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Introduction

Consider a random vector X = (X 1 , . . . , X d ) and a measurable function Ψ : R d → R + , called the aggregation function. In the context of quantitative risk management X is known as a risk vector and generally represents the profit-losses of a portfolio at a given future date. Ψ(X), the aggregated risk, represents its total future position. The main examples of aggregation functions are: the sum, max, weighted sums or a slightly more complex function that may include stop-loss reinsurance type function on each of the marginal distributions. In this paper, we will be essentially concerned with Ψ = , which is the most commonly studied aggregation function. We are interested here in the estimation of p-quantiles, 0 < p < 1, of Ψ(X): Q p (Ψ(X)) = inf{x ∈ R, F Ψ (x) ≥ p}, where we denote by F Ψ (x) = P (Ψ(X) ≤ x) the distribution function of the aggregated random variable. In financial or insurance contexts, the Q p 's are called Value at Risk and denoted VaR p . We will assume that the distributions F 1 , . . . , F d of the marginal variables X 1 , . . . , X d are known and that some information on the dependence between them is given. Usually this information is available via some observations of the joint distribution and also via expert opinion.

In practice, neither the marginals nor the dependence of the risk vector X are known. However, in many cases, the information available on the marginal distributions is much more important than the one on the dependence structure. For example, when some observations of the vector X are available, inferences one can do on the marginal distributions give better results than inferences one can do on the multivariate distribution. Also, samples available for marginal laws may be much larger than those available for the joint distribution. Moreover, on each marginal risk, some extra information, as for example expert opinion or prior information, may be available. These situations arise e.g. for environmental data or in insurance contexts. So, even if the assumption of the knowledge of marginal distributions may seem not realistic, by simplification we shall assume here that the marginal distributions F i are known. However it may be well the case that these distributions are actually estimations based on data or extra marginal information.

When the marginals are known but the dependence is unknown, the rearrangement algorithm (introduced in special cases in [START_REF] Rüschendorf | Solution of a statistical optimization problem by rearrangement methods[END_REF] and [START_REF] Rüschendorf | Random variables with maximum sums[END_REF]) allows to obtain bounds on the distribution of Ψ(X) ( [START_REF] Puccetti | Computation of sharp bounds on the distribution of a function of dependent risks[END_REF]) for d ≥ 30. By improving the re-arrangement algorithm, bounds on the VaR are obtained in ( [START_REF] Embrechts | Model uncertainty and var aggregation[END_REF]) in high dimensional (d ≥ 1000) inhomogeneous portfolio. These bounds are usually too wide to be useful in practice. Cases in which some kind of dependence information is available lead to narrower bounds ( [START_REF] Bernard | Value-at-Risk bounds with variance constraints[END_REF][START_REF] Bernard | A new approach to assessing model risk in high dimensions[END_REF]) for the risk measure at hand. Bounds are also derived in ( [START_REF] Cossette | A note on the computation of sharp numerical bounds for the distribution of the sum, product or ratio of dependent risks[END_REF]) for dependence structures described by different copula models. A general mathematical framework which interpolates between marginal knowledge and full knowledge of the distribution function of X is considered in ( [START_REF] Embrechts | Risk aggregation[END_REF]).

In this paper, we propose to use the check-min-erboard copula (as introduced in [START_REF] Li | Strong approximation of copulas[END_REF] in dimension 2 and developed in [START_REF] Mikusinski | Some approximations of n-copulas[END_REF] in higher dimension) to merge the information given by a small sample of the distribution of X with the known marginal distributions. Related kinds of copulas approximation appeared already in [START_REF] William F Darsow | Copulas and markov processes[END_REF] and have been studied in [START_REF] Genest | A primer on copulas for count data[END_REF][START_REF] Neslehová | On rank correlation measures for non-continuous random variables[END_REF][START_REF] Genest | On the empirical multilinear copula process for count data[END_REF] for discrete variables. Durante et al. [START_REF] Fabrizio Durante | Convergence results for patchwork copulas[END_REF] presented patchwork copulas which give a general framework for studying piecewise approximations of copulas. We consider generalized versions of the checkerboard copula: the partition considered needs not to coïncide with the one given by the sample. Moreover, we introduce the checkerboard copula with information on the tail and with information on a sub-vector, to take into account some additional informations which may improve the quantile estimation (see Section 3). We introduce empirical versions of the above approximations that are proper copulas and allow to obtain efficient estimations of aggregated quantiles.

In Section 2, we recall basic definitions on copulas and we present the checkmin-erboard copulas and their empirical version. We also prove some convergence results. In Section 3, we show how additional information (on the tail or on the law of a sub-vector) may be pushed into the check-minerboard copula. A simulation study is presented in Section 4. Conclusions are provided in Section 5.

Copulas approximations

Let F be the distribution function of X = (X 1 , . . . , X d ), where X 1 , . . . , X d are assumed to be random variables living on an atomless probability space. By Sklar's Theorem, there exists a copula distribution C on [0, 1] d such that

F(x 1 , . . . , x d ) = C(F 1 (x 1 ), . . . , F d (x d )),
where the F i 's are the distribution functions of the X i 's. When the marginal random variables X i are absolutely continuous this copula C is unique. We will assume that the marginals of X are absolutely continuous. Remark that if G is a distribution function on [0, 1] d , it is a copula if and only if the marginal distributions are uniform on [0, 1], that is,

G(x) = x k for any x ∈ [0, 1] d such that x i = 1, i = k.
The aggregation function Ψ : R d → R + is considered to be the sum:

Ψ(X) = d i=1 X i .
As above, F Ψ (x) = P (Ψ(X) ≤ x) will denote the distribution function of the aggregated random variable. The check-min-erboard copula as introduced in [START_REF] Li | Strong approximation of copulas[END_REF] in dimension 2 and developed in [START_REF] Mikusinski | Some approximations of n-copulas[END_REF] in higher dimension, is a flexible tool to approximate copulas. These copula's approximations are particular cases of patchwork copulas presented in [START_REF] Fabrizio Durante | Convergence results for patchwork copulas[END_REF]. In this section, we present the check-min-erboard copulas and their empirical version.

2.1. Check-min-erboard Copulas. As above, let F denote the cumulative distribution function (c.d.f.) of X, C its copula function and F i the c.d.f of X i , i = 1, . . . , d. Let µ C be the probability measure associated to C, i.e such that: 

µ C d i=1 [0, u i ] = C(u 1 , . . . , u d ) for any u = (u 1 , . . . , u d ) ∈ [0, 1] d . By a µ-decomposition of a set A ⊂ R d we mean a finite family of measurable sets {A i ⊂ A} such that (1) µ(A i ∩ A j ) = 0 whenever i = j (2) i µ(A i ) = µ(A). Definition 1. A measure µ * is a checkerboard approximation for a copula C if there exists a λ-decomposition A = {(a i , b i )} of I d , the d-dimensional unit cube, made out of d-intervals such that for all i, (1) µ * is uniform on (a i , b i ); (2) µ * (A) = µ C (A) for any A ∈ A.
I i,m = d j=1 i j -1 m , i j m , i = (i 1 , . . . , i d ), i j ∈ {1, . . . , m}.
µ * m is the checkerboard approximation associated to the regular decomposition I m .

We shall denote by C * m the checkerboard copula associated to the measure µ * m . The definition of the checkerboard copula may then be rewritten as: ) and then sampling uniformly in I i,m . This leads us to consider also the checkmin copula: instead of sampling uniformly in I i,m , one may sample in I i,m with respect to the comonotonic copula. The checkmin copula is then given by:

C * m (x) = i m d µ(I i,m )λ([0, x] ∩ I i,m ) where [0, x] = d i=1 [0, x i ], for x = (x 1 , . . . , x d ) ∈ [0, 1] d and
C † m (x) = i mµ(I i,m ) min x j - i j -1 m , 1 m . 
In what follows, C o m denotes either C * m or C † m and is called check-min-erboard copula.

In [START_REF] Mikusinski | Some approximations of n-copulas[END_REF], it is proved that C o m is a copula that approximates C. The following proposition gives a more precise bound on the approximation of C by C o m by a factor 2, than the one presented in dimension 2 in [START_REF] Li | Strong approximation of copulas[END_REF], page 613, or than the result obtained in [START_REF] Fabrizio Durante | Convergence results for patchwork copulas[END_REF].

Proposition 2.1. Let C o m be either the checkerboard copula or the checkmin copula defined above. We have:

sup x∈[0,1] d |C o m (x) -C(x)| ≤ d 2m .
Proof. This is clear that for any

x ∈ [0, 1] d with x = i m , i ∈ {1, . . . , m} d , C o m (x) = C(x).
We present the computations for C * m , the same computations give the result for C † m . For a ∈ {1, . . . , m} and k ∈ {1, . . . , d}, we denote by B k+ a and B k- a the (half)-strips:

B k+ a = x ∈ [0, 1] d , a m - 1 2m < x k ≤ a m and 
B k- a = x ∈ [0, 1] d , a m < x k ≤ i k m - 1 a . If x ∈ I i,m with i = (i 1 , . . . , i d ) then, |C * m (x) -C(x)| ≤ d k=1 |µ * m (B k- i k ) -λ(B k- i k )|1 B k- i k (x) + d k=1 |µ * m (B k+ i k ) -λ(B k+ i k )|1 B k+ i k (x) ≤ d k=1 min(µ * m (B k- i k ), λ(B k- i k ))1 B k- i k (x) + d k=1 min(µ * m (B k+ i k ), λ(B k+ i k ))1 B k+ i k (x) = d 2m since µ *
m and λ are both associated to a copula,

µ * m (B k- i k ) = λ(B k- i k ) = µ * m (B k+ i k ) = λ(B k+ i k ) = 1 2m .
The announced result follows.

In what follows, we will define an empirical version of the check-minerboard copula defined above, by using the empirical copula.

2.2.

Empirical check-min-erboard copulas. The empirical copula, introduced by Deheuvels ([8]), may be used to estimate non parametrically the copula. Definition 2. Let X 1 , . . . , X n be n independent copies of X. Each of them writes X j = (X j 1 , . . . , X j d ). Let R 1 i , . . . , R n i , i = 1, . . . , d be their marginals ranks, i.e.,

R j i = n k=1 1{X (j) i ≥ X (k) i }, i = 1, . . . , d, j = 1, . . . , n where 
X (1) i < • • • < X (n) i
are the order statistics associated to the ith coordinate sample X 1 i , . . . X n i . The empirical copula C n of X 1 , . . . X n is defined as

C n (u 1 , . . . , u d ) = 1 n n k=1 1 1 n R k 1 ≤ u 1 , . . . , 1 n R k d ≤ u d .
It is well known (see [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF] e.g.) that the empirical copula may be used to estimate C. Nevertheless, it is not a proper copula as its marginal laws are discrete. We shall use the empirical copula C n and the empirical probability measure µ associated to C n , to define an empirical version of the checkerboard copulas introduced above. Note that in [START_REF] Deheuvels | La fonction de dépendance empirique et ses propriétés[END_REF] an interpolation of the empirical copula in order to get an estimation of C which is a proper copula is also mentioned. As we shall see below, the main advantage of our approach is that it is very easy to simulate a sample from the empirical checkerboard copula. Definition 3. Let X (1) , . . . , X (n) be n independent copies of X. The empirical checkerboard copula (ECBC) C * m is defined by

C * m (x) = i m d µ(I i,m )λ([0, x] ∩ I i,m ).
The empirical checkmin copula (ECMC) C † m is defined by

C † m (x) = i µ(I i,m )m min x j - i j -1 m , 1 m . 
In what follows, C o m denotes either the ECBC or the ECMC and is called empirical check-min-erboard copula.

Remark. If U 1 , . . . , U n is an i.i.d sample distributed as C, it is known (see e.g. [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF]) that the resulting empirical distribution function and C n defined above coincide. This remark justifies the use of the Donsker property below.

In the next proposition we show that C o m , defined above, is a copula whenever the integer m from the length size of the partition I m divides n, the sample size.

Proposition 2.2. The empirical chek-min-erboard copula C o m defined on the regular partition I m and based on an i.i.d sample of size n is a copula, if and only if m divides n.

Proof. We give the details of the proof for C * m . The proof is the same for C † m . Suppose that m ≤ n and that m divides n. By definition the empirical checkerboard copula is a distribution function, we should simply check that the marginals are uniform. Without losing generality we show only that the projection on the first coordinate of the measure induced by C * m is uniform, or equivalently that C * m (x) = x 1 for any x ∈ [0, 1] d with x j = 1 for j = 1. For ∈ {1, . . . , m}, consider the strip B 1 :

B 1 = x ∈ [0, 1] d , -1 m < x 1 ≤ m = -1 m , m × [0, 1] d-1 .
The empirical copula is concentrated on n points of [0, 1] d whose coordinates are of the form j n , j = 1, . . . , n. Moreover, there is exactly one mass on each strip B 1 j , j = 1, . . . , n. So that if k = n/m, then the number of masses of C n on each strip

B 1 , = 1, . . . , m is exactly k, which means that µ(B 1 ) = k n = 1 m . Let x = (x 1 , 1, . . . , 1), x 1 ∈ [0, 1], x ∈ B 1 with -1 m < x 1 ≤ m . C * m (x) = i∈{1,...,m} d m d µ(I i,m )λ([0, x] ∩ I i,m ) = j< µ(B 1 j ) + I i,m ⊂B 1 m d µ(I i,m ) (x 1 --1 m ) m d-1 = j< µ(B 1 j ) + m x 1 - -1 m µ(B 1 ) = -1 m + x 1 - -1 m = x 1 ,
which shows that the first marginal is uniform. On the other direction, it is easy to see that if m does not divide n then the number of masses of C n on each strip B 1 , = 1, . . . , m is not the same and thus the uniform distribution for the margin is lost.

We have proved that both the ECBC and ECMC are proper copulas provided that m divides n. The following result shows that they go to C at rate

1 √ n + 1 m . Proposition 2.3. Let m divide n, we have: sup t∈[0,1] | C o m (t) -C(t)| ≤ O P 1 √ n + d 2 m .
Proof. Once more, we give the details for C * m , the proof is the same for 

C † m . | C * m (t) -C(t)| ≤ | C * m (t) -C * m (t)| + |C * m (t) -C(t)|. From Proposition 2.1, we know that sup t∈[0,1] d |C * m (t) -C(t)| ≤ d 2 m . Furthermore, | C * m (t) -C * m (t)| ≤ i∈{1,...,m} d m d λ([0, t] ∩ I i,m )| µ(I i,m ) -µ(I i,m )|. Let I = {I i,m , i ∈ {1, . . . ,
| µ(I i,m ) -µ(I i,m )| = O P 1 √ n .
Hence the result.

Since C o m (t) converges to C(t), it is natural to estimate P(Ψ(X) ≤ t) = F Ψ (t) by P(Ψ(T -(U o m )) ≤ t) = F o m (t) where U o m ; C o m and T -(u 1 , . . . , u d ) = (F 1 (u 1 ), . . . , F d (u d )).
The following result is close to that of Mainik [START_REF] Mainik | Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions[END_REF], where P(Ψ(X) ≤ t) is estimated by using the empirical copula and the empirical distribution functions of the marginal laws. For t ∈ R, let

A t = {x ∈ R d , d i=1 x i ≤ t}.
We shall assume the following regularity condition on C. This condition is satisfied for copulas with bounded density, as well as Clayton copulas in dimension 2 and Gaussian copula in dimension 2, with ρ > 0 (see [START_REF] Mainik | Risk aggregation with empirical margins: Latin hypercubes, empirical copulas, and convergence of sum distributions[END_REF] for a more complete discussion on this condition). Simple symmetry considerations show that it will also be satisfied for survival Clayton copulas.

Assumption 2.1. For t ∈ R, B t = {u ∈ [0, 1] d , T -(u) ∈ A t } and ∂(B t ) its boundary, the regularity of F j , j = 1, . . . , d, implies that ∂(B t ) is a d -1 hyper-surface in [0, 1] d . For δ > 0, U δ (B t ) is the δ neighborhood of ∂(B t ).
The regularity condition on C is :

(2.1) µ(U δ (B t )) = O(δ).
Proposition 2.4. Under Assumption 2.1

sup t∈R |F Ψ (t) -F o m (t)| = O P 1 √ n + O 1 m .
Proof. We present the proof for the checkerboard copula. We have:

|F Ψ (t) -F * m (t)| = i∈{1,...,m} d µ(I i,m )m d λ(I i,m ∩ B t ) -µ(I i,m ∩ B t ) ≤ i∈{1,...,m} d | µ(I i,m ) -µ(I i,m )|m d λ(I i,m ∩ B t ) (1) 
+ i∈{1,...,m} d µ(I i,m )m d |λ(I i,m ∩ B t ) -µ(I i,m ∩ B t )| (2) 
.

The term (1) is (4) Estimate the distribution function F o Ψ of Ψ(X o ) empirically using the above sample. We will denote F o Ψ the empirical distribution function from the sample above.

O P ( 1 √ n ) as in Proposition 2.

Checkerboard copulas with additional information

We define two kinds of checkerboard copula with additional information and then present their empirical version. First of all, we consider the case where the distribution of a sub-vector

X J = (X i ) i∈J , J ⊂ {1, . . . , d}, is known, |J| = k < d. Denote C J the copula of X J . Let µ J be the probability measure on [0, 1] k associated to C J . For i = (i 1 , . . . , i d ), let x = (x 1 , . . . , x d ) ∈ [0, 1] d , x J = (x j ) j∈J , x -J = (x j ) j ∈J and
I J i,m = x ∈ [0, 1] d / x j ∈ i j -1 m , i j m , j ∈ J , I -J i,m = x ∈ [0, 1] d / x j ∈ i j -1 m , i j m , j ∈ J .
The checkerboard copula with information on X J is defined below.

Definition 4. Consider the probability measure on [0, 1] d defined by

µ J m ([0, x]) = i⊂{1,...,d} m d-k µ J (I J i,m ) µ(I i,m )λ([0, x -J ] ∩ I -J i,m )µ J ([0, x J ] ∩ I J i,m ).
Let C J m , the checkerboard copula with additional information on X J , be defined by

C J m (x) = µ J m ([0, x]). Proposition 3.1. C J m is a copula, it approximates C: sup x∈[0,1] d |C J m (x) -C(x)| ≤ d 2m .
If X J and X -J are independent then,

sup x∈[0,1] d |C J m (x) -C(x)| ≤ d -k 2m .
Proof. The definition of C J m ensures that it is a cumulative distribution function on [0, 1] d . The fact that C J m is a copula then follows from an easy computation to get that C J m (x) = x k whenever x = (x j ) j=1,...,d , with x j = 1 for j = k. The rest of the proof is done as in that of Proposition 2.1.

We may also add information on the tail and so define the following particular checkerboard copula. 

J i,m = p • I d m,i for d-tuple i = (i 1 , . . . , i d ) in {0, 1 m , . . . , m-1 m } d . Define C Ep m
as the checkerboard copula associated to the λ-decomposition of the unit d-cube J m ∪ E p , that is

C Ep m (x) = µ C (E c p )µ * m ([0, x]/t)1 E c p (x) + E∈Ep µ C (E) λ(E) λ([0, x] ∩ E).
This is the checkerboard copula with extra information on the tail.

Empirical versions.

• The ECBC with information on a sub-vector X J is defined by

C J m (x) = i⊂{1,...,d} m d-k µ J (I J i,m ) µ(I i,m )λ([0, x -J ] ∩ I -J i,m )µ J ([0, x J ] ∩ I J i,m
).

• The ECBC with information on the tail is defined by:

C E m (x) = µ C (E c p ) C * m (x/t)1 E c p (x) + E∈Ep µ C (E) λ(E) λ([0, x] ∩ E).
In Figure 3 we present a simulation of the ECBC with information on the tail for different values of m. Remark. Checkmin copulas with additional information (on a subvector or on the tail) may be defined in the same way as checkerboard with additional information.

Numerical Application

In this section we use the estimator of the distribution function F Ψ , as defined in Section 2.3, in order to estimate the quantiles Q p (S) for S = X 1 + • • • + X d at different confidence levels 0 < p < 1. We will consider the Pareto-Clayton model, defined in Section 4.1, because, in that case, the exact value of Q p (S) can be calculated, so that we may compare our simulation results to the exact one. A simulation study will also be presented for another model with gaussian copulas and lognormal marginal laws. In that case, the exact value of Q p (S) is not known so that we shall use huge sample (of size 10 7 ) to get a fine approximation of Q p (S) and then compare it with our estimation using the empirical check-min-erboard copulas based on relatively small samples. In Section 4.2, we shall see that our method is performant in high dimension (d = 25, 50, 100) with relatively small sample size. In Section 4.3, we provide some examples to show the impact of the information added in the checkerboard copula.

4.1.

The Pareto -Clayton model. We consider X = (X 1 , . . . , X d ) such that:

P(X 1 > x 1 , . . . , X d > x d | Λ = λ) = d i=1 e -λx i ,
that is, conditionally to the value of Λ the marginals of X are independent and exponentially distributed. If Λ is Gamma distributed, then the X i 's are Pareto distributed with dependence given by a survival Clayton copula. If Λ is Levy distributed, then the X i 's are Weibull distributed with a Gumbel survival copula. These models have been studied by [START_REF] Oakes | Bivariate survival models induced by frailties[END_REF] and [START_REF] Yeh | The frailty and the Archimedean structure of the general multivariate Pareto distributions[END_REF] [START_REF] Oakes | Bivariate survival models induced by frailties[END_REF][START_REF] Yeh | The frailty and the Archimedean structure of the general multivariate Pareto distributions[END_REF]. In the context of multivariate risk theory, they have been used e.g. in [START_REF] Véronique Maume-Deschamps | Impact of dependence on some multivariate risk indicators[END_REF] and [START_REF] Dacorogna | Explicit diversification benefit for dependent risks[END_REF]. In what follows, we consider that Λ ; Γ(α, β), so that the X i 's are Pareto (α, β) distributed and the dependence structure is described by a survival Clayton copula with parameter 1/α. In [START_REF] Satya | Compound gamma, beta and F distributions[END_REF], it is shown that, in this case, S follows the so-called Beta prime distribution:

F S (x) = F β x 1 + x
where F β is the distribution function of the Beta(dβ, α) distribution. The inverse of F S (or quantile function of S) can also be expressed in terms of the inverse of the Beta distribution

F S (p) = F β (p) 1 -F β (p) .
From these results (see also [START_REF] Cuberos | High level quantile approximations of sums of risks[END_REF]), we may compute Q p (S).

4.2.

Simulation study in dimension 25, 50 and 100. In this section we will consider several Pareto-Clayton models and several Gaussian-Lognormal models. Nevertheless, at the beginning we will presentat results in dimension 25, for one Pareto-Clayton model and then for one Gaussian-Lognormal model. One open question is the choice of the partition size m. Following Coeurjolly [START_REF] Coeurjolly | Median-based estimation of the intensity of a spatial point process[END_REF], we propose to keep the median of the estimations obtained for all the m divisor of n for each quantile. The study done in Section 4.2.1 indicates that this choice performs well, it is why in the other subsections, we just present the median result (and not the results for all m). We also perform simulations in dimension 50 and 100 (Section 4. 4 and5 give the results in terms of Relative Mean Square Error (RMSE) over a run of s = 100 different simulations of the initial sample. Let q k be the estimations of q on the kth simulation run, then

RMSE = 1 s s k=1 ( q k -q) 2 q .
The size of the checkerboard samples is N = 10000. The RMSE is computed for each value of m for the checkerboard (ECBC) and the chekmin (ECMC) approximations. Alternatively, the median choice of m is done for each of the 100 simulations and the RMSE is then computed for the corresponding estimations. The check-min-erboard estimations are compared with parametric ones: we adjust to the samples three copulas (survival Clayton, Gaussian, Clayton), simulate an aggregated sample of size 10000 with the estimated copula and the known marginals to estimate the aggregated quantile. Finally, we put in the table the result obtained with the empirical copula and the known margins. In Tables 4 and5, we remark that the checkmin approximation performs significantly better than the cherckerboard one. This may be explained by the fact that the survival Calyton copula is closer to a comonotonic copula than to the independent copula for the upper tails. Tables 6 and7 give the results for a Gaussian -lognormal model with correlation ρ = 0.1 for all pairs, the parameters of the lognormal margins are different for each of the 25 coordinates. It is expected in that case that the checkerboard copula will give better results than the checkmin. As already mentioned, in the case of a Gaussian -lognormal model, the exact value of the aggregated quantile is unknown. We estimate it with huge samples (of size 10 7 ) and use this estimate (called near exact value) to compute the RMSE's and compare the estimations.

Tables 6 and7 show that, as expected, in this case, the checkerboard copula gives better results than the checkmin copula. This may be explained by the fact that for a correlation coefficient ρ = 0.1 for all pairs, the model is closer to the independence than to the comonotony. We now give results in higher dimension (d = 50, d = 100).

4.2.2. Simulations in higher dimensions. We now perform simulations in dimension 50 and 100 for samples of size n = 400. We consider the Pareto-Clayton model with parameters 2 and 1, and a Gaussian-lognormal model with correlations equal to 0.25, 0.5, 0.75 (one third of the coordinates of X for each correlation value). The boxplots corresponding to 100 iterations of the estimation algorithm are presented in Appendix C. In the case of the Pareto-Clayton model, the horizontal line is the real value.

Both Figures 4 and5 show that the median ECMC estimation is performant for quantile levels 0.995 and 0.999. It is close in mean to the real VaR and much less dispersed than the empirical estimation. Of course the correct parametric model (here the survival Clayton copula) performs better but our approach will be interesting in cases where the parametric models are not well suited to data.

In the case of Gaussian-lognormal model, we consider the estimation with the gaussian copula as a reference. As above, Figures 6 and7 show that the checkmin estimator is performant also for this model.

4.3.

Adding information (on the tail or on a sub-vector). We consider a Pareto-Clayton model in dimension 2, with β = 1 and α = 2. The multivariate sample is of size n = 30 and for each presented method we performed N = 1000 estimations of the p-quantile at different confidence levels. Table 1 presents the mean and the root mean square error of the N = 1000 estimations. The estimations were calculated using the ECBC with and without information on the tail on different λ-regular decompositions I m for m = 6, 15, 30. The information on the tail is introduced on E p , for p = 0.95, 0.99, by giving to each E in E p the measure µ C (E) where C is the survival Clayton copula with parameter 1/2. For comparison a direct estimation from the empirical distribution of S is given. 1. The mean and the RMSE in % of the exact value for 1000 estimations of the quantile for a Pareto-Clayton sum in dimension 2.

All the methods we proposed perform much better than the empirical estimation based on the multivariate sample alone. The estimations based on the ECBC with λ-decomposition I m , perform better when m = 6 and m = 15 than when m = 30. ECBC with m = 6 performs slightly better than ECBC with m = 15 for the estimation of the quantiles with confidence levels lower than 99.5% and slightly worst on the higher levels. When the information on the tail is introduced on E p with p = 0.95 the estimation on the quantile with confidence level > 0, 95 is significantly improved. When it is introduced on E p with p = 0.99 the estimations improve on the higher confidence levels 99.5% and 99.9%.

Remark 1. It is known (see e.g. Proposition 2 in [START_REF] Embrechts | Model uncertainty and var aggregation[END_REF]) that the supremum of the aggregated VaR of level α over distributions X = (X 1 , X 2 ) with X 1 and X 2 having common distribution function F is:

2F -1 1 + α 2 .
For the above example (Pareto margins of parameters 1 and 2), we get the following bounds: These bounds have to be compared with the real values above. This comparison shows that the use of the bounds is not sharp for quantile estimations, even if they are very interesting to bound the uncertainty risk.

In order to assess the gain that the knowledge of the information on a sub-vector may give to the estimation, we performed here the following simulation study. Let X = (X 1 , X 2 , X 3 ) be the model where X 1 = X 2 = Y /2, and X 3 ∼ Y where Y is Pareto distributed with α = 2. We assume that (Y , X 3 ) is a Pareto-Clayton model. That is, X 1 and X 2 are comonotonic (or fully dependent) and the dependence between X 1 and X 3 is given by a survival Clayton of parameter 1/2. Clearly the distribution of the sum S = X 1 + X 2 + X 3 is equal to the distribution of the sum of the Pareto-Clayton model in dimension 2, with parameters α = 2 and β = 1 and thus the exact value of the quantiles can be easily computed. We compare the results on the quantiles estimation using the ECBC method without and with information on the sub-vector (X 1 , X 2 ) and λ-decompositions I m for m = 6, 15, 30. As before the multivariate sample is of size n = 30 and for each method we performed N = 1000 estimations of the quantile at different confidence levels. The results are presented in Table 2.

It can be noticed that the RSME of the quantile estimation is lower when the information on (X 1 , X 2 ) is introduced in the ECBC of dimension 3 and the gap is more important on higher confidence levels.

Remark. Simulating with respect to the empirical checkerboard copula with information on a sub-vector may be a difficult task because one has to simulate with respect to a given copula conditionally to belonging to a given set I i,m . In the case of a comonotonic sub-vector, this becomes trivial because we only need to simulate one coordinate uniformly.

Simulation results with the same kind of model in dimension 6 are presented in Table 3. We assumed X = (X 1 , . . . , X 6 ) with X 1 = X 2 = Y /2 and X 3 , X 4 , X 5 and X 6 distributed as Y , a Pareto r.v. with parameter α = 2. The copula of X is assumed to be a survival Clayton of parameter 1/2. As above, the size of the multivariate sample is n = 30 and for each method we performed N = 1000 estimations of the quantile at different confidence levels.

Again, by introducing the information on the sub-vector (X 1 , X 2 ) we get a smaller RMSE than in the case where no information is added. On the other hand, we also remark that by increasing the dimension (from d = 3 to 3. The mean and the RMSE in % of the exact value for 1000 estimations of the quantiles in dimension 6. d = 6) we get higher RMSE, for the same sample size, which is an expected behavior.

Conclusion

In this paper, we have constructed empirical check-min-erboard copulas with and without additional information on the joint law. We have used them to get efficient estimations of the quantiles of the sum when using a (relatively) small sample of the joint law and the knowledge of the marginal laws. Remark that a sample of size 200 in dimension 25 is small (and so does a sample of size 500 in dimension 100) and we get nevertheless rather good estimations. Our procedure provides a flexible tool for estimation of quantiles of sums from a small sample. This situation arises in many applications. In order to perform well, one has to figure out from the sample whether it is closer to an independent or comonotonic copula. Moreover, if one has partial information on the vector (copula of a sub-vector, information on the tail), it may be plugged in to improve the estimation. It is remarquable that the method remains quite efficient in high dimension. Of course, the interest of this non-parametric method would be for data for which a parametric estimation is not well suited. We are aware that many theoretical and practical questions have to be studied further, among which the points below.

• The optimal choice of m with respect to the sample size n. The choice of the median value could allow avoid this problem. Simulations indicate that this may be a good choice when the data is not too close to independence. In that case, the checkmin copula should be preferred to the checkerboard one and the median estimation performs well. For data closer to independence, the checkerboard copula should be chosen and then it seems that the higher m the better the estimation. These claims would require theoretical support; • The quantification of the impact of plugging additional information in the empirical checkerboard copula; • Developing efficient algorithms to simulate with respect to the empirical checkerboard copula with information on a sub-vector, for other copulas than the comonotonic one; 7. RMSE in % of the exact value for the Gaussian lognormal model with correlation ρ = 0.1 for all pairs, in dimension 25, for a sample size n = 200. 

For

  m ∈ N, let us consider the regular λ-decomposition of the unite cube [0, 1] d denoted as I m and consisting of m d d-cubes with side length 1/m :

3 . 3 )Figure 1 .

 331 Figure 1. Simulation of empirical checkerboard copulas (N = 10000) based on the same sample of size n = 30, with m = 5 (left) and m = 15 (right). The red points are the sample rank points.

Figure 2 .

 2 Figure 2. Simulation of empirical checkmin copulas (N = 10000) based on the same sample of size n = 30, with m = 6 (left) and m = 10 (right). The red points are the sample rank points.

Definition 5 .

 5 For p ∈]0, 1[, let E p = d i=1 [0, p] d c and E p the λ-decomposition of E p consisting of the hyper rectangles [a 1 , b 1 ] × • • • × [a d , b d ] where [a i , b i ] = [0, p] or [a i , b i ] = [p, 1] for all i = 1, . . . , d with at least one of [a i , b i ] = [p, 1]. We assume that µ C (A) is known for each A ∈ E p . Consider the λdecomposition of the d-cube [0, p] d given by J m consisting of the elements

Figure 3 .

 3 Figure 3. Simulation of empirical checkerboard copulas with information on the tail, with n = 30, p = 0.95 and m = 5 (left), m = 15 (right). The red points are the sample rank points
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 22421 . Tables and boxplots showing the simulation results are postponed to Appendix B and Appendix CSimulations in dimension 25. We first perform simulations for a Pareto-Clayton model of parameters β = 3 and α = 1. We vary the sample size: n = 80, n = 200. Recall that for the Pareto-Clayton model, the real value of the quantiles is known. Tables

Figure 5 .

 5 Figure 5. Pareto-Clayton model with parameters β = 2 and α = 1, in dimension 100.

Figure 6 .

 6 Figure 6. Gaussian-lognormal model with correlations 0.25, 0.5, 0.75, in dimension 50.

Figure 7 .

 7 Figure 7. Gaussian-lognormal model with correlations 0.25, 0.5, 0.75, in dimension 100.

  

  

Table 2 .

 2 The mean and the RMSE in % of the exact value for 1000 estimations of the quantiles in dimension 3, with or without using the knowledge of the comonotonic dependence between X 1 and X 2 .

		Quantile Quantile Quantile Quantile Quantile Quantile
		80%	90%	95%	99%	99.5%	99.9%
	Exact	2.5	4.1	6.4	16.0	23.2	53.4
	ECBC (m=6)						
	No information	2.7	4.6	6.6	14.0	19.1	40.7
		(13%)	(13%)	(7%)	(13%)	(18%)	(24%)
	Information on	2.6	4.4	6.6	14.8	20.8	45.7
	(X 1 , X 2 )	(9%)	(8%)	(6%)	(8%)	(11%)	(15%)
	ECBC (m=10)						
	No information	2.5	4.6	7.0	14.5	19.8	41.3
		(12%)	(13%)	(12%)	(11%)	(15%)	(23%)
	Information on	2.5	4.3	6.7	15.2	21.2	46.1
	(X 1 , X 2 )	(11%)	(9%)	(9%)	(8%)	(10%)	(15%)
	ECBC (m=30)						
	No information	2.5	4.2	6.8	15.9	21.4	43.3
		(14%)	(16%)	(19%)	(14%)	(14%)	(21%)
	Information on	2.5	4.2	6.6	15.8	21.9	47.1
	(X 1 , X 2 )	(13%)	(16%)	(17%)	(13%)	(13%)	(14%)
		Quantile Quantile Quantile Quantile Quantile Quantile
		80%	90%	95%	99%	99.5%	99.9%
	Exact	6.1	9.8	14.9	36.4	52.4	120.1
	ECBC (m=6)						
	No information	7.2	11.0	15.0	28.2	37.3	74.3
		(19%)	(14%)	(7%)	(23%)	(29%)	(38%)
	Information on	7.1	10.9	15.0	28.9	38.4	77.5
	(X 1 , X 2 )	(17%)	(13%)	(7%)	(21%)	(27%)	(36%)
	ECBC (m=10)						
	No information	6.8	11.3	16.1	30.0	39.2	76.3
		(16%)	(18%)	(13%)	(19%)	(26%)	(37%)
	Information on	6.7	11.1	16.0	30.6	40.3	79.7
	(X 1 , X 2 )	(15%)	(16%)	(12%)	(17%)	(24%)	(34%)
	ECBC (m=30)						
	No information	6.3	10.4	16.3	33.7	43.4	81.3
		(15%)	(19%)	(20%)	(18%)	(22%)	(33%)
	Information on	6.3	10.4	16.2	34.0	44.1	84.2
	(X 1 , X 2 )	(15%)	(18%)	(19%)	(18%)	(20%)	(31%)
	Table						

•

  Developing efficient algorithms to simulate with respect to the empirical checkerboard copula with information on the tail in dimension larger than 2.

	Appendix B. Tables				
		Quantile Quantile Quantile Quantile Quantile Quantile
		80%	90%	95%	99%	99.5%	99.9%
	Exact value	16.43	23.08	31.28	59.10	76.41	135.89
	ECBC, m = 2	2%	16%	29%	51%	58%	68%
	ECBC, m = 4	10%	5%	17%	43%	51%	64%
	ECBC, m = 5	11%	4%	14%	40%	48%	63%
	ECBC, m = 8	12%	6%	8%	33%	43%	59%
	ECBC, m = 10	12%	8%	7%	30%	40%	58%
	ECBC, m = 20	10%	9%	9%	21%	31%	52%
	ECBC, m = 40	8%	9%	11%	18%	26%	48%
	ECBC, m = 80	8%	9%	12%	23%	25%	44%
	ECBC, median estimation	9%	5%	8%	31%	41%	59%
	ECMC, m = 2	2%	7%	12%	18%	20%	24%
	ECMC, m = 4	1%	2%	3%	5%	5%	13%
	ECMC, m = 5	2%	3%	4%	6%	7%	13%
	ECMC, m = 8	4%	3%	5%	10%	12%	16%
	ECMC, m = 10	5%	3%	6%	11%	13%	19%
	ECMC, m = 20	7%	5%	6%	14%	17%	23%
	ECMC, m = 40	7%	6%	7%	15%	19%	27%
	ECMC, m = 80	8%	7%	10%	16%	21%	32%
	ECMC, median estimation	3%	3%	4%	9%	11%	15%
	Gaussian copula	6%	3%	10%	27%	34%	48%
	Survival Clayton copula	1%	2%	3%	5%	6%	12%
	Clayton copula	5%	10%	23%	46%	54%	66%
	Empirical copula	8%	9%	12%	23%	31%	56%

Table 4 .

 4 RMSE in % of the exact value for the Pareto-Clayton model of parameters β = 3 and α = 1, in dimension 25, for a sample size n = 80.

		Quantile Quantile Quantile Quantile Quantile Quantile
		80%	90%	95%	99%	99.5%	99.9%
	Exact value	16.43	23.08	31.28	59.10	76.41	135.89
	ECBC, m = 2	1%	16%	29%	51%	58%	68%
	ECBC, m = 4	10%	4%	17%	42%	50%	64%
	ECBC, m = 5	11%	3%	13%	39%	48%	63%
	ECBC, m = 8	11%	6%	6%	31%	41%	59%
	ECBC, m = 10	11%	7%	5%	27%	38%	56%
	ECBC, m = 20	8%	8%	7%	17%	28%	50%
	ECBC, m = 25	7%	8%	8%	15%	24%	47%
	ECBC, m = 40	5%	6%	9%	12%	19%	43%
	ECBC, m = 50	5%	6%	9%	12%	18%	40%
	ECBC, m = 100	5%	6%	8%	15%	18%	35%
	ECBC, m = 200	5%	6%	8%	16%	20%	32%
	ECBC, median estimation	6%	5%		18%	28%	50%
	ECMC, m = 2	2%	7%	11%	18%	20%	25%
	ECMC, m = 4	1%	2%	2%	4%	6%	11%
	ECMC, m = 5	1%	2%	3%	5%	6%	12%
	ECMC, m = 8	3%	2%	5%	9%	10%	14%
	ECMC, m = 10	4%	2%	5%	9%	11%	15%
	ECMC, m = 20	5%	4%	4%	11%	14%	19%
	ECMC, m = 25	5%	4%	4%	11%	15%	20%
	ECMC, m = 40	4%	5%	6%	10%	14%	22%
	ECMC, m = 50	4%	5%	6%	10%	14%	23%
	ECMC, m = 100	5%	5%	7%	11%	14%	23%
	ECMC, m = 200	5%	6%	8%	13%	15%	28%
	ECMC, median estimation	3%	3%	4%	8%	11%	14%
	Gaussian copula	6%	2%	10%	27%	34%	48%
	Survival Clayton copula	1%	1%	2%	4%	5%	10%
	Clayton coupla	5%	10%	23%	46%	53%	65%
	Empirical coupla	5%	6%	9%	17%	23%	42%

Table 5 .

 5 RMSE in % of the exact value for the Pareto-Clayton model with parameters α = 3 and β = 1, in dimension 25, for a sample size n = 200.

		Quantile Quantile Quantile Quantile Quantile Quantile
		80%	90%	95%	99%	99.5%	99.9%
	Near exact value	93.94	111.65	129.81	176.99	200.82	270.14
	ECBC, m = 2	4%	7%	10%	14%	15%	15%
	ECBC, m4	2%	4%	7%	11%	12%	13%
	ECBC, m = 5	2%	4%	6%	10%	11%	13%
	ECBC, m = 8	2%	3%	5%	9%	10%	12%
	ECBC, m = 10	2%	3%	4%	8%	10%	12%
	ECBC, m = 20	2%	3%	4%	8%	9%	11%
	ECBC, m = 40	3%	4%	4%	9%	9%	11%
	ECBC, m = 80	3%	4%	5%	10%	11%	12%
	ECBC, median estimation	2%	3%	5%	9%	10%	11%
	ECMC, m = 2	3%	17%	34%	76%	95%	141%
	ECMC, m = 4	2%	6%	14%	41%	53%	83%
	ECMC, m = 5	2%	3%	11%	33%	44%	72%
	ECMC, m = 8	3%	2%	5%	19%	27%	46%
	ECMC, m = 10	2%	2%	3%	14%	21%	38%
	ECMC, m = 20	2%	3%	3%	7%	10%	22%
	ECMC, m = 40	2%	3%	4%	7%	8%	15%
	ECMC, m = 80	3%	4%	5%	8%	10%	13%
	ECMC, median estimation	2%	2%	4%	17%	24%	41%
	Gaussian copula	1%	2%	2%	3%	4%	6%
	Survival Clayton copula	2%	2%	3%	9%	12%	20%
	Clayton copula	3%	7%	9%	13%	14%	14%
	Empirical copula	5%	6%	9%	16%	22%	35%

Table 6 .

 6 RMSE in % of the exact value for the Gaussian lognormal model with correlation ρ = 0.1 for all pairs, in dimension 25, for a sample size n = 80.

		Quantile Quantile Quantile Quantile Quantile Quantile
		80%	90%	95%	99%	99.5%	99.9%
	Near exact value	93.94	111.70	129.88	176.26	201.28	270.35
	ECBC, m = 2	3%	7%	10%	14%	14%	14%
	ECBC, m = 4	1%	4%	6%	10%	12%	13%
	ECBC, m = 5	1%	3%	5%	10%	11%	12%
	ECBC, m = 8	1%	2%	4%	8%	9%	12%
	ECBC, m = 10	1%	2%	3%	7%	8%	11%
	ECBC, m = 20	2%	2%	3%	6%	7%	10%
	ECBC, m = 25	2%	2%	3%	6%	7%	10%
	ECBC, m = 40	2%	2%	3%	6%	7%	10%
	ECBC, m = 50	2%	3%	3%	6%	8%	10%
	ECBC, m = 100	2%	3%	4%	6%	9%	10%
	ECBC, m = 200	2%	3%	4%	7%	9%	11%
	ECBC, median estimation	1%	2%	3%	6%	8%	10%
	ECMC, m = 2	3%	18%	34%	76%	97%	142%
	ECMC, m = 4	2%	6%	15%	40%	53%	85%
	ECMC, m = 5	2%	4%	11%	33%	43%	70%
	ECMC, m = 8	2%	1%	5%	20%	28%	47%
	ECMC, m = 10	2%	1%	3%	15%	21%	37%
	ECMC, m = 20	2%	2%	2%	6%	10%	24%
	ECMC, m = 25	2%	2%	3%	6%	9%	18%
	ECMC, m = 40	2%	2%	3%	5%	6%	11%
	ECMC, m = 50	2%	2%	3%	5%	6%	11%
	ECMC, m = 100	2%	3%	4%	6%	7%	12%
	ECMC, m = 200	2%	3%	4%	6%	8%	11%
	ECMC, median estimation	1%	2%	3%	7%	11%	25%
	Gaussian copula	1%	1%	2%	3%	3%	6%
	Survival Calyton copula	2%	1%	3%	9%	13%	20%
	Clayton copula	3%	6%	9%	13%	14%	15%
	Empirical copula	3%	4%	6%	10%	13%	29%
	Table						
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Appendix A. Algorithm

Let us describe how to simulate from a checkerboard or checkermin copula with sample x 1 = (x 11 , . . . , x 1d ), . . . , x n = (x n1 , . . . , x nd ) and partition I m : Using the rank marginals, transform the sample of the copula in the pseudosample u 1 , . . . u n , where

where R ij is the rank of x ij amongst (x 1j , . . . , x nj ). Notice that the coordinates of u i belong to the set {0, 1/n, . . . , (n -1)/n}.

(1) Choose randomly and uniformly one vector u i from the pseudosample {u 1 , . . . , u n }.

(2) Let ũ = (ũ 1 , . . . , ũd ) be the vector with coordinates given by ũj = u ij • m m .

I.e, each coordinate ũj in the vector ũ is the largest rational of the form k/m less than or equal to u ij . (3) Simulate an element v ∈ [0, 1] d according to an independent or comonotone copula, depending if we want to simulate from a checkerboard or a checkermin copula respectively. (4) Then, the vector z = ũ + v/m is a simulation from the required checkerboard or checkermin copula.