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COPULAS CHECKER-TYPE APPROXIMATIONS:

APPLICATION TO QUANTILES ESTIMATION OF

AGGREGATED VARIABLES

A. CUBEROS, E. MASIELLO, AND V. MAUME-DESCHAMPS

Abstract. Estimating quantiles of aggregated variables (mainly sums
or weighted sums) is crucial in risk management for many application
fields such as finance, insurance, environment... This question has been
widely treated but new efficient methods are always welcome; especially
if they apply in (relatively) high dimension. We propose an estima-
tion procedure based on copula’s approximations (checkerboard copula,
checkmin copula). It allows to get rather good estimations from a (quite)
small sample of the multivariate law and a full knowledge of the marginal
laws. Estimations may be improved by including in the approximated
copula some additional information (on the law of a sub-vector or on
extreme probabilities). Our approach is illustrated by numerical exam-
ples.

1. Introduction

Consider a random vector X = (X1, . . . , Xd) and a measurable function
Ψ : Rd → R+, called the aggregation function. In the context of quan-
titative risk management X is known as a risk vector and generally rep-
resents the profit-losses of a portfolio at a given future date. Ψ(X), the
aggregated risk, represents its total future position. The main examples
of aggregation functions are: the sum, max, weighted sums or a slightly
more complex function that may include stop-loss reinsurance type func-
tion on each of the marginal distributions. In this paper, we will be es-
sentially concerned with Ψ =

∑
, which is the most commonly studied ag-

gregation function. We are interested here in the estimation of p-quantiles,
0 < p < 1, of Ψ(X): Qp(Ψ(X)) = inf{x ∈ R, FΨ(x) ≥ p}, where we denote
by FΨ(x) = P (Ψ(X) ≤ x) the distribution function of the aggregated ran-
dom variable. In financial or insurance contexts, the Qp’s are called Value at
Risk and denoted VaR p. We will assume that the distributions F1, . . . , Fd of
the marginal variables X1, . . . , Xd are known and that some information on
the dependence between them is given. Usually this information is available
via some observations of the joint distribution and also via expert opinion.

In practice, neither the marginals nor the dependence of the risk vector
X are known. However, in many cases, the information available on the
marginal distributions is much more important than the one on the depen-
dence structure. For example, when some observations of the vector X are
available, inferences one can do on the marginal distributions give better

Key words and phrases. risk aggregation, empirical copulas, checkerboard copula,
checkmin copula, quantile estimation.
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results than inferences one can do on the multivariate distribution. Also,
samples available for marginal laws may be much larger than those avail-
able for the joint distribution. Moreover, on each marginal risk, some extra
information, as for example expert opinion or prior information, may be
available. These situations arise e.g. for environmental data or in insurance
contexts. So, even if the assumption of the knowledge of marginal distribu-
tions may seem not realistic, by simplification we shall assume here that the
marginal distributions Fi are known. However it may be well the case that
these distributions are actually estimations based on data or extra marginal
information.

When the marginals are known but the dependence is unknown, the re-
arrangement algorithm (introduced in special cases in [25] and [24]) allows
to obtain bounds on the distribution of Ψ(X) ([23]) for d ≥ 30. By improv-
ing the re-arrangement algorithm, bounds on the VaR are obtained in ([12])
in high dimensional (d ≥ 1000) inhomogeneous portfolio. These bounds are
usually too wide to be useful in practice. Cases in which some kind of depen-
dence information is available lead to narrower bounds ([1, 2]) for the risk
measure at hand. Bounds are also derived in ([4]) for dependence structures
described by different copula models. A general mathematical framework
which interpolates between marginal knowledge and full knowledge of the
distribution function of X is considered in ([11]).

In this paper, we propose to use the check-min-erboard copula (as in-
troduced in [17] in dimension 2 and developed in [20] in higher dimension)
to merge the information given by a small sample of the distribution of X
with the known marginal distributions. Related kinds of copulas approx-
imation appeared already in [7] and have been studied in [15, 21, 16] for
discrete variables. Durante et al. [10] presented patchwork copulas which
give a general framework for studying piecewise approximations of copulas.
We consider generalized versions of the checkerboard copula: the partition
considered needs not to cöıncide with the one given by the sample. More-
over, we introduce the checkerboard copula with information on the tail and
with information on a sub-vector, to take into account some additional in-
formations which may improve the quantile estimation (see Section 3). We
introduce empirical versions of the above approximations that are proper
copulas and allow to obtain efficient estimations of aggregated quantiles.

In Section 2, we recall basic definitions on copulas and we present the check-
min-erboard copulas and their empirical version. We also prove some con-
vergence results. In Section 3, we show how additional information (on
the tail or on the law of a sub-vector) may be pushed into the check-min-
erboard copula. A simulation study is presented in Section 4. Conclusions
are provided in Section 5.

2. Copulas approximations

Let F be the distribution function of X = (X1, . . . , Xd), where X1, . . . , Xd

are assumed to be random variables living on an atomless probability space.
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By Sklar’s Theorem, there exists a copula distribution C on [0, 1]d such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

where the Fi’s are the distribution functions of the Xi’s.
When the marginal random variables Xi are absolutely continuous this cop-
ula C is unique. We will assume that the marginals of X are absolutely
continuous. Remark that if G is a distribution function on [0, 1]d, it is a
copula if and only if the marginal distributions are uniform on [0, 1], that is,
G(x) = xk for any x ∈ [0, 1]d such that xi = 1, i 6= k.
The aggregation function Ψ : Rd → R+ is considered to be the sum:

Ψ(X) =
d∑
i=1

Xi. As above, FΨ(x) = P (Ψ(X) ≤ x) will denote the distri-

bution function of the aggregated random variable.
The check-min-erboard copula as introduced in [17] in dimension 2 and de-
veloped in [20] in higher dimension, is a flexible tool to approximate copulas.
These copula’s approximations are particular cases of patchwork copulas
presented in [10]. In this section, we present the check-min-erboard copulas
and their empirical version.

2.1. Check-min-erboard Copulas. As above, let F denote the cumula-
tive distribution function (c.d.f.) of X, C its copula function and Fi the
c.d.f of Xi, i = 1, . . . , d.
Let µC be the probability measure associated to C, i.e such that:

µC

(
d∏
i=1

[0, ui]

)
= C(u1, . . . , ud)

for any u = (u1, . . . , ud) ∈ [0, 1]d.
By a µ-decomposition of a set A ⊂ Rd we mean a finite family of measurable
sets {Ai ⊂ A} such that

(1) µ(Ai ∩Aj) = 0 whenever i 6= j

(2)
∑
i

µ(Ai) = µ(A).

Definition 1. A measure µ∗ is a checkerboard approximation for a copula
C if there exists a λ-decomposition A = {(ai, bi)} of Id, the d-dimensional
unit cube, made out of d-intervals such that for all i,

(1) µ∗ is uniform on (ai, bi);
(2) µ∗(A) = µC(A) for any A ∈ A.

For m ∈ N, let us consider the regular λ-decomposition of the unite cube
[0, 1]d denoted as Im and consisting of md d-cubes with side length 1/m :

Ii,m =
d∏
j=1

[
ij − 1

m
,
ij
m

]
, i = (i1, . . . , id), ij ∈ {1, . . . ,m}.

µ∗m is the checkerboard approximation associated to the regular decomposi-
tion Im.
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We shall denote by C∗m the checkerboard copula associated to the measure
µ∗m. The definition of the checkerboard copula may then be rewritten as:

C∗m(x) =
∑
i

mdµ(Ii,m)λ([0, x] ∩ Ii,m)

where [0, x] =
d∏
i=1

[0, xi], for x = (x1, . . . , xd) ∈ [0, 1]d and λ is the d-

dimensional Lebesgue measure. From a probabilistic point of view, sampling
with respect to C∗m means choosing i ∈ {1, . . . ,m}d with probability µ(Ii,m)
and then sampling uniformly in Ii,m. This leads us to consider also the
checkmin copula: instead of sampling uniformly in Ii,m, one may sample in
Ii,m with respect to the comonotonic copula. The checkmin copula is then
given by:

C†m(x) =
∑
i

mµ(Ii,m) min

(
xj −

ij − 1

m
,

1

m

)
.

In what follows, Com denotes either C∗m or C†m and is called check-min-erboard
copula.

In [20], it is proved that Com is a copula that approximates C. The fol-
lowing proposition gives a more precise bound on the approximation of C
by Com by a factor 2, than the one presented in dimension 2 in [17], page
613, or than the result obtained in [10].

Proposition 2.1. Let Com be either the checkerboard copula or the checkmin
copula defined above. We have:

sup
x∈[0,1]d

|Com(x)− C(x)| ≤ d

2m
.

Proof. This is clear that for any x ∈ [0, 1]d with x = i
m , i ∈ {1, . . . ,m}d,

Com(x) = C(x). We present the computations for C∗m, the same computa-

tions give the result for C†m.
For a ∈ {1, . . . ,m} and k ∈ {1, . . . , d}, we denote by Bk+

a and Bk−
a the

(half)-strips:

Bk+
a =

{
x ∈ [0, 1]d,

a

m
− 1

2m
< xk ≤

a

m

}
and

Bk−
a =

{
x ∈ [0, 1]d,

a

m
< xk ≤

ik
m
− 1

a

}
.
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If x ∈ Ii,m with i = (i1, . . . , id) then,

|C∗m(x)− C(x)| ≤
d∑

k=1

|µ∗m(Bk−
ik

)− λ(Bk−
ik

)|1Bk−
ik

(x) +

d∑
k=1

|µ∗m(Bk+
ik

)− λ(Bk+
ik

)|1Bk+
ik

(x)

≤
d∑

k=1

min(µ∗m(Bk−
ik

), λ(Bk−
ik

))1Bk−
ik

(x) +

d∑
k=1

min(µ∗m(Bk+
ik

), λ(Bk+
ik

))1Bk+
ik

(x)

=
d

2m

since µ∗m and λ are both associated to a copula,

µ∗m(Bk−
ik

) = λ(Bk−
ik

) = µ∗m(Bk+
ik

) = λ(Bk+
ik

) =
1

2m
.

The announced result follows. �

In what follows, we will define an empirical version of the check-min-
erboard copula defined above, by using the empirical copula.

2.2. Empirical check-min-erboard copulas. The empirical copula, in-
troduced by Deheuvels ([8]), may be used to estimate non parametrically
the copula.

Definition 2. Let X1, . . . ,Xn be n independent copies of X. Each of them

writes Xj = (Xj
1 , . . . , X

j
d). Let R1

i , . . . , R
n
i , i = 1, . . . , d be their marginals

ranks, i.e.,

Rji =

n∑
k=1

1{X(j)
i ≥ X

(k)
i }, i = 1, . . . , d, j = 1, . . . , n

where X
(1)
i < · · · < X

(n)
i are the order statistics associated to the ith coor-

dinate sample X1
i , . . . X

n
i . The empirical copula Ĉn of X1, . . .Xn is defined

as

Ĉn(u1, . . . , ud) =
1

n

n∑
k=1

1

{
1

n
Rk1 ≤ u1, . . . ,

1

n
Rkd ≤ ud

}
.

It is well known (see [14] e.g.) that the empirical copula may be used
to estimate C. Nevertheless, it is not a proper copula as its marginal laws

are discrete. We shall use the empirical copula Ĉn and the empirical prob-

ability measure µ̂ associated to Ĉn, to define an empirical version of the
checkerboard copulas introduced above. Note that in [8] an interpolation of
the empirical copula in order to get an estimation of C which is a proper
copula is also mentioned. As we shall see below, the main advantage of
our approach is that it is very easy to simulate a sample from the empirical
checkerboard copula.
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Definition 3. Let X(1), . . . ,X(n) be n independent copies of X. The em-

pirical checkerboard copula (ECBC) Ĉ∗m is defined by

Ĉ∗m(x) =
∑
i

mdµ̂(Ii,m)λ([0, x] ∩ Ii,m).

The empirical checkmin copula (ECMC) Ĉ†m is defined by

Ĉ†m(x) =
∑
i

µ̂(Ii,m)mmin

(
xj −

ij − 1

m
,

1

m

)
.

In what follows, Ĉom denotes either the ECBC or the ECMC and is called
empirical check-min-erboard copula.

Remark. If U1, . . . , Un is an i.i.d sample distributed as C, it is known (see

e.g. [14]) that the resulting empirical distribution function and Ĉn defined
above coincide. This remark justifies the use of the Donsker property below.

In the next proposition we show that Ĉom, defined above, is a copula
whenever the integer m from the length size of the partition Im divides n,
the sample size.

Proposition 2.2. The empirical chek-min-erboard copula Ĉom defined on
the regular partition Im and based on an i.i.d sample of size n is a copula,
if and only if m divides n.

Proof. We give the details of the proof for C∗m. The proof is the same for

C†m.
Suppose that m ≤ n and that m divides n. By definition the empirical
checkerboard copula is a distribution function, we should simply check that
the marginals are uniform. Without losing generality we show only that the

projection on the first coordinate of the measure induced by Ĉ∗m is uniform,

or equivalently that Ĉ∗m(x) = x1 for any x ∈ [0, 1]d with xj = 1 for j 6= 1.
For ` ∈ {1, . . . ,m}, consider the strip B1

` :

B1
` =

{
x ∈ [0, 1]d,

`− 1

m
< x1 ≤

`

m

}
=

]
`− 1

m
,
`

m

]
× [0, 1]d−1.

The empirical copula is concentrated on n points of [0, 1]d whose coordinates

are of the form j
n , j = 1, . . . , n. Moreover, there is exactly one mass on

each strip B1
j , j = 1, . . . , n. So that if k = n/m, then the number of

masses of Ĉn on each strip B1
` , ` = 1, . . . ,m is exactly k, which means

that µ̂(B1
` ) = k

n = 1
m . Let x = (x1, 1, . . . , 1), x1 ∈ [0, 1], x ∈ B1

` with
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`−1
m < x1 ≤ `

m .

Ĉ∗m(x) =
∑

i∈{1,...,m}d
mdµ̂(Ii,m)λ([0, x] ∩ Ii,m)

=
∑
j<`

µ̂(B1
j ) +

∑
Ii,m⊂B1

`

mdµ̂(Ii,m)
(x1 − `−1

m )

md−1

=
∑
j<`

µ̂(B1
j ) +m

(
x1 −

`− 1

m

)
µ̂(B1

` )

=
`− 1

m
+

(
x1 −

`− 1

m

)
= x1,

which shows that the first marginal is uniform. On the other direction, it
is easy to see that if m does not divide n then the number of masses of

Ĉn on each strip B1
` , ` = 1, . . . ,m is not the same and thus the uniform

distribution for the margin is lost. �

We have proved that both the ECBC and ECMC are proper copulas
provided that m divides n. The following result shows that they go to C at
rate 1√

n
+ 1

m .

Proposition 2.3. Let m divide n, we have:

sup
t∈[0,1]

|Ĉom(t)− C(t)| ≤ OP

(
1√
n

)
+

d

2m
.

Proof. Once more, we give the details for C∗m, the proof is the same for C†m.

|Ĉ∗m(t)− C(t)| ≤ |Ĉ∗m(t)− C∗m(t)|+ |C∗m(t)− C(t)|.
From Proposition 2.1, we know that

sup
t∈[0,1]d

|C∗m(t)− C(t)| ≤ d

2m
.

Furthermore,

|Ĉ∗m(t)− C∗m(t)| ≤
∑

i∈{1,...,m}d
md λ([0, t] ∩ Ii,m)|µ̂(Ii,m)− µ(Ii,m)|.

Let I = {Ii,m, i ∈ {1, . . . ,m}d,m ∈ N}. By using Example 2.6.1 in [26], I
is universally Donsker family. So that,

sup
i∈{1,...,m}d,m∈N

|µ̂(Ii,m)− µ(Ii,m)| = OP

(
1√
n

)
.

Hence the result. �

Since Ĉom(t) converges to C(t), it is natural to estimate P(Ψ(X) ≤ t) =

FΨ(t) by P(Ψ(T−(Uom)) ≤ t) = F om(t) where Uom ; Ĉom and T−(u1, . . . , ud) =
(F↼

1 (u1), . . . , F↼
d (ud)). The following result is close to that of Mainik [18],

where P(Ψ(X) ≤ t) is estimated by using the empirical copula and the em-
pirical distribution functions of the marginal laws. For t ∈ R, let At = {x ∈
Rd,

∑d
i=1 xi ≤ t}. We shall assume the following regularity condition on

C. This condition is satisfied for copulas with bounded density, as well as
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Clayton copulas in dimension 2 and Gaussian copula in dimension 2, with
ρ > 0 (see [18] for a more complete discussion on this condition). Sim-
ple symmetry considerations show that it will also be satisfied for survival
Clayton copulas.

Assumption 2.1. For t ∈ R, Bt = {u ∈ [0, 1]d, T−(u) ∈ At} and ∂(Bt) its
boundary, the regularity of Fj , j = 1, . . . , d, implies that ∂(Bt) is a d − 1

hyper-surface in [0, 1]d. For δ > 0, Uδ(Bt) is the δ neighborhood of ∂(Bt).
The regularity condition on C is :

(2.1) µ(Uδ(Bt)) = O(δ).

Proposition 2.4. Under Assumption 2.1

sup
t∈R
|FΨ(t)− F om(t)| = OP

(
1√
n

)
+O

(
1

m

)
.

Proof. We present the proof for the checkerboard copula. We have:

|FΨ(t)− F ∗m(t)| =

∣∣∣∣∣∣
∑

i∈{1,...,m}d
µ̂(Ii,m)mdλ(Ii,m ∩Bt)− µ(Ii,m ∩Bt)

∣∣∣∣∣∣
≤

∑
i∈{1,...,m}d

|µ̂(Ii,m)− µ(Ii,m)|mdλ(Ii,m ∩Bt)︸ ︷︷ ︸
(1)

+
∑

i∈{1,...,m}d
µ(Ii,m)md |λ(Ii,m ∩Bt)− µ(Ii,m ∩Bt)|︸ ︷︷ ︸

(2)

.

The term (1) is OP( 1√
n

) as in Proposition 2.3. The term (2) is bounded

above by µ(Udm(Bt)) with dm =
√
d
m the diameter of the Ii,m’s. The result

follows. �

In Appendix A we describe how to simulate from a copula Ĉom. Figures
1 and 2 show simulations of ECBC and ECMC with different values for m.
The size of the simulated sample from the ECBC and ECMC is N = 10000.

2.3. Estimation procedure. Assume the marginal laws are known and a
(quite small) sample of size n of X is available.

(1) Get the n sample rank.

(2) Simulate a sample of size N from the copula Ĉom for N large (with
the procedure described in Appendix A):

(u
(1)
1 , . . . , u

(1)
d ), . . . , (u

(N)
1 , . . . , u

(N)
d )

(3) Get a sample of Ψ(Xo) using the marginals to transform the above
sample:

Ψ
(
F↼

1 (u
(1)
1 ), . . . , F↼

d (u
(1)
d )
)
, . . . ,Ψ

(
F↼

1 (u
(N)
1 ), . . . , F↼

d (u
(N)
d )

)
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Figure 1. Simulation of empirical checkerboard copulas
(N = 10000) based on the same sample of size n = 30, with
m = 5 (left) and m = 15 (right). The red points are the
sample rank points.

Figure 2. Simulation of empirical checkmin copulas (N =
10000) based on the same sample of size n = 30, with m = 6
(left) and m = 10 (right). The red points are the sample
rank points.

(4) Estimate the distribution function F oΨ of Ψ(Xo) empirically using the

above sample. We will denote F̂ oΨ the empirical distribution function
from the sample above.

3. Checkerboard copulas with additional information

We define two kinds of checkerboard copula with additional information
and then present their empirical version. First of all, we consider the case
where the distribution of a sub-vector XJ = (Xi)i∈J , J ⊂ {1, . . . , d}, is
known, |J | = k < d. Denote CJ the copula of XJ . Let µJ be the
probability measure on [0, 1]k associated to CJ . For i = (i1, . . . , id), let
x = (x1, . . . , xd) ∈ [0, 1]d, xJ = (xj)j∈J , x−J = (xj)j 6∈J and

IJi,m =

{
x ∈ [0, 1]d / xj ∈

[
ij − 1

m
,
ij
m

]
, j ∈ J

}
,

I−Ji,m =

{
x ∈ [0, 1]d / xj ∈

[
ij − 1

m
,
ij
m

]
, j 6∈ J

}
.

The checkerboard copula with information on XJ is defined below.
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Definition 4. Consider the probability measure on [0, 1]d defined by

µJm([0, x]) =
∑

i⊂{1,...,d}

md−k

µJ(IJi,m)
µ(Ii,m)λ([0, x−J ] ∩ I−Ji,m)µJ([0, xJ ] ∩ IJi,m).

Let CJm, the checkerboard copula with additional information on XJ , be
defined by CJm(x) = µJm([0, x]).

Proposition 3.1. CJm is a copula, it approximates C:

sup
x∈[0,1]d

|CJm(x)− C(x)| ≤ d

2m
.

If XJ and X−J are independent then,

sup
x∈[0,1]d

|CJm(x)− C(x)| ≤ d− k
2m

.

Proof. The definition of CJm ensures that it is a cumulative distribution
function on [0, 1]d. The fact that CJm is a copula then follows from an easy
computation to get that CJm(x) = xk whenever x = (xj)j=1,...,d, with xj = 1
for j 6= k.
The rest of the proof is done as in that of Proposition 2.1. �

We may also add information on the tail and so define the following
particular checkerboard copula.

Definition 5. For p ∈]0, 1[, let Ep =
(∏d

i=1[0, p]d
)c

and Ep the λ-decomposition

of Ep consisting of the hyper rectangles [a1, b1]×· · ·× [ad, bd] where [ai, bi] =
[0, p] or [ai, bi] = [p, 1] for all i = 1, . . . , d with at least one of [ai, bi] =
[p, 1]. We assume that µC(A) is known for each A ∈ Ep. Consider the λ-

decomposition of the d-cube [0, p]d given by Jm consisting of the elements

Ji,m = p · Idm,i for d-tuple i = (i1, . . . , id) in {0, 1
m , . . . ,

m−1
m }

d. Define C
Ep
m

as the checkerboard copula associated to the λ-decomposition of the unit
d-cube Jm ∪ Ep, that is

C
Ep
m (x) = µC(Ecp)µ

∗
m([0, x]/t)1Ec

p
(x) +

∑
E∈Ep

µC(E)

λ(E)
λ([0, x] ∩ E).

This is the checkerboard copula with extra information on the tail.

Empirical versions.

• The ECBC with information on a sub-vector XJ is defined by

ĈJm(x) =
∑

i⊂{1,...,d}

md−k

µJ(IJi,m)
µ̂(Ii,m)λ([0, x−J ] ∩ I−Ji,m)µJ([0, xJ ] ∩ IJi,m).

• The ECBC with information on the tail is defined by:

ĈEm(x) = µC(Ecp)Ĉ
∗
m(x/t)1Ec

p
(x) +

∑
E∈Ep

µC(E)

λ(E)
λ([0, x] ∩ E).

In Figure 3 we present a simulation of the ECBC with information on the
tail for different values of m.
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Figure 3. Simulation of empirical checkerboard copulas
with information on the tail, with n = 30, p = 0.95 and
m = 5 (left), m = 15 (right). The red points are the sample
rank points

Remark. Checkmin copulas with additional information (on a subvector or
on the tail) may be defined in the same way as checkerboard with additional
information.

4. Numerical Application

In this section we use the estimator of the distribution function FΨ, as
defined in Section 2.3, in order to estimate the quantiles Qp(S) for S =
X1 + · · · + Xd at different confidence levels 0 < p < 1. We will consider
the Pareto-Clayton model, defined in Section 4.1, because, in that case,
the exact value of Qp(S) can be calculated, so that we may compare our
simulation results to the exact one. A simulation study will also be presented
for another model with gaussian copulas and lognormal marginal laws. In
that case, the exact value of Qp(S) is not known so that we shall use huge
sample (of size 107) to get a fine approximation of Qp(S) and then compare
it with our estimation using the empirical check-min-erboard copulas based
on relatively small samples. In Section 4.2, we shall see that our method is
performant in high dimension (d = 25, 50, 100) with relatively small sample
size. In Section 4.3, we provide some examples to show the impact of the
information added in the checkerboard copula.

4.1. The Pareto - Clayton model. We consider X = (X1, . . . , Xd) such
that:

P(X1 > x1, . . . , Xd > xd |Λ = λ) =
d∏
i=1

e−λxi ,

that is, conditionally to the value of Λ the marginals of X are independent
and exponentially distributed.
If Λ is Gamma distributed, then the Xi’s are Pareto distributed with de-
pendence given by a survival Clayton copula.
If Λ is Levy distributed, then the Xi’s are Weibull distributed with a Gum-
bel survival copula.
These models have been studied by Oakes (1989) and Yeh (2007) [22, 27].
In the context of multivariate risk theory, they have been used e.g. in [19]
and [6].
In what follows, we consider that Λ ; Γ(α, β), so that the Xi’s are Pareto
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(α, β) distributed and the dependence structure is described by a survival
Clayton copula with parameter 1/α. In [9], it is shown that, in this case, S
follows the so-called Beta prime distribution:

FS(x) = Fβ

(
x

1 + x

)
where Fβ is the distribution function of the Beta(dβ, α) distribution. The
inverse of FS (or quantile function of S) can also be expressed in terms of
the inverse of the Beta distribution

F↼
S (p) =

F↼
β (p)

1− F↼
β (p)

.

From these results (see also [5]), we may compute Qp(S).

4.2. Simulation study in dimension 25, 50 and 100. In this section we
will consider several Pareto-Clayton models and several Gaussian-Lognormal
models. Nevertheless, at the beginning we will presentat results in dimension
25, for one Pareto-Clayton model and then for one Gaussian-Lognormal
model. One open question is the choice of the partition size m. Following
Coeurjolly [3], we propose to keep the median of the estimations obtained
for all the m divisor of n for each quantile. The study done in Section 4.2.1
indicates that this choice performs well, it is why in the other subsections,
we just present the median result (and not the results for all m). We also
perform simulations in dimension 50 and 100 (Section 4.2.2). Tables and
boxplots showing the simulation results are postponed to Appendix B and
Appendix C.

4.2.1. Simulations in dimension 25. We first perform simulations for a Pareto-
Clayton model of parameters β = 3 and α = 1. We vary the sample size:
n = 80, n = 200. Recall that for the Pareto-Clayton model, the real value of
the quantiles is known. Tables 4 and 5 give the results in terms of Relative
Mean Square Error (RMSE) over a run of s = 100 different simulations of
the initial sample. Let q̂k be the estimations of q on the kth simulation run,
then

RMSE =

√√√√1

s

s∑
k=1

(q̂k − q)2

q
.

The size of the checkerboard samples is N = 10000. The RMSE is com-
puted for each value of m for the checkerboard (ECBC) and the chekmin
(ECMC) approximations. Alternatively, the median choice of m is done for
each of the 100 simulations and the RMSE is then computed for the cor-
responding estimations. The check-min-erboard estimations are compared
with parametric ones: we adjust to the samples three copulas (survival Clay-
ton, Gaussian, Clayton), simulate an aggregated sample of size 10000 with
the estimated copula and the known marginals to estimate the aggregated
quantile. Finally, we put in the table the result obtained with the empirical
copula and the known margins.
In Tables 4 and 5, we remark that the checkmin approximation performs
significantly better than the cherckerboard one. This may be explained by
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the fact that the survival Calyton copula is closer to a comonotonic copula
than to the independent copula for the upper tails. Tables 6 and 7 give the
results for a Gaussian - lognormal model with correlation ρ = 0.1 for all
pairs, the parameters of the lognormal margins are different for each of the
25 coordinates. It is expected in that case that the checkerboard copula will
give better results than the checkmin. As already mentioned, in the case of
a Gaussian - lognormal model, the exact value of the aggregated quantile
is unknown. We estimate it with huge samples (of size 107) and use this
estimate (called near exact value) to compute the RMSE’s and compare the
estimations.

Tables 6 and 7 show that, as expected, in this case, the checkerboard copula
gives better results than the checkmin copula. This may be explained by
the fact that for a correlation coefficient ρ = 0.1 for all pairs, the model is
closer to the independence than to the comonotony. We now give results in
higher dimension (d = 50, d = 100).

4.2.2. Simulations in higher dimensions. We now perform simulations in
dimension 50 and 100 for samples of size n = 400. We consider the Pareto-
Clayton model with parameters 2 and 1, and a Gaussian-lognormal model
with correlations equal to 0.25, 0.5, 0.75 (one third of the coordinates of X
for each correlation value). The boxplots corresponding to 100 iterations of
the estimation algorithm are presented in Appendix C. In the case of the
Pareto-Clayton model, the horizontal line is the real value.

Both Figures 4 and 5 show that the median ECMC estimation is perfor-
mant for quantile levels 0.995 and 0.999. It is close in mean to the real VaR
and much less dispersed than the empirical estimation. Of course the cor-
rect parametric model (here the survival Clayton copula) performs better
but our approach will be interesting in cases where the parametric models
are not well suited to data.

In the case of Gaussian-lognormal model, we consider the estimation with
the gaussian copula as a reference. As above, Figures 6 and 7 show that the
checkmin estimator is performant also for this model.

4.3. Adding information (on the tail or on a sub-vector). We con-
sider a Pareto-Clayton model in dimension 2, with β = 1 and α = 2. The
multivariate sample is of size n = 30 and for each presented method we
performed N = 1000 estimations of the p-quantile at different confidence
levels. Table 1 presents the mean and the root mean square error of the
N = 1000 estimations. The estimations were calculated using the ECBC
with and without information on the tail on different λ-regular decomposi-
tions Im for m = 6, 15, 30. The information on the tail is introduced on Ep,
for p = 0.95, 0.99, by giving to each E in Ep the measure µC(E) where C
is the survival Clayton copula with parameter 1/2. For comparison a direct
estimation from the empirical distribution of S is given.
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 2.5 4.1 6.4 16.0 23.2 53.4
Empirical 2.5 4.0 6.1 12.2 13.2 14.0

(26%) (31%) (39%) (72%) (70%) (78%)
ECBC (m=6)

No tail information 2.6 4.4 6.6 14.8 20.8 45.7
(9%) (8%) (6%) (8%) (11%) (15%)

Information on Ep 2.6 4.4 6.4 14.2 22.7 49.5
p=0.99 (9%) (8%) (5%) (11%) (3%) (8%)

Information on Ep 2.7 4.1 6.1 15.6 21.8 46.8
p=0.95 (10%) (5%) (4%) (3%) (6%) (13%)

ECBC (m=15)
No tail information 2.5 4.2 6.8 15.5 21.5 46.4

(12%) (13%) (11%) (9%) (10%) (14%)
Information on Ep 2.5 4.3 6.8 14.3 22.7 49.5

p=0.99 (12%) (12%) (12%) (11%) (3%) (8%)
Information on Ep 2.6 4.3 6.2 15.6 21.8 46.8

p=0.95 (11%) (10%) (4%) (3%) (6%) (13%)
ECBC (m=30)

No tail information 2.5 4.2 6.6 15.8 22.0 47.0
(13%) (15%) (17%) (13%) (12%) (14%)

Information on Ep 2.5 4.2 6.7 14.3 22.7 49.5
p=0.99 (13%) (16%) (16%) (11%) (3%) (8%)

Information on Ep 2.6 4.4 6.2 15.6 21.8 46.8
p=0.95 (13%) (11%) (4%) (3%) (6%) (13%)

Table 1. The mean and the RMSE in % of the exact value
for 1000 estimations of the quantile for a Pareto-Clayton sum
in dimension 2.

All the methods we proposed perform much better than the empirical
estimation based on the multivariate sample alone. The estimations based
on the ECBC with λ-decomposition Im, perform better when m = 6 and
m = 15 than when m = 30. ECBC with m = 6 performs slightly better
than ECBC with m = 15 for the estimation of the quantiles with confidence
levels lower than 99.5% and slightly worst on the higher levels. When the
information on the tail is introduced on Ep with p = 0.95 the estimation on
the quantile with confidence level > 0, 95 is significantly improved. When
it is introduced on Ep with p = 0.99 the estimations improve on the higher
confidence levels 99.5% and 99.9%.

Remark 1. It is known (see e.g. Proposition 2 in [12]) that the supremum
of the aggregated VaR of level α over distributions X = (X1, X2) with X1

and X2 having common distribution function F is:

2F−1

(
1 + α

2

)
.
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For the above example (Pareto margins of parameters 1 and 2), we get the
following bounds:

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Bound 4.32 6.94 10.65 26.284 38.00 87.44

These bounds have to be compared with the real values above. This compar-
ison shows that the use of the bounds is not sharp for quantile estimations,
even if they are very interesting to bound the uncertainty risk.

In order to assess the gain that the knowledge of the information on
a sub-vector may give to the estimation, we performed here the following
simulation study. Let X = (X1, X2, X3) be the model where X1 = X2 =
Y/2, and X3 ∼ Y where Y is Pareto distributed with α = 2. We assume that
(Y ,X3) is a Pareto-Clayton model. That is, X1 and X2 are comonotonic
(or fully dependent) and the dependence between X1 and X3 is given by
a survival Clayton of parameter 1/2. Clearly the distribution of the sum
S = X1 + X2 + X3 is equal to the distribution of the sum of the Pareto-
Clayton model in dimension 2, with parameters α = 2 and β = 1 and thus
the exact value of the quantiles can be easily computed. We compare the
results on the quantiles estimation using the ECBC method without and
with information on the sub-vector (X1, X2) and λ−decompositions Im for
m = 6, 15, 30. As before the multivariate sample is of size n = 30 and for
each method we performed N = 1000 estimations of the quantile at different
confidence levels. The results are presented in Table 2.

It can be noticed that the RSME of the quantile estimation is lower when
the information on (X1, X2) is introduced in the ECBC of dimension 3 and
the gap is more important on higher confidence levels.

Remark. Simulating with respect to the empirical checkerboard copula with
information on a sub-vector may be a difficult task because one has to simu-
late with respect to a given copula conditionally to belonging to a given set
Ii,m. In the case of a comonotonic sub-vector, this becomes trivial because
we only need to simulate one coordinate uniformly.

Simulation results with the same kind of model in dimension 6 are pre-
sented in Table 3. We assumed X = (X1, . . . , X6) with X1 = X2 = Y/2 and
X3, X4, X5 and X6 distributed as Y , a Pareto r.v. with parameter α = 2.
The copula of X is assumed to be a survival Clayton of parameter 1/2. As
above, the size of the multivariate sample is n = 30 and for each method
we performed N = 1000 estimations of the quantile at different confidence
levels.

Again, by introducing the information on the sub-vector (X1, X2) we get
a smaller RMSE than in the case where no information is added. On the
other hand, we also remark that by increasing the dimension (from d = 3 to
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact 2.5 4.1 6.4 16.0 23.2 53.4
ECBC (m=6)

No information 2.7 4.6 6.6 14.0 19.1 40.7
(13%) (13%) (7%) (13%) (18%) (24%)

Information on 2.6 4.4 6.6 14.8 20.8 45.7
(X1, X2) (9%) (8%) (6%) (8%) (11%) (15%)

ECBC (m=10)
No information 2.5 4.6 7.0 14.5 19.8 41.3

(12%) (13%) (12%) (11%) (15%) (23%)
Information on 2.5 4.3 6.7 15.2 21.2 46.1

(X1, X2) (11%) (9%) (9%) (8%) (10%) (15%)
ECBC (m=30)
No information 2.5 4.2 6.8 15.9 21.4 43.3

(14%) (16%) (19%) (14%) (14%) (21%)
Information on 2.5 4.2 6.6 15.8 21.9 47.1

(X1, X2) (13%) (16%) (17%) (13%) (13%) (14%)

Table 2. The mean and the RMSE in % of the exact value
for 1000 estimations of the quantiles in dimension 3, with or
without using the knowledge of the comonotonic dependence
between X1 and X2.

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact 6.1 9.8 14.9 36.4 52.4 120.1
ECBC (m=6)

No information 7.2 11.0 15.0 28.2 37.3 74.3
(19%) (14%) (7%) (23%) (29%) (38%)

Information on 7.1 10.9 15.0 28.9 38.4 77.5
(X1, X2) (17%) (13%) (7%) (21%) (27%) (36%)

ECBC (m=10)
No information 6.8 11.3 16.1 30.0 39.2 76.3

(16%) (18%) (13%) (19%) (26%) (37%)
Information on 6.7 11.1 16.0 30.6 40.3 79.7

(X1, X2) (15%) (16%) (12%) (17%) (24%) (34%)
ECBC (m=30)
No information 6.3 10.4 16.3 33.7 43.4 81.3

(15%) (19%) (20%) (18%) (22%) (33%)
Information on 6.3 10.4 16.2 34.0 44.1 84.2

(X1, X2) (15%) (18%) (19%) (18%) (20%) (31%)

Table 3. The mean and the RMSE in % of the exact value
for 1000 estimations of the quantiles in dimension 6.

d = 6) we get higher RMSE, for the same sample size, which is an expected
behavior.
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5. Conclusion

In this paper, we have constructed empirical check-min-erboard copulas
with and without additional information on the joint law. We have used
them to get efficient estimations of the quantiles of the sum when using a
(relatively) small sample of the joint law and the knowledge of the marginal
laws. Remark that a sample of size 200 in dimension 25 is small (and so
does a sample of size 500 in dimension 100) and we get nevertheless rather
good estimations. Our procedure provides a flexible tool for estimation of
quantiles of sums from a small sample. This situation arises in many ap-
plications. In order to perform well, one has to figure out from the sample
whether it is closer to an independent or comonotonic copula. Moreover,
if one has partial information on the vector (copula of a sub-vector, infor-
mation on the tail), it may be plugged in to improve the estimation. It is
remarquable that the method remains quite efficient in high dimension. Of
course, the interest of this non-parametric method would be for data for
which a parametric estimation is not well suited.
We are aware that many theoretical and practical questions have to be stud-
ied further, among which the points below.

• The optimal choice of m with respect to the sample size n. The
choice of the median value could allow avoid this problem. Simula-
tions indicate that this may be a good choice when the data is not
too close to independence. In that case, the checkmin copula should
be preferred to the checkerboard one and the median estimation per-
forms well. For data closer to independence, the checkerboard copula
should be chosen and then it seems that the higher m the better the
estimation. These claims would require theoretical support;
• The quantification of the impact of plugging additional information

in the empirical checkerboard copula;
• Developing efficient algorithms to simulate with respect to the em-

pirical checkerboard copula with information on a sub-vector, for
other copulas than the comonotonic one;
• Developing efficient algorithms to simulate with respect to the em-

pirical checkerboard copula with information on the tail in dimension
larger than 2.
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Appendix A. Algorithm

Let us describe how to simulate from a checkerboard or checkermin copula
with sample x1 = (x11, . . . , x1d), . . . ,xn = (xn1, . . . , xnd) and partition Im:
Using the rank marginals, transform the sample of the copula in the pseudo-
sample u1, . . .un, where

ui = (ui1, . . . , uid) =

(
Ri1 − 1

n
, . . . ,

Rid − 1

n

)
,

where Rij is the rank of xij amongst (x1j , . . . , xnj). Notice that the coordi-
nates of ui belong to the set {0, 1/n, . . . , (n− 1)/n}.

(1) Choose randomly and uniformly one vector ui from the pseudo-
sample {u1, . . . ,un}.

(2) Let ũ = (ũ1, . . . , ũd) be the vector with coordinates given by

ũj =
buij ·mc

m
.

I.e, each coordinate ũj in the vector ũ is the largest rational of the
form k/m less than or equal to uij .

(3) Simulate an element v ∈ [0, 1]d according to an independent or
comonotone copula, depending if we want to simulate from a checker-
board or a checkermin copula respectively.

(4) Then, the vector
z = ũ + v/m

is a simulation from the required checkerboard or checkermin copula.
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Appendix B. Tables

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 16.43 23.08 31.28 59.10 76.41 135.89
ECBC, m = 2 2% 16% 29% 51% 58% 68%
ECBC, m = 4 10% 5% 17% 43% 51% 64%
ECBC, m = 5 11% 4% 14% 40% 48% 63%
ECBC, m = 8 12% 6% 8% 33% 43% 59%

ECBC, m = 10 12% 8% 7% 30% 40% 58%
ECBC, m = 20 10% 9% 9% 21% 31% 52%
ECBC, m = 40 8% 9% 11% 18% 26% 48%
ECBC, m = 80 8% 9% 12% 23% 25% 44%

ECBC, median estimation 9% 5% 8% 31% 41% 59%
ECMC, m = 2 2% 7% 12% 18% 20% 24%
ECMC, m = 4 1% 2% 3% 5% 5% 13%
ECMC, m = 5 2% 3% 4% 6% 7% 13%
ECMC, m = 8 4% 3% 5% 10% 12% 16%

ECMC, m = 10 5% 3% 6% 11% 13% 19%
ECMC, m = 20 7% 5% 6% 14% 17% 23%
ECMC, m = 40 7% 6% 7% 15% 19% 27%
ECMC, m = 80 8% 7% 10% 16% 21% 32%

ECMC, median estimation 3% 3% 4% 9% 11% 15%
Gaussian copula 6% 3% 10% 27% 34% 48%

Survival Clayton copula 1% 2% 3% 5% 6% 12%
Clayton copula 5% 10% 23% 46% 54% 66%

Empirical copula 8% 9% 12% 23% 31% 56%

Table 4. RMSE in % of the exact value for the Pareto-
Clayton model of parameters β = 3 and α = 1, in dimension
25, for a sample size n = 80.
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 16.43 23.08 31.28 59.10 76.41 135.89
ECBC, m = 2 1% 16% 29% 51% 58% 68%
ECBC, m = 4 10% 4% 17% 42% 50% 64%
ECBC, m = 5 11% 3% 13% 39% 48% 63%
ECBC, m = 8 11% 6% 6% 31% 41% 59%

ECBC, m = 10 11% 7% 5% 27% 38% 56%
ECBC, m = 20 8% 8% 7% 17% 28% 50%
ECBC, m = 25 7% 8% 8% 15% 24% 47%
ECBC, m = 40 5% 6% 9% 12% 19% 43%
ECBC, m = 50 5% 6% 9% 12% 18% 40%

ECBC, m = 100 5% 6% 8% 15% 18% 35%
ECBC, m = 200 5% 6% 8% 16% 20% 32%

ECBC, median estimation 6% 5% 6% 18% 28% 50%
ECMC, m = 2 2% 7% 11% 18% 20% 25%
ECMC, m = 4 1% 2% 2% 4% 6% 11%
ECMC, m = 5 1% 2% 3% 5% 6% 12%
ECMC, m = 8 3% 2% 5% 9% 10% 14%

ECMC, m = 10 4% 2% 5% 9% 11% 15%
ECMC, m = 20 5% 4% 4% 11% 14% 19%
ECMC, m = 25 5% 4% 4% 11% 15% 20%
ECMC, m = 40 4% 5% 6% 10% 14% 22%
ECMC, m = 50 4% 5% 6% 10% 14% 23%

ECMC, m = 100 5% 5% 7% 11% 14% 23%
ECMC, m = 200 5% 6% 8% 13% 15% 28%

ECMC, median estimation 3% 3% 4% 8% 11% 14%
Gaussian copula 6% 2% 10% 27% 34% 48%

Survival Clayton copula 1% 1% 2% 4% 5% 10%
Clayton coupla 5% 10% 23% 46% 53% 65%

Empirical coupla 5% 6% 9% 17% 23% 42%

Table 5. RMSE in % of the exact value for the Pareto-
Clayton model with parameters α = 3 and β = 1, in dimen-
sion 25, for a sample size n = 200.
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Near exact value 93.94 111.65 129.81 176.99 200.82 270.14
ECBC, m = 2 4% 7% 10% 14% 15% 15%

ECBC, m4 2% 4% 7% 11% 12% 13%
ECBC, m = 5 2% 4% 6% 10% 11% 13%
ECBC, m = 8 2% 3% 5% 9% 10% 12%

ECBC, m = 10 2% 3% 4% 8% 10% 12%
ECBC, m = 20 2% 3% 4% 8% 9% 11%
ECBC, m = 40 3% 4% 4% 9% 9% 11%
ECBC, m = 80 3% 4% 5% 10% 11% 12%

ECBC, median estimation 2% 3% 5% 9% 10% 11%
ECMC, m = 2 3% 17% 34% 76% 95% 141%
ECMC, m = 4 2% 6% 14% 41% 53% 83%
ECMC, m = 5 2% 3% 11% 33% 44% 72%
ECMC, m = 8 3% 2% 5% 19% 27% 46%

ECMC, m = 10 2% 2% 3% 14% 21% 38%
ECMC, m = 20 2% 3% 3% 7% 10% 22%
ECMC, m = 40 2% 3% 4% 7% 8% 15%
ECMC, m = 80 3% 4% 5% 8% 10% 13%

ECMC, median estimation 2% 2% 4% 17% 24% 41%
Gaussian copula 1% 2% 2% 3% 4% 6%

Survival Clayton copula 2% 2% 3% 9% 12% 20%
Clayton copula 3% 7% 9% 13% 14% 14%

Empirical copula 5% 6% 9% 16% 22% 35%

Table 6. RMSE in % of the exact value for the Gaussian
lognormal model with correlation ρ = 0.1 for all pairs, in
dimension 25, for a sample size n = 80.
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Near exact value 93.94 111.70 129.88 176.26 201.28 270.35
ECBC, m = 2 3% 7% 10% 14% 14% 14%
ECBC, m = 4 1% 4% 6% 10% 12% 13%
ECBC, m = 5 1% 3% 5% 10% 11% 12%
ECBC, m = 8 1% 2% 4% 8% 9% 12%

ECBC, m = 10 1% 2% 3% 7% 8% 11%
ECBC, m = 20 2% 2% 3% 6% 7% 10%
ECBC, m = 25 2% 2% 3% 6% 7% 10%
ECBC, m = 40 2% 2% 3% 6% 7% 10%
ECBC, m = 50 2% 3% 3% 6% 8% 10%

ECBC, m = 100 2% 3% 4% 6% 9% 10%
ECBC, m = 200 2% 3% 4% 7% 9% 11%

ECBC, median estimation 1% 2% 3% 6% 8% 10%
ECMC, m = 2 3% 18% 34% 76% 97% 142%
ECMC, m = 4 2% 6% 15% 40% 53% 85%
ECMC, m = 5 2% 4% 11% 33% 43% 70%
ECMC, m = 8 2% 1% 5% 20% 28% 47%

ECMC, m = 10 2% 1% 3% 15% 21% 37%
ECMC, m = 20 2% 2% 2% 6% 10% 24%
ECMC, m = 25 2% 2% 3% 6% 9% 18%
ECMC, m = 40 2% 2% 3% 5% 6% 11%
ECMC, m = 50 2% 2% 3% 5% 6% 11%

ECMC, m = 100 2% 3% 4% 6% 7% 12%
ECMC, m = 200 2% 3% 4% 6% 8% 11%

ECMC, median estimation 1% 2% 3% 7% 11% 25%
Gaussian copula 1% 1% 2% 3% 3% 6%

Survival Calyton copula 2% 1% 3% 9% 13% 20%
Clayton copula 3% 6% 9% 13% 14% 15%

Empirical copula 3% 4% 6% 10% 13% 29%

Table 7. RMSE in % of the exact value for the Gaussian
lognormal model with correlation ρ = 0.1 for all pairs, in
dimension 25, for a sample size n = 200.
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Appendix C. Boxplots

Figure 4. Pareto-Clayton model with parameters β = 2
and α = 1, in dimension 50.



COPULA’S APPROXIMATIONS: APPLICATION TO QUANTILE ESTIMATION 25

Figure 5. Pareto-Clayton model with parameters β = 2
and α = 1, in dimension 100.
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Figure 6. Gaussian-lognormal model with correlations
0.25, 0.5, 0.75, in dimension 50.



COPULA’S APPROXIMATIONS: APPLICATION TO QUANTILE ESTIMATION 27

Figure 7. Gaussian-lognormal model with correlations
0.25, 0.5, 0.75, in dimension 100.
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