), we consider both P! and P? Lagrangian Finite
Element functions. In figures 2A and 2B, we present a comparison between the analytical error
due to the discretization and the corresponding estimates arising from the complementary energy
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Figure 1: Test case for the Electrical Impedance Tomography. Circular inclusion 2 inside the circular body
D.

Constant | Re[C}] Im[C;]
Co —6.25887182 - 1079 | 4+40.39491005
Cy +1.30145994 +0.325482825
Cy +1.49579729 - 10~ 11 | —1.301459935

Table 1: Constants for the analytical solution.

principle (Section 5.3.1) under uniform mesh refinements. We remark that using P! Finite Elements,
the estimated convergence rate is nearly 1, whereas using P? basis functions for the Finite Element
space leads to a convergence rate slightly lower than 2.

In order to construct the estimator for the error in the shape gradient, first we approximate equation
(2.8) using P! x P! Lagrangian Finite Element functions. For the discretization of the adjoint equations
(5.11), we use the same Finite Element space as for the state problems, whereas the dual fluxes
in equations (5.20) and (5.24) are approximated using Raviart-Thomas Finite Element functions.
In particular, we choose the space of RTy (respectively RTj) functions when the state and adjoint
equations are solved using P! (respectively P?) Finite Elements.

In figure 3, we present the convergence history of the discretization error in the shape gradient, the
error in the Quantity of Interest arising from its linearization and the corresponding complementary
energy estimates provided in (5.10) using both P! (Fig. 3A) and P? (Fig. 3B) Finite Element functions.
In both figure 3A and figure 3B, we remark that the error in the linearized Quantity of Interest is
very similar to the one in the shape gradient. This confirms that the linearization error introduced
in (3.2) is negligible with respect to the discretization error due to the Finite Element approximation
and the estimator constructed from the linearized Quantity of Interest provides reliable information
on the error in the shape gradient itself.

Figure 3A shows the evolution of the error in the Quantity of Interest with respect to the number of
Degrees of Freedom of the problem under uniform mesh refinements. The error estimator shows an
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Energy-norm of the error for the Neumann state problem Energy-norm of the error for the Dirichlet state problem
T T T T T T T

O(h) O(h)

Error of the Neumnann state problem
Error of the Dirichlet state problem

OH) o)

. .
167 10°

h h
(A) Neumann problem. (B) Dirichlet problem.

Figure 2: Comparison of the convergence rates with respect to the mesh size h for the (A) Neumann and
(B) Dirichlet state equations. Analytical errors using P! (black dash) and P? (blue cross) Lagrangian Finite
Element functions; error estimates based on the complementary energy principle using P! (red star) and P?
(green square) Lagrangian Finite Element functions.

evolution which is analogous to the one of the analytical error in the shape gradient, thus we verify
that an upper bound for the error in the Quantity of Interest is derived. Nevertheless, when dealing
with P2 Lagrangian Finite Element functions (Fig. 3B), the resulting error estimator for the Quantity
of Interest underestimates the error in the shape gradient. This phenomenon may be caused by the
error due to the approximation of the geometry that has not been accounted for in this work. As a
matter of fact, in [20] Morin et al. observe that increasing the accuracy of the PDE approximation
is useless if the expected geometrical error is higher than the one due to the discretization of the
state problem. For this reason, in the following simulations, we stick to low-order Finite Element
approximations (P! — RTp) since using higher-order elements would prevent from getting a certified
upper bound of the error in the shape gradient which is crucial for the application of the Certified
Descent Algorithm.

6.2 1-mesh and 2-mesh reconstruction strategies

We may now apply the CDA to identify the unknown inclusion €2 inside the circular domain D using
one boundary measurement. The initial inclusion is a circle of radius p;,; = 2 and the associated
computational mesh counting 472 triangles is displayed in figure 4A.

It is well-known in the literature (see [3]) that using the same computational domain for both solving
the state problem and computing a descent direction may lead to poor optimized shapes. In figures
4B and 4C we present the computational domains obtained using respectively a 1-mesh strategy to
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- Error estimators for the shape gradient Error estimators for the shape gradient
T T

Error of the shape gradient
&
Error of the shape gradient

MNumber of Degrees of Freedom MNumber of Degrees of Freedom

(A) P! Finite Element. (B) P? Finite Element.

Figure 3: Comparison of the convergence rates with respect to the number of Degrees of Freedom for the error
in the Quantity of Interest using (A) P! and (B) P? Lagrangian Finite Element functions. Analytical error in
the shape gradient (black dash); error in the linearized Quantity of Interest (blue cross); error estimator for the
Quantity of Interest using the complementary energy principle (red star).

compute both the solutions u’{l’i’s and the descent direction #* and a 2-mesh approach in which the

state equations are solved on a fine mesh whereas 6" is computed on a coarser domain. A comparison
of the reconstructed interfaces after 24 and 25 iterations is reported in figure 4D and as expected we
observe that the 1-mesh algorithm provides a poor approximation of the inclusion whereas the 2-mesh
strategy is able to precisely retrieve the boundary along which the conductivity kq is discontinuous.
Figures 4E and 4F confirm what was already observed by zooming on the local behavior of the inter-
faces and highlighting the oscillatory nature of the 1-mesh reconstruction. In figure 5A, we report the
evolution of the objective functional with respect to the number of iterations using the two discussed
approaches. It is straightforward to observe that the CDA identifies a genuine descent direction at
each iteration, generating a sequence of minimizing shapes such that the objective functional J(2) is
monotonically decreasing. Moreover, the error estimate in the shape gradient is also used to construct
a guaranteed stopping criterion for the overall optimization strategy which automatically ends when
|(dnJ(Q),0™)| + E < tol for an a priori fixed tolerance. Even though both versions of the algorithm
generate shapes for which the functional is monotonically decreasing, only the 2-mesh strategy is able
to precisely identify the target inclusion. For this reason, in the following sections we will focus only
on the 2-mesh approach.

Besides the theoretical improvement of the Boundary Variation Algorithm discussed so far, an advan-
tage of the CDA lies in the possibility of using relatively coarse meshes to identify certified descent
directions. In figure 5B we observe that the number of Degrees of Freedom remains small until the
reconstructed interface approaches the real inclusion, that is coarse meshes prove to be reliable dur-
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(A) 472 elements. (B) 178047 elements. (C) 66833 elements.

5 4 3 -2

-1 0 1 é :; L‘l i o £
(D) Reconstructed interface. (E) 1-mesh interface.

Figure 4: Comparison of 1-mesh and 2-mesh reconstruction strategies. (A) Initial mesh. (B) Final mesh using
1-mesh strategy. (C) Final mesh using 2-mesh strategy. (D) Initial configuration (dotted green), target inclusion
(solid black) and reconstructed interfaces using 1-mesh (dot-dashed red) and 2-mesh (dashed blue) strategies.

(E) Zoom of the reconstructed interface using 1-mesh strategy. (F) Zoom of the reconstructed interface using
2-mesh strategy.
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ing the initial iterations of the algorithm. Thus, another important feature of the Certified Descent
Algorithm is the ability of certifying the reliability of coarse meshes for the identification of genuine
descent directions for a shape functional, reducing the overall computational effort of the algorithm
coupled with the a posteriori estimators during the initial phase of computation.

10 Evolution of the objective functional Number of Degrees of Freedom for the state problem
T T T T T T T

Objective functional
ro
T
Number of DOFs

0 I I I I Bgg—g L o-& I 1

0 5 10 15 20 25 0 5 10 15 20 25
Iteration Iteration

(A) Objective functional. (B) Number of Degrees of Freedom.

Figure 5: Comparison of 1-mesh (red star) and 2-mesh (blue circle) reconstruction strategies. (A) Evolution
of the objective functional. (B) Number of Degrees of Freedom.

6.3 A more involved test case

In the previous section, we applied the Certified Descent Algorithm on a simple

test case and we were able to retrieve a precise description of the interface 9€2. This was mainly due
to the fact that the inclusion 2 was located near the external boundary 0D where the measurements
are performed. In this section, we consider a more involved test case: on the one hand, we break
the symmetry of the problem by considering the initial and target configurations in figure 6A; on the
other hand, we highlight the difficulties of precisely identifying the boundary of an inclusion when its
position is far away from 0D.

As observed in the previous section, the evolution of the objective functional is monotonically

decreasing (Fig. 6B), meaning a genuine descent direction is identified at each iteration of the opti-
mization procedure. The final value of the approximated objective functional is O(10~%), in agreement
with the zero value in the analytical optimal configuration of the inclusion.
Moreover, the evolution of the number of Degrees of Freedom (Fig. 6C) shows that coarse meshes
prove to be reliable during initial iterations. The size of the problem remains small for several succes-
sive iterations and only when approaching the configuration for which the criterion |(d},.J(2),0")| + F
fulfills a given tolerance tol = 1075 the CDA performs multiple mesh refinements increasing the
number of Degrees of Freedom.
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In figure 6A, we observe that the part of the interface closest to 0D is well identified using the
Certified Descent Algorithm with one boundary measurement. Nevertheless when moving away from
the external boundary, the precision of the reconstructed interface decreases and the algorithm is not
able to precisely identify the whole inclusion. The uncertainty of the reconstruction in the central
region of D is mainly due to the ill-posedness of the inverse problem. As a matter of fact, state
problems (5.1) and (5.2) are elliptic equations thus the effect of the boundary conditions becomes
less and less important moving away from 9D. In next section, we present a strategy to improve the

Number of Degrees of Freedom for the state problem

Number of DOFs

20 0 5 10 15 20 E3 30 E3 40

5 4 3 2 [ 1 2 3 4

(A) Reconstructed interface. (B) Objective functional. (C) Degrees of Freedom.

Figure 6: Certified Descent Algorithm using one measurement. (A) Initial configuration (dotted green), target
inclusion (solid black) and reconstructed interface (dashed blue). (B) Evolution of the objective functional. (C)
Number of Degrees of Freedom.

CDA by using several boundary measurements to retrieve a better approximation of the inclusion. In
particular, we will highlight how this additional information allows to exactly reconstruct the interface
almost everywhere, except for a small region near the middle of the domain D. A possible workaround
to this issue and to the low resolution of the reconstruction in the center of the computational domain
is proposed by Ammari et al. in [4], where a hybrid imaging method arising from the coupling of
electromagnetic tomography with acoustic waves is described.

6.4 The case of multiple boundary measurements

In [29], the authors prove that from an analytical point of view, one measurement is sufficient to
uniquely reconstruct the inclusion within the Calderén’s problem. Other analytical results on this
topic are presented in [1]. Nevertheless, from a numerical point of view, it is known that multiple
measurements are required to have a good approximation of the Electrical Impedance Tomography
identification problem. In this section, we present several tests of the previously described algorithm
using multiple boundary measurements. In particular, we consider D = 10 measurements such that
Vi=0,...,D—-1

gj(x,y) = (z+ay)af | aj=1401j , bj= % ;o CG=J—2 BJ

and we use them to test the following cases:
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(i) one inclusion in a circular domain (Fig. 7A-7C);

)
(ii) one inclusion in a square domain (Fig. 7D-7F);
(iii) two inclusions in a circular domain (Fig. 7G-7I);
(iv)
First, we consider the test case introduced in the previous section, where the domain is the circle
D = {(z,y) | 22 + y* < 25} and the inclusion is the solid black line in figure 6A. Then, we present a
simulation in which the body is the square D := [—4,4]? featuring a single polygonal inclusion (Fig.
7F). Eventually, we propose two cases with multiple inclusions (Fig. 7I and 8C): in both simulations,
we assume that the number of inclusions is known a priori and equals 2 and that the conductivity
ko has only two values, one inside the inclusions and one for the background. As expected, the use
of multiple measurements provides additional information to better reconstruct the target interfaces
(Fig. 7C, 7F, 71 and 8C). We observe that the CDA is able to reconstruct the inclusions near the
boundary 9D of the domain whereas the inner interfaces appear more difficult to identify and with
a less precise outcome. This phenomenon is due to the severe ill-posedness of the problem and the
diffusive nature of the state equation is responsible for the loss of the information in the center of
D, even when using several measurements. In particular, we remark that the final interface in figure
TF still presents two kinks from the initial configuration: this is mainly due to the aforementioned
phenomenon and may be bypassed by choosing a regularizing scalar product. However, this approach
would lead to a global smoothing of the reconstructed interface, including a loss of information about
the potential sharp physical corners of the polygonal inclusion.

As previously remarked, figure 9A confirms the monotonically decreasing behavior of the objective

functional with respect to the iterations of the algorithm. Moreover, the quantitative information
associated with the estimator of the error in the shape gradient allows to derive a reliable stopping
criterion for the optimization procedure which results to be fully-automatic.
Eventually, coarse meshes are proved to be reliable for the computation during the initial iterations
when the guessed position and shape of the inclusion is very unlikely to be precise. Within this context,
even few Degrees of Freedom provide enough information to identify a genuine descent direction for
the objective functional which we later certify using the discussed goal-oriented procedure. Thus, the
same meshes may be used for several iterations increasing the number of Degrees of Freedom only
when the descent direction is no more validated (Fig. 9B).

v) two inclusions in a square domain (Fig. 8A-8C).

7 Conclusion

In this work, we coupled classical shape optimization techniques with a goal-oriented error estimator
for the shape gradient. A guaranteed bound for the error in the shape gradient has been derived by
means of a certified a posteriori estimator.

On the one hand, introducing an a posteriori estimator for the error in the shape gradient provides
quantitative information to define a reliable stopping criterion for the overall optimization procedure.
Coupling this approach with the 2-mesh shape optimization strategy introduced in [3] results in
the novel Certified Descent Algorithm. The CDA is a fully-automatic procedure for certified shape
optimization: a validation of the method is presented by means of several test cases for the well-known
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(E) 132040 elements.

(G) 939 elements.

Figure 7: Certified Descent Algorithm using multiple measurements: test cases (i)-(iii). Left: Initial mesh.
Center: Final mesh. Right: Initial configuration (dotted green), target inclusion (solid black) and reconstructed

interface (dashed blue).
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Figure 8: Certified Descent Algorithm using multiple measurements: test case (iv). Left: Initial mesh. Center:
Final mesh. Right: Initial configuration (dotted green), target inclusion (solid black) and reconstructed interface
(dashed blue).

inverse identification problem of Electrical Impedance Tomography. Another important feature of this
method is the ability of identifying a certified descent direction at each iteration thus leading to a
monotonically decreasing evolution of the objective functional.

Even though the CDA is able to make coarse meshes reliable to identify a genuine descent direction
for the objective functional during the initial iterations, the overall computational cost tends to remain
high. As a matter of fact, the major drawback of the described procedure is the necessity of solving
the dual flux problems to derive a fully-computable upper bound of the error in the shape gradient.
Hence, the Certified Descent Algorithm may result in higher computing times than the Boundary
Variation Algorithm applied on fine meshes.

Ongoing research focuses on improving the a posteriori estimates for the discretization error in
the shape gradient. Promising results are expected by the development of error estimators that only
involve the computation of local quantities. Within this framework, accounting for anisotropic mesh
adaptivity [23] may lead to discretizations with a lower number of Degrees of Freedom and a better
approximation of the physical problem.

Future investigations will focus on the application of the Certified Descent Algorithm to other chal-
lenging problems, such as the shape optimization of elastic structures.
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