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COPULA’S APPROXIMATIONS: APPLICATION TO

QUANTILE ESTIMATION

A. CUBEROS, E. MASIELLO, AND V. MAUME-DESCHAMPS

Abstract. Estimating high level quantiles of aggregated variables (main-
ly sums or weighted sums) is crucial in risk management for many ap-
plication fields such as finance, insurance, environment... This question
has been widely treated but new efficient methods are always welcome;
especially if they apply in (relatively) high dimension. We propose an
estimation procedure based on the checkerboard copula. It allows to get
good estimations from a (quite) small sample of the multivariate law
and a full knowledge of the marginal laws. This situation is realistic
for many applications. Estimations may be improved by including in
the checkerboard copula some additional information (on the law of a
sub-vector or on extreme probabilities). Our approach is illustrated by
numerical examples.

1. Introduction

Consider a random vector X = (X1, . . . , Xd) and a measurable function
Ψ : Rd → R+, called the aggregation function. In the context of quan-
titative risk management X is known as a risk vector and generally rep-
resents the profit-losses of a portfolio at a given future date. Ψ(X), the
aggregated risk, represents its total future position. The main examples of
aggregation functions are: the sum, max, weighted sums or a slightly more
complex function that may include stop-loss reinsurance type function on
each of the marginals. In this paper, we will be essentially concerned with
Ψ =

∑
, which is the most commonly studied aggregation function. We

are interested here in the estimation of p-quantiles, 0 < p < 1, of Ψ(X):
Qp(Ψ(X)) = inf{x ∈ R, FΨ(x) ≥ p}. To this purpose, we will assume that
the distributions F1, . . . , Fd of the marginal variables X1, . . . , Xd are known
and that some information on the dependence between them is given. Usu-
ally this information is available via some observations of the joint distribu-
tion and also via expert opinion.

In practice, neither the marginals nor the dependence of the risk vector
X will be known. However, in many cases, the information available on the
marginal distributions is much more important than the one on the depen-
dence structure. For example, when some observations of the vector X are
available, inferences one can do on the marginal distributions give better
results than inferences one can do on the multivariate distribution. Also,
samples available for marginal laws may be much larger than those available
for the joint distribution. So, even if the assumption of the knowledge of
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marginal distributions may seem not realistic, there is, however, in practice
much more knowledge on the marginal distributions than on the dependence
structure of the random vector. These situations arise e.g. for environmen-
tal data, in insurance contexts...

When the marginals are known but the dependence is unknown, the re-
arrangement algorithm (introduced in special cases in [20] and [19]) allows to
obtain bounds on the distribution of Ψ(X) ([18]) working well for d ≥ 30. By
improving the re-arrangement algorithm, bounds on the VaR are obtained
in ([10]) in high dimensional (d ≥ 1000) inhomogeneous portfolio. Cases
in which some kind of dependence information is available lead to narrower
bounds ([2, 3]) for the risk measure at hand. Bounds are also derived in ([4])
for dependence structures described by different copula models. A general
mathematical framework which interpolates between marginal knowledge
and full knowledge of the distribution function of X is considered in ([9]).

In this paper, we propose to use the checkerboard copula (introduced in
[15]) to merge the information given by a small sample of the distribution
of X with the known marginal distributions. Moreover, we introduce the
checkerboard copula with information on the tail and with information on
a sub-vector, to take into account some additional informations which may
improve the quantile estimation (see Section 3.1). Some simulations are
provided in Section 4.
We begin (see Section 2) with a brief discussion on the admissible multivari-
ate distribution with fixed marginals and aggregated laws: in other words,
given marginal laws and a distribution for Ψ(X), what are the possible mul-
tivariate distributions for X? Conclusions are provided in Section 5.

2. The invariant aggregation copula class

Let F be the distribution function of X = (X1, . . . , Xd). By Sklar’s
Theorem, there exists a copula distribution C on [0, 1]d such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

When the marginal random variables of X are absolutely continuous this
copula C is unique. We will assume that the marginals of X are abso-
lutely continuous. The aggregation function Ψ : Rd → R+ is considered
to be measurable and non-decreasing on each variable. Let us denote by
FΨ(x) = P (Ψ(X) ≤ x). Of course, the copula of the vector X determines
the distribution of Ψ(X). Nevertheless, the copula specification may be re-
dundant, as for any copula C there may exist an infinite set of copulas CΨ,C

such that Ψ(XC)
L
= Ψ(XC′) for any C ′ ∈ CΨ,C , where XC denotes a random

vector with same marginals as X with copula C.
The Fréchet class of the marginal distributions F1, . . . , Fd, denoted by

Fd(F1, F2, . . . , Fd), consists of all d-multivariate distributions with F1, . . . , Fd
as marginals. This class is completely determined by the class of all d-
copulas, i.e.:

Fd(F1, . . . , Fd) = {F : F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))}.
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Moreover, when the marginals are absolutely continuous there is a bijective
correspondence between both classes.

In the context of risk aggregation the following more useful class has been
introduced in [1].

Definition 1. An aggregate risk S is called an admissible risk of marginal
distributions F1, . . . , Fd if it can be written as S = Ψ(X1, . . . , Xd) where
Xi ∼ Fi for i = 1, . . . , d. The admissible risk class is defined by the set of
admissible risks of given marginal distributions but unknown dependence
structure:

Sd(F1, . . . , Fd,Ψ) = {Ψ(X1, . . . , Xd) : Xi ∼ Fi, i = 1, . . . , d}.

Some interesting properties of this class have been presented in [1] when
Ψ is the sum. Here we present a related class from the copula point of view.

Definition 2. Let X be a random vector and Ψ an aggregation function.
The class of copulas

C(X,Ψ) = {C ∈ C : Ψ(XC)
L
= Ψ(X)}

is the invariant aggregation copula class of X and Ψ.

The invariant aggregation copula class is related to the set of admissible
risks, in a similar way as the copulas are related to the Fréchet class:

F ∈ Fd(F1, . . . , Fd)⇔ ∃C : F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

S ∈ Sd(F1, . . . , Fd,Ψ)⇔ ∃C(X,Ψ) : ∀C ∈ C(X,Ψ) S
L
= Ψ(XC),

In what follows, we present an example and some results that show ex-
plicitly that this class is not trivial.

Example of non trivial classes C(X,Ψ). For Ψ =
∑

and Ψ = max, it is
easy to prove that the classes C(X,Ψ) are not trivial.

Example 1. We construct explicitly two different random vectors (X,Y )

and (X ′, Y ′) such that X
L
= X ′, Y

L
= Y ′ and X + Y

L
= X ′ + Y ′. Let (X,Y )

be any random vector in R2 with density f . Suppose that for some ε > 0
and some a < b and c < d with b − a = d − c we have that f(x, y) > ε for
any (x, y) ∈ [a, b]× [c, d]. The equality∫ 2π

0

∫ 2π

0
sin(x− y) dxdy = 0

implies that

g(x, y) = f(x, y) + ε sin

(
2π
x− a
b− a

− 2π
y − c
d− c

)
I[a,b]×[c,d](x, y)

is a density function. Moreover, as for any t the following equations hold,∫ t

0

∫ 2π

0
sin(x− y) dxdy = 0 and

∫ 2π

0

∫ t

0
sin(x− y) dxdy = 0.
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Thus, the marginal densities of f and g are identical. Furthermore, it can
also be checked easily that∫ 2π

0

∫ 2π

0
sin(x− y)I{0≤x+y≤t}(x, y) dxdy = 0

for any t > 0, thus if (X ′, Y ′) is a random vector with density g, it satisfies

that X ′ + Y ′
L
= X + Y .

The example above may be generalized in any dimension.

Proposition 2.1. If X admits a density f such that f(x1, x2, . . . , xd) > ε
for some ε > 0 and any x1, . . . , xd then C(X,+) has infinite elements.

Proof. Let f be the density of X, and choose a < b, c < d such that
b− a = d− c, then

g(x1, x2, . . . , xd) = f(x1, x2, . . . , xd) +

ε0 sin

(
2π
x1 − a
b− a

− 2π
x2 − c
d− c

)
I[a,b]×[c,d](x1, x2)

is a density function for any 0 < ε0 < ε. If X′ is a random vector with
density g then X′ ∈ C(X,+). As the same is true for any 0 < ε0 < ε, we
have shown that there are infinite elements in C(X,+). �

By definition, any element of the class C(X,Ψ) characterizes Ψ(X). The
following result shows that in some cases we can always find a symmetrical
copula in C(X,Ψ).

Proposition 2.2. If X admits a density with identical marginals and Ψ is
a symmetrical aggregation function then there exists a symmetrical copula

C such that Ψ(X)
L
= Ψ(XC).

Proof. Let f(x1, . . . , xd) be the density of X. Define g(x1, . . . , xd) as

g(x1, . . . , xd) =
1

d!

∑
σ∈Sd

f(xσ(1), . . . , xσ(d)),

where Sd is the set of all the permutations of {1 . . . , d}. Let X′ be a random
vector with density g. Then it is easy to check that the marginals of X′ are
distributed as the marginals of X. It follows equally, from the symmetry of

Ψ, that Ψ(X)
L
= Ψ(X′). As the density of X′ is completely symmetrical so

is its copula. �

Remark. In the case of d dimensional Archimedean copulas, it is known that
the copula C is uniquely determined by its diagonal δ, δ(t) = C(t, . . . , t)
if δ′(1−) = d (see [13, 21] in dimension 2 and [11] in higher dimension).
This means that if Ψ = max or Ψ = min, given a fixed common law for
X1, . . . , Xd and a fixed law for Ψ(X), then there is only one Archimedean
copula which leaves Ψ(X) and the marginal laws invariant. Nevertheless,
using constructions in [16], infinitely many copulas with a fixed diagonal
may be constructed.
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Below we provide a construction of infinitely many laws of random vectors
with a fixed law for their max and fixed marginal laws (remark that if the
marginal laws are not the same, then the law of the max is not determined
by the diagonal of the copula).

Proposition 2.3. Assume that X is absolutely continuous with density f

such that infK f > 0 with K =

d∏
i=1

[ai, bi]. If K is symmetric with respect to

the diagonal, then there exists a density function ϕ such that f ≡ ϕ outside

K, f 6= ϕ on K and the random vector X̃ whose density function is ϕ is
such that

• for i = 1, . . . , d, X̃i
L
= Xi,

• max(X)
L
= max(X̃).

Proof. We sketch the proof in dimension 2. Let f > ε on K and ϕ = f + εγ
where γ has its support in K as shown below:

1 −1

−1
−1 1

1

−1
1

It is easy to verify that the random vector X̃ whose density is ϕ has the

same marginal laws as X and max(X̃)
L
= max(X). �

Even if the example above seems trivial it shows that the full knowledge of
the copula distribution is unnecessary when studying an aggregation: there
is some redundant information.

3. Non-parametric estimation of the aggregation distribution
when the marginals are known

We have seen in the above section that the exact copula estimation can
be considered as a redundant exercise when estimating the distribution of
an aggregation of X. The information given by the copula of X, for the
study of Ψ(X) is the same as any copula from the class C(X,Ψ). This may
be seen as a justification of the fact that when the marginals are known,
there is some flexibility in the copula estimation in order to estimate the
aggregated distribution.

In this section we propose a non-parametric estimator of the distribution
of Ψ(X) when marginals F1, . . . , Fd are known and an independent and
identically distributed (i.i.d.) sample X1, . . . ,Xn is given. The sample size
n is quite small. The estimation of FΨ will allow us to obtain an estimation
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of the p-quantile Qp(Ψ(X)). This estimation will be compared to the one
obtained from the empirical cumulative distribution function

F̂Ψ(t) =
1

n

n∑
i=1

I{Ψ(Xi)≤t}.

Before illustrating the estimation procedure (Section 3.3), we need to define
three kinds of checkerboard copulas (Section 3.1) as well as an empirical
version of each of them (Section 3.2).

3.1. Checkerboard Copulas. As in the above sections, let F denote the
cumulative distribution function (c.d.f.) of X, C its copula function and Fi
the c.d.f of Xi, i = 1, . . . , d.
Let µC be the probability measure associated to C, i.e such that:

µC

(
d∏
i=1

[0, ui]

)
= C(u1, . . . , ud)

for any u = (u1, . . . , ud) ∈ [0, 1]d.
By a µ-decomposition of a set A ⊂ Rd we mean a finite family of measurable
sets {Ai ⊂ A} such that

(1) µ(Ai ∩Aj) = 0 whenever i 6= j

(2)
∑
i

µ(Ai) = µ(A).

Definition 3. A measure µ∗ is a checkerboard approximation for a copula
C if there exists a λ-decomposition A = {(ai, bi)} of Id, the d-dimensional
unit cube, made out of d-intervals such that for all i,

(1) µ∗ is uniform on (ai, bi);
(2) µ∗(A) = µC(A) for any A ∈ A.

For m ∈ N, let us consider the regular λ-decomposition of the unite cube
[0, 1]d denoted as Im and consisting of md d-cubes with side length 1/m :

Ii,m =

d∏
j=1

[
ij − 1

m
,
ij
m

]
, i = (i1, . . . , id), ij ∈ {1, . . . ,m}.

µ∗m is the checkerboard approximation associated to the regular decomposi-
tion Im.

We shall denote by C∗m the checkerboard copula associated to the measure
µ∗m. The definition of the checkerboard copula may then be rewritten as:

C∗m(x) =
∑
i

mdµ(Ii,m)λ([0, x] ∩ Ii,m)

where [0, x] =
d∏
i=1

[0, xi], for x = (x1, . . . , xd) ∈ [0, 1]d and λ is the d-

dimensional Lebesgue measure. In [15], it is proved that C∗m is a copula
that approximates C. The following proposition gives a more precise bound
on the approximation of C by C∗m.
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Proposition 3.1. Let C∗m be the checkerboard copula defined above. We
have:

sup
x∈[0,1]d

|C∗m(x)− C(x)| ≤ d

2m
.

Proof. This is clear that for any x ∈ [0, 1]d with x = i
m , i ∈ {1, . . . ,m}d,

C∗m(x) = C(x). For i ∈ {1, . . . ,m}d and k ∈ {1, . . . ,m}, we denote by Bk+
i

and Bk−
i the (half)-strips:

Bk+
i =

{
x ∈ [0, 1]d,

ik
m
− 1

2m
< xk ≤

ik
m

}
and

Bk−
i =

{
x ∈ [0, 1]d,

ik − 1

m
< xk ≤

ik
m
− 1

2m

}
.

If x ∈ Ii,m then,

|C∗m(x)− C(x)| ≤
d∑

k=1

|µ∗m(Bk−
i )− λ(Bk−

i )|1Bk−
i

(x) +

d∑
k=1

|µ∗m(Bk+
i )− λ(Bk+

i )|1Bk+
i

(x)

≤
d∑

k=1

min(µ∗m(Bk−
i ), λ(Bk−

i ))1Bk−
i

(x) +

d∑
k=1

min(µ∗m(Bk+
i ), λ(Bk+

i ))1Bk+
i

(x)

=
d

2m
since µ∗m and λ are both associated to a copula,

µ∗m(Bk−
i ) = λ(Bk−

i ) = µ∗m(Bk+
i ) = λ(Bk+

i ) =
1

2m
.

The announced result follows. �

We also define two kinds of checkerboard copula with additional informa-
tion. First of all, we consider the case where the distribution of a sub-vector
XJ = (Xi)i∈J , J ⊂ {1, . . . , d}, is known, |J | = k < d. Denote CJ the copula
of XJ . Let µJ be the probability measure on [0, 1]k associated to CJ . For
i = (i1, . . . , id), let x = (x1, . . . , xd) ∈ [0, 1]d, xJ = (xj)j∈J , x−J = (xj)j 6∈J
and

IJi,m =

{
x ∈ [0, 1]d / xj ∈

[
ij − 1

m
,
ij
m

]
, j ∈ J

}
,

I−Ji,m =

{
x ∈ [0, 1]d / xj ∈

[
ij − 1

m
,
ij
m

]
, j 6∈ J

}
.

The checkerboard copula with information on XJ is defined below.

Definition 4. Consider the probability measure on [0, 1]d defined by

µJm([0, x]) =
∑

i⊂{1,...,d}

md−k

µJ(IJi,m)
µ(Ii,m)λ([0, x−J ] ∩ I−Ji,m)µJ([0, xJ ] ∩ IJi,m).
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Let CJm, the checkerboard copula with additional information on XJ , be
defined by CJm(x) = µJm([0, x]).

Proposition 3.2. CJm is a copula, it approximates C:

sup
x∈[0,1]d

|CJm(x)− C(x)| ≤ d

2m
.

If XJ and X−J are independent then,

sup
x∈[0,1]d

|CJm(x)− C(x)| ≤ d− k
2m

.

Proof. The definition of CJm insures that it is a cumulative distribution func-
tion on [0, 1]d. The fact that CJm is a copula then follows from an easy com-
putation to get that CJm(x) = xk whenever x = (xj)j=1,...,d, with xj = 1 for
j 6= k.
The rest of the proof is done as in that of Proposition 3.1. �

We may also add information on the tail and so define the following
particular checkerboard copula.

Definition 5. For p ∈]0, 1[, let Ep =
(∏d

i=1[0, p]d
)c

and Ep the λ-decomposition

of Ep consisting of the hyper rectangles [a1, b1]×· · ·× [ad, bd] where [ai, bi] =
[0, p] or [ai, bi] = [p, 1] for all i = 1, . . . d with at least one of [ai, bi] =
[p, 1]. We assume that µC(A) is known for each A ∈ Ep. Consider the λ-

decomposition of the d-cube [0, p]d given by Jm consisting of the elements
Ji,m = p · Idm,i for d-tuple i = (i1, . . . , id) in {0, 1/m, . . . , (m − 1)/m}d. De-

fine C
Ep
m as the checkerboard copula associated to the λ-decomposition of

the unit d-cube Jm ∪ Ep, that is

CEm(x) = µC(Ec)µ∗m([0, x]/t)1Ec(x) +
∑
E∈Ep

µC(E)

λ(E)
λ([0, x] ∩ E).

This is the checkerboard copula with extra information on the tail.

In what follows, we will define an empirical version of the checkerboard
copulas defined above, by using the empirical copula.

3.2. Empirical checkerboard copulas. The empirical copula, introduced
by Deheuvels ([7]), may be used to estimate non parametrically the copula.

Definition 6. Let X1, . . . ,Xn be n independent copies of X. Each of them

writes Xj = (Xj
1 , . . . , X

j
d). Let R1

i , . . . , R
n
i , i = 1, . . . , d be their marginals

ranks, i.e.,

Rji =

n∑
k=1

1{X(j)
i ≥ X

(k)
i }, i = 1, . . . , d, j = 1, . . . , n

where X
(1)
i < · · · < X

(n)
i are the order statistics associated to the ith coor-

dinate sample X1
i , . . . X

n
i . The empirical copula Ĉn of X1, . . .Xn is defined
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as

Ĉn(u1, . . . , ud) =
1

n

n∑
k=1

1

{
1

n
Rk1 ≤ u1, . . . ,

1

n
Rkd ≤ ud

}
.

It is well known (see [12] e.g.) that the empirical copula may be used to
estimate C. Nevertheless, it is not a copula as its marginal laws are discrete.

We shall use the empirical copula Ĉn and the empirical probability measure

µ̂ associated to Ĉn, to define an empirical version of the checkerboard copulas
defined above.

Definition 7. Let X(1), . . . ,X(n) be n independent copies of X.

• The empirical checkerboard copula (ECBC) Ĉ∗m is defined by

Ĉ∗m(x) =
∑
i

mdµ̂(Ii,m)λ([0, x] ∩ Ii,m).

• The ECBC with information on a sub-vector XJ is defined by

ĈJm(x) =
∑

i⊂{1,...,d}

md−k

µJ(IJi,m)
µ̂(Ii,m)λ([0, x−J ] ∩ I−Ji,m)µJ([0, xJ ] ∩ IJi,m).

• The ECBC with information on the tail is defined by:

ĈEm(x) = µC(Ec)Ĉ∗m(x/t)1Ec(x) +
∑
E∈Ep

µC(E)

λ(E)
λ([0, x] ∩ E).

In the next proposition we show that Ĉ∗m, defined above, is a copula
whenever the integer m from the length size of the partition Im divides n,
the sample size.

Proposition 3.3. Assume that m ∈ N divides n. Then, the empirical

chekerboard copula Ĉ∗m defined on the regular partition Im and based on an
i.i.d sample of size n is a copula.

Proof. Suppose that m ≤ n and that m divides n. By definition the empir-
ical checkerboard copula is a distribution function, we should simply check
that the marginals are uniform. Without losing generality we show only

that the projection on the first coordinate of the measure induced by Ĉ∗m is

uniform, or equivalently that Ĉ∗m(x) = x1 for any x ∈ [0, 1]d with xj = 1 for
j 6= 1.
For ` ∈ {1, . . . ,m}, consider the strip B1

` :

B1
` =

{
x ∈ [0, 1]d,

`− 1

m
< x1 ≤

`

m

}
=

]
`− 1

m
,
`

m

]
× [0, 1]d−1.

The empirical copula is concentrated on n points of [0, 1]d whose coordinates

are of the form j
n , j = 1, . . . , n. Moreover, there is exactly one mass on

each strip B1
j , j = 1, . . . , n. So that if k = n/m, then the number of

masses of Ĉn on each strip B1
` , ` = 1, . . . ,m is exactly k, which means

that µ̂(B1
` ) = k

n = 1
m . Let x = (x1, 1, . . . , 1), x1 ∈ [0, 1], x ∈ B1

` with
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`−1
m < x1 ≤ `

m .

Ĉ∗m(x) =
∑

i∈{1,...,m}d
mdµ̂(Ii,m)λ([0, x] ∩ Ii,m)

=
∑
j<`

µ̂(B1
j ) +

∑
Ii,m⊂B1

`

mdµ̂(Ii,m)
(x1 − `−1

m )

md−1

=
∑
j<`

µ̂(B1
j ) +m

(
x1 −

`− 1

m

)
µ̂(B1

` )

=
`− 1

m
+

(
x1 −

`− 1

m

)
= x1,

which concludes the proof. �

Remark. The same kind of calculations shows that the empirical checker-

board copulas with additional information ĈJm and ĈEm are copulas provided
that m divides n.

Figure 1 shows simulations of different empirical checkerboard copulas
with and without information on the tail and two different decompositions.

Figure 1. Simulation of four checkerboard empirical cop-
ulas based on the same sample of size n = 30. At the top
there is no information on the tail whereas on the bottom
information on Ep, with p = 0.95 is assumed. On the left the
regular decomposition is I5, on the right I15. The red points
are the sample rank points.

Remark. Simulating a sample of size N from Ĉ∗m given a sample of size n of
X is very easy because it suffices to
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(1) get the sample rank,
(2) determine the number ni,m of points of the rank sample in each Ii,m,
(3) choose one element of Im such that the probability to chose Ii,m is

ni,m
n

,

(4) take a point in the chosen Ii,m at step (3) uniformly,

repeat steps (3) and (4) N times.

3.3. Estimation procedure. In what follows Ĉcbm denotes any of the three
ECBCs defined above. We propose the following estimation procedure.
Assume the marginal laws are known and a (quite small) sample of size n
of X is available.

(1) Estimate µ by µ̂ using the empirical copula.

(2) Obtain the ECBC Ĉcbm (depending if some additional information is
known).

(3) Simulate a sample of size N from the copula Ĉcbm for N big:

(u
(1)
1 , . . . , u

(1)
d ), . . . , (u

(N)
1 , . . . , u

(N)
d )

(4) Get a sample of Ψ(X) using the marginals to transform the above
sample:

Ψ
(
F↼

1 (u
(1)
1 ), . . . , F↼

d (u
(1)
d )
)
, . . . ,Ψ

(
F↼

1 (u
(N)
1 ), . . . , F↼

d (u
(N)
d )

)
(5) Estimate the distribution function FΨ of Ψ(X) empirically using

the above sample. We will denote F̂ (Ψ) the empirical distribution
function from the sample above.

Below, we state a convergence result which may have some interest from a
theoretical point of view but which is not our purpose here because we aim
at working with (relatively) small samples of size n.

Proposition 3.4. For some A > 0, let A
√
n ≤ m ≤ n. Assume that Ψ(X)

is absolutely continuous and C has continuous partial derivatives. Then,

‖FΨ − F̂ (Ψ)‖∞ = OP

(
1√
n

)
.

Proof. Use the convergence result by Fermanian et al ([12]). �

4. Numerical Application

In this section we use the estimator of the distribution function FΨ to
estimate the quantiles Qp(S) for S = X1 + · · · + Xd at different confidence
levels 0 < p < 1. We will consider the Pareto-Clayton model, defined in
Section 4.1, because, in that case, the exact value of Qp(S) can be calculated,
so that we may compare our simulation results to the exact one.

4.1. The Pareto - Clayton model. We consider X = (X1, . . . , Xd) such
that:

P(X1 > x1, . . . , Xd > xd |Λ = λ) =
d∏
i=1

e−λxi ,
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that is, conditionally to the value of Λ the marginals of X are independent
and exponentially distributed.
If Λ is Gamma distributed, then the Xi’s are Pareto distributed with de-
pendence given by a survival Clayton copula.
If Λ is Levy distributed, then the Xi’s are Weibull distributed with a Gum-
bel survival copula.
These models have been studied by Oakes (1989) and Yeh (2007) [17, 22].
In the context of multivariate risk theory, they have been used e.g. in [14]
and [6].
In what follows, we consider that Λ ; Γ(α, β), so that the Xi’s are Pareto
(α, β) distributed and the dependence structure is described by a survival
Clayton copula with parameter 1/α. In [8], it is shown that, in this case, S
follows the so-called Beta prime distribution:

FS(x) = Fβ

(
x

1 + x

)
where Fβ is the distribution function of the Beta(dβ, α) distribution. The
inverse of FS (or quantile function of S) can also be expressed in terms of
the inverse of the Beta distribution

F↼
S (p) =

F↼
β (p)

1− F↼
β (p)

.

From these results (see also [5]), we may compute Qp(S).

4.2. Simulation study in dimension 2 (with and without informa-
tion on the tail). We consider a Pareto-Clayton model in dimension 2,
with β = 1 and α = 2. The multivariate sample is of size n = 30 and
for each presented method we performed N = 1000 estimations of the p-
quantile at different confidence levels. Table 1 presents the mean and the
root mean squared error of the N = 1000 estimations. The estimations
were calculated using the ECBC with and without information on the tail
on different λ-regular decompositions Im for m = 6, 15, 30. The information
on the tail is introduced on Ep, for p = 0.95, 0.99, by giving to each E in Ep
the measure µC(E) where C is the survival Clayton copula with parameter
1/2. For comparison a direct estimation from the empirical distribution of
S is given.

All the methods we proposed perform much better than the empirical
estimation based on the multivariate sample alone. The estimations based
on the ECBC with λ-decomposition Im, perform better when m = 6 and
m = 15 than when m = 30. ECBC with m = 6 performs slightly better
than ECBC with m = 15 for the estimation of the quantiles with confidence
levels lower than 99.5% and slightly worst on the higher levels. When the
information on the tail is introduced on Ep with p = 0.95 the estimation
on the quantile with confidence level 90%, 95% and 99% is considerably im-
proved. When it is introduced on Ep with p = 0.95 the estimations improve
on the higher confidence levels 99.5% and 99.9%.
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 2.5 4.1 6.4 16.0 23.2 53.4
Empirical 2.5 4.0 6.1 12.2 13.2 14.0

(26%) (31%) (39%) (72%) (70%) (78%)
ECBC (m=6)

No tail information 2.6 4.4 6.6 14.8 20.8 45.7
(9%) (8%) (6%) (8%) (11%) (15%)

Information on Ep 2.6 4.4 6.4 14.2 22.7 49.5
p=0.99 (9%) (8%) (5%) (11%) (3%) (8%)

Information on Ep 2.7 4.1 6.1 15.6 21.8 46.8
p=0.95 (10%) (5%) (4%) (3%) (6%) (13%)

ECBC (m=15)
No tail information 2.5 4.2 6.8 15.5 21.5 46.4

(12%) (13%) (11%) (9%) (10%) (14%)
Information on Ep 2.5 4.3 6.8 14.3 22.7 49.5

p=0.99 (12%) (12%) (12%) (11%) (3%) (8%)
Information on Ep 2.6 4.3 6.2 15.6 21.8 46.8

p=0.95 (11%) (10%) (4%) (3%) (6%) (13%)
ECBC (m=30)

No tail information 2.5 4.2 6.6 15.8 22.0 47.0
(13%) (15%) (17%) (13%) (12%) (14%)

Information on Ep 2.5 4.2 6.7 14.3 22.7 49.5
p=0.99 (13%) (16%) (16%) (11%) (3%) (8%)

Information on Ep 2.6 4.4 6.2 15.6 21.8 46.8
p=0.95 (13%) (11%) (4%) (3%) (6%) (13%)

Table 1. The mean and the RMSE in % of the exact value
for 1000 estimations of the Quantile for a Pareto-Clayton
sum in dimension 2.

4.3. Simulation study introducing information on a sub-vector. In
order to assess the gain that the knowledge of the information on a sub-vector
may give to the estimation, we performed here the following simulation
study. Let X = (X1, X2, X3) be the model where X1 = X2 = Y/2, and X3 ∼
Y where Y is Pareto distributed with α = 2. We assume that (Y ,X3) is a
Pareto-Clayton model as in section 4.2. That is, X1 and X2 are comonotonic
(or fully dependent) and the dependence between X1 and X3 is given by a
survival Clayton of parameter 1/2. Clearly the distribution of the sum
S = X1 + X2 + X3 is equal to the distribution of the sum of the Pareto-
Clayton model in dimension 2, with parameters α = 2 and β = 1 and thus
the exact value of the quantiles can be easily computed. We compare the
results on the quantiles estimation using the ECBC method without and
with information on the sub-vector (X1, X2) and λ−decompositions Im for
m = 6, 15, 30. As before the multivariate sample is of size n = 30 and for
each method we performed N = 1000 estimations of the quantile at different
confidence levels. The results are presented in Table 2.
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact 2.5 4.1 6.4 16.0 23.2 53.4
ECBC (m=6)

No information 2.7 4.6 6.6 14.0 19.1 40.7
(13%) (13%) (7%) (13%) (18%) (24%)

Information on 2.6 4.4 6.6 14.8 20.8 45.7
(X1, X2) (9%) (8%) (6%) (8%) (11%) (15%)

ECBC (m=10)
No information 2.5 4.6 7.0 14.5 19.8 41.3

(12%) (13%) (12%) (11%) (15%) (23%)
Information on 2.5 4.3 6.7 15.2 21.2 46.1

(X1, X2) (11%) (9%) (9%) (8%) (10%) (15%)
ECBC (m=30)
No information 2.5 4.2 6.8 15.9 21.4 43.3

(14%) (16%) (19%) (14%) (14%) (21%)
Information on 2.5 4.2 6.6 15.8 21.9 47.1

(X1, X2) (13%) (16%) (17%) (13%) (13%) (14%)

Table 2. The mean and the RMSE in % of the exact value
for 1000 estimations of the Quantiles in dimension 3, with or
without using the knowledge of the comonotonic dependence
between X1 and X2.

It can be noticed that the RSME of the quantile estimation is lower when
the information on (X1, X2) is introduced in the ECBC of dimension 3 and
the gap is more important on higher confidence levels.

Remark. Simulating with respect to the empirical checkerboard copula with
information on a sub-vector may be a difficult task because one has to simu-
late with respect to a given copula conditionally to belonging to a given set
Ii,m. In the case of a comonotonic sub-vector, this becomes trivial because
we only need to simulate one coordinate uniformly.

Simulation results with the same kind of model in dimension 6 are pre-
sented in Table 3. We assumed X = (X1, . . . , X6) with X1 = X2 = Y/2 and
X3, X4, X5 and X6 distributed as Y , a Pareto r.v. with parameter α = 2.
The copula of X is assumed to be a survival Clayton of parameter 1/2. As
above, the size of the multivariate sample is n = 30 and for each method
we performed N = 1000 estimations of the quantile at different confidence
levels.

Again, by introducing the information on the sub-vector (X1, X2) we get
a smaller RMSE than in the case where no information is added. On the
other hand, we also remark that by increasing the dimension (from d = 3 to
d = 6) we get higher RMSE, for the same sample size, which is an expected
behavior.

4.4. A simulation in higher dimension. We conclude this simulation
section with a simulation in dimension 10. We consider a Pareto-Clayton
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Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact 6.1 9.8 14.9 36.4 52.4 120.1
ECBC (m=6)

No information 7.2 11.0 15.0 28.2 37.3 74.3
(19%) (14%) (7%) (23%) (29%) (38%)

Information on 7.1 10.9 15.0 28.9 38.4 77.5
(X1, X2) (17%) (13%) (7%) (21%) (27%) (36%)

ECBC (m=10)
No information 6.8 11.3 16.1 30.0 39.2 76.3

(16%) (18%) (13%) (19%) (26%) (37%)
Information on 6.7 11.1 16.0 30.6 40.3 79.7

(X1, X2) (15%) (16%) (12%) (17%) (24%) (34%)
ECBC (m=30)
No information 6.3 10.4 16.3 33.7 43.4 81.3

(15%) (19%) (20%) (18%) (22%) (33%)
Information on 6.3 10.4 16.2 34.0 44.1 84.2

(X1, X2) (15%) (18%) (19%) (18%) (20%) (31%)

Table 3. The mean and the RMSE in % of the exact value
for 1000 estimations of the Quantiles in dimension 6.

model with β = 1, α = 1
2 . The multivariate sample size is n = 75, then

n = 150. We perform N = 1000 runs for the checkerboard method without
any kind of information. In this case, we have simply taken m = n. Results
are presented in Table 4.

Quantile Quantile Quantile Quantile Quantile Quantile
80% 90% 95% 99% 99.5% 99.9%

Exact value 12.2 19.2 29 70.1 100.8 230.5
Empirical, n = 75 12.6 20 29.9 62.2 75.8 86.7

(12%) (15%) (19%) (41%) (67%) (181%)
Checkerboard, n = 75 12.5 20.1 31.2 74.8 92.4 152.6

(10%) (13%) (16%) (21%) (22%) (53%)
Empirical, n = 150 12.4 19.6 30.3 67.3 89.9 121

(9%) (11%) (14%) (27%) (40%) (108%)
Checkerboard, n = 150 12.4 19.6 29.8 75.4 107.6 173.9

(7%) (9%) (12%) (18%) (22%) (38%)

Table 4. Mean and RMSE in % of the exact value for the
Pareto-Clayton sum in dimension 10.

It is notable that the checkerboard method performs well even in dimension
10. Let us emphasize that n = 150 in dimension 10 is not much.
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5. Conclusion

In this paper, we have constructed empirical checkerboard copulas with
and without additional information on the joint law. We have used them to
get efficient estimations of the quantiles of the sum when using a (relatively)
small sample of the joint law and the knowledge of the marginal laws. We
have also proved (in the case of max and

∑
) that there exist infinitely many

copulas for given marginal laws and given aggregation law. This theoretical
result indicates that when the marginal laws are known, if we are only
interested in the aggregated law, the full knowledge of the joint law is not
necessary.
We are aware that many theoretical and practical questions have to be
studied further, among which:

• the optimal choice of m with respect to the sample size n,
• the quantification of the impact of plugging additional information

in the empirical checkerboard copula,
• the number N of simulations necessary to reach a certain precision

level,
• developing efficient algorithms to simulate with respect to the empir-

ical checkerboard copula with information on a sub-vector, for other
copulas than the comonotonic one,
• developing efficient algorithms to simulate with respect to the empir-

ical checkerboard copula with information on the tail in dimension
larger than 2.
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