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Abstract 

"Second-generation" UV-blocking materials are needed. Using the fluorite-type rare-earth 

tungstates R6WO12 as starting reference compounds, anionic or cationic substitutions were 

achieved in (R,R’)-(W,Mo)-(O,N) systems, thus delimiting large solid solution domains. The 

continuous shift of the absorption edge in diffuse reflectance spectra  towards lower energy 

values makes it possible to tune it at the required value of 3.1 eV (400 nm), with in several 

cases a steep enough slope. Attempts were also carried out in perovskite (A,R)-Ti-(O,N) 

systems (A = alkaline-earth, R = rare-earth) to isolate suitable  oxynitride compositions. 

Keywords: UV-absorber, absorption edge, optical properties, oxynitride. 

Introduction 

It is well known that UV radiations can cause irreversible damages to organic materials, 

human tissues included. The so-called “UV B” (wavelengths within the range 280-320 nm) 

are the most energetic, that often results in short term effects (sunburns). However, the “UV 

A” (320-400 nm), about which one has not cared for a long time, are not so harmless because 

of cumulative effects. So, an effective protection in the whole UV spectrum is more than 

necessary for outer applications. The filtering system can be incorporated into the material to 

be protected (plastics) or can cover it (varnish, skin protection). 



To date, inorganic anti-UV are not totally satisfactory. Mainly TiO2-based, rutile or anatase 

phase, they are often not effective at high wavelengths and engender whitening phenomena 

due to the high value of their refractive index (rutile: n = 2.72, anatase: n = 2.5) [1]. Potential 

challengers, with lower indices, are ZnO (n = 2.2) and CeO2 (n = 2.05) whose absorption edge 

is also close to 400 nm (or 3.1 eV), the frontier between the UV part and the visible part of the 

electromagnetic spectrum.   

The powder morphology is a crucial parameter which has to be adapted to each case. In 

particular, to avoid whitish aspect, nanosized particles are needed for TiO2, while sizes of 

about 100 nm are sufficient for ZnO or CeO2.  

Furthermore, a major drawback of these “first-generation” UV-absorbers is their 

photocatalytic activity: under irradiation they generate oxidizing species which induce 

secondary reactions at the surface of the host matrix, with noticeable degradation. 

The purpose of this study is to finalize the preparation of "second-generation" UV-blocking 

materials which are effective for the whole UV spectrum. A good candidate for such an 

application should satisfy the following specifications:  

1/ absorption of all radiations with < 400 nm   

2/ transmission of all the lower energy radiations 

3/ as a consequence of 1) and 2), a steep absorption edge, as much as possible, 

defining the spectral selectivity 

4/ a low refractive index in the Visible (however, a high refractive index in the UV 

gives a maximum opacity) 

5/ no photocatalytic activity. 

Modification in the chemical composition of a solid is often accompanied by changes in its 

physical or chemical properties. In case of a progressive modification inside a solid solution 

domain, it is possible to conceive new materials with properties   particularly well fitted for 



given applications by adjustment of the composition. Considering the optical absorption 

properties of semi-conducting compounds, a slight modification in composition can affect the 

width of the bandgap (and the position of the absorption edge) through a modification of the 

electronic structure.      

 In this paper, two types of solid solutions have been studied. Large composition domains 

have been evidenced in fluorite-type systems R-(W,Mo)-(O,N) (R = rare earth) [2] and in 

perovskite-type systems (A,R)-Ti-(O,N) (A = alkaline-earth) by involving cationic and/or 

anionic substitutions. In the case of fluorites, starting from a rare-earth tungstate absorbing in 

the UV, the width of the bandgap can be decreased to 3.1 eV (400 nm) by modifying the 

position either of the valence band (N/O substitution) or of the conduction band (Mo/W 

substitution). In the case of perovskites, N
3-

 substituting progressively for O
2-

 in a titanate 

ATiO3 induces an increase in the anionic formal charge which can be compensated, according 

to a cross-substitution principle, by a trivalent rare-earth cation replacing the divalent 

alkaline-earth. Such a substitution results in a shift of the absorption edge towards higher 

wavelengths and in the possibility to adjust it to 400 nm.     

Experimental 

Preparation of rare-earth-based oxide precursors by the ceramic method has shown limits 

regarding homogeneity and reactivity of the products. Single phases are often difficult to 

prepare in a pure state and the difficulty increases with multinary oxides, as numerous other 

compositions are potentially accessible. 

Several chimie douce-type processes have been developed to prepare oxide powders in order 

to improve their quality (purity, chemical homogeneity, etc..) and also their reactivity. Herein, 

the "amorphous citrate" route was preferentially used to synthesize oxide precursors. It 

involves citric acid as a complexing agent and is not, strictly speaking, a classic sol-gel 

process in the sense that no gel is formed by a metal-oxygen-metal network, but rather from 



metal-organic complexes which yield after calcination ultrafine reactive powders with a good 

chemical homogeneity. The principle consists in preparing a solution containing the 

complexed cations in the desired ratios, afterwards the solution is evaporated until formation 

of a viscous liquid. A progressive heating to 250°C follows, then a calcination up to 500-

600°C to get rid of all organics. The citrate route can be generalized to a large number of 

compositions which cannot be obtained via traditional methods. The use of citric acid presents 

several advantages such as formation of very stable solutions of more or less complex 

stoichiometries. The cation stoichiometry being the same in the solution and in the powdered 

residue, a priori any designed composition may be easily and rapidly obtained by this 

aqueous process. 

Nitridation reactions were carried out in an alumina boat containing the oxide precursor 

powder placed inside an alumina tube through which ammonia gas flowed at a rate of 30-40 

l.h
-1

. The temperature was raised in the range 500-1000°C,  depending on the precursor and 

system studied. 

XRD powder patterns were recorded using a Philips (PW 3710 X'PERT) diffractometer 

operating with Cu K radiation ( = 1.5418 Å). Nitrogen and oxygen contents were 

determined with a LECO TC-436 analyser using the inert gas fusion method, nitrogen as N2 

by thermal conductivity measurement, oxygen as CO2 by infrared detection. Diffuse 

reflectance spectra were collected using a UV-Visible Varian Cary 100 spectrometer in which 

the absolute reflectance of the sample is compared with a “spectralon” standard (Labsphere 

Cie). 

Results and discussion 

Our first approach of solid solutions has concerned the systems R-(W,Mo)-(O,N), more 

particularly the rare-earth tungstates R6WO12. Y6WO12 is a representative term of this anion-



defect fluorite-type series (Y6WO122 or Y3.43W0.57O6.851.15), giving a white powder 

absorbing at 3.65 eV.  

 Thermal ammonolysis of Y6WO12 between 500 and 800°C for different times forms a 

series of oxynitrides with a defect fluorite-type structure [3,4]. The progressive anionic 

substitution of nitrogen for oxygen according to: 

2N
3-

 + 1 = 3O
2-

 

reaches the nitrogen-rich limit composition Y3.43W0.57O4.3N1.72. It is accompanied by a 

continuous shift of the absorption edge from 3.65 to 2.36 eV, as a consequence of an 

increased covalent character that leads to a decrease in the optical bandgap value (Table 1, 

Fig. 1). Hence, it is possible, by adjusting the nitrogen content, to obtain an oxynitride 

composition cutting off exactly at 3.1 eV. The nitrogen incorporation causes a decrease in the 

maximum of diffuse reflectance. Besides, less steep than for the starting oxide, the slope of 

the absorption edge does not change with nitrogen content. However, the spectral selectivity 

is not good enough for anti-UV application. 

Table 1. Y6WO12-3xN2y oxynitrides synthesized from an oxide precursor issuing from the citrate route. 

NH3 treatment wt% N 
Fluorite-type 

formulation 
Colour 

500°C/5h 0.4 Y3.43W0.57O6.63N0.17 white 

550°C/5h 1.2 Y3.43W0.57O6.23N0.40 yellow 

600°C/60h 2 Y3.43W0.57O5.77N0.74 yellow 

800°C/15h 2.9 Y3.43W0.57O5.31N1.03 mustard yellow 

 

 



 

Fig. 1. Diffuse reflectance spectra of several Y3.43W0.57O6.86-3xN2x (0 ≤ x ≤ 0.52) compositions. 

 As molybdenum is more electronegative than tungsten, the energy level of the 4d(Mo) 

orbitals is lower than that of the 5d(W) orbitals. Consequently, a progressive cationic 

substitution of Mo for W induces a shift of the absorption edge, from 3.65 eV for Y6WO12 to 

2.80 eV for Y6MoO12  (Fig. 2). The non linear variation law of the optical bandgap along the 

solid solution suggests that the 4d(Mo) and 5d(W) levels form two bands relatively distinct 

from each other [2]. We have succeeded in preparing an intermediate composition cutting off 

precisely at 3.1 eV. Moreover, after powder annealing, a steep absorption edge could be 

observed, giving a spectral selectivity of 0.49 nm, comparable to 0.29 nm for TiO2 

nanorutile). Consequently, Y6W1-xMoxO12 compositions with x ~ 0.8-0.85 seem to be 

attractive materials for anti-UV purposes, as they have in addition a low refractive index (n ~ 

2) [5]. Electron energy loss spectrometry (EELS) measurements, which are capable of 

distinguishing   absorption from diffusion, are now in progress. 



 

Fig. 2. Diffuse reflectance spectra of Y6W1-xMoxO12 compositions, compared with TiO2 nanorutile. 

This study is funded, in particular, by the French Ministry of Trade and Industry under the  

acronym AUVIB [6]. The project aims at emerging new varnish and wood stain formulations 

containing stable UV-absorbers, in order to prevent or limit wood photodegradation.   

Our second approach of solid solutions has concerned domains ranging between two 

perovskite-type limits: a white oxide ATiO3 (A = Ca, Sr, Ba), absorbing in the UV, and a 

strongly coloured oxynitride RTiO2N (R = La, for ex.) [7]. Applying the cross-substitution 

principle:   

R
3+ 

+ N
3-

 = A
2+

 + O
2- 

we have attempted to synthesize intermediate compositions showing an absorption edge 

located between those of the two limits of the solid solution domain. 

As illustrated in Fig. 3, the powder colour acts as an excellent first indicator to estimate the 

width of the bandgap and, consequently, the corresponding absorption edge position.  



 

Fig. 3. Colour of the oxynitride powder as a function of the bandgap energy value. 

The (Sr,La)-Ti-(O,N) system has been first chosen. Thermal ammonolysis of corresponding 

oxide compositions between 800 and 1000°C  evidences a perovskite-type solid solution 

domain along the whole range comprised between LaTiO2N [7] and SrTiO3. Sr1-xLaxTiO3-xNx 

oxynitride compositions have been synthesized particularly for x = 0.05; 0.10; 0.25; 0.50; 

0.75 (Table 2). The absorption properties change progressively when decreasing x, the 

powder colour going from red-brown (x = 1: LaTiO2N) to yellow (x = 0.10). The yellow 

colour of the Sr0.90La0.10TiO2.90N0.10 composition corresponds to an absorption edge located at 

around 500 nm, a lower x value is therefore necessary. However, the powder corresponding to 

x = 0.05 shows after ammonia treatment an undesired yellow-green colour, indicative of a 

black component and of a reduction phenomenon of Ti
IV

, which is no more totally stabilized 

under the used reducing ammonia synthesis conditions. This would indicate that the inductive 

effect of strontium ions is weaker than that of lanthanum ions.  

 

 

  



Table 2: Colour of nitrided powders in the (Sr,La)-Ti-(O,N) system. 

Cationic composition Observed color 

LaTi red brown 

Sr0.25La0.75Ti red 

Sr0.50La0.50Ti orange 

Sr0.75La0.25Ti yellow orange 

Sr0.90La0.10Ti yellow 

Sr0.95La0.05Ti yellow green 

SrTi white 

 

This study, still in progress, focuses now on the different possibilities to modify the alkaline-

earth/rare-earth couple, and also the (alkaline earth + rare-earth)/titanium ratio, in order to 

enhance the inductive effect and thus stabilize Ti
IV

 during thermal ammonolysis.  

Conclusion  

The amorphous citrate route proves its efficiency to prepare multinary oxide compositions. By 

this way, we have succeeded in modifying optical absorption properties by adjusting both 

oxide and oxynitride chemical compositions. Potential oxide UV-absorbers have been 

isolated. Preliminary results of a study of their photocatalytic activity (phenol 

photodegradation test) [8] are encouraging. Another aspect concerns optimization of the 

performances of oxynitride compositions, especially the steepness of the absorption edge. In 

all cases, the powder morphology is an important parameter to be controlled before 

envisaging an industrial opening for these oxide and oxynitride materials. 
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