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Estimation of extreme quantiles conditioning on multivariate

critical layers

E. Di Bernardino∗and F. Palacios-Rodŕıguez†‡

Thursday 11th February, 2016

Abstract

Let Ti := [Xi |X ∈ ∂L(α)], for i = 1, . . . , d, where X = (X1, . . . , Xd) is a risk vector and

∂L(α) is the associated multivariate critical layer at level α ∈ (0, 1). The aim of this work

is to propose a non-parametric extreme estimation procedure for the (1− pn)-quantile of Ti

for a fixed α and when pn → 0, as the sample size n → +∞. An extrapolation method

is developed under the Archimedean copula assumption for the dependence structure of X

and the von Mises condition for marginal Xi. The main result is the Central Limit Theorem

for our estimator for p = pn → 0, when n tends towards infinity. A set of simulations

illustrates the finite-sample performance of the proposed estimator. We finally illustrate
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how the proposed estimation procedure can help in the evaluation of extreme multivariate

hydrological risks.

Keywords: Multivariate risk measures, return levels, critical layers, extreme quantile.

1 Introduction

Multivariate extreme events and multivariate critical layers In hydrology, phenomena

are usually characterized by extreme events, and quantification of the risk of the occurrence of a

specific extreme event is gaining attention in environmental sciences (e.g., see Hochrainer-Stigler

and Pflug (2012)). The classic univariate measure in environmental sciences is that of the return

level. This quantity represents the magnitude of an event that occurs at a given time and at a

given site. More precisely, the return level is the quantile xp which expresses the magnitude of

the event that is exceeded with a probability equal to p, with p = 1/T (T is called the return

period). Environmental risks frequently involve several variables that are often correlated. For

instance, a flood can be described by the volume, the peak and the duration (see Chebana and

Ouarda (2011a,b)). It is therefore crucial to identify extreme risks in a multivariate setting.

The notion of multivariate return level is not univalent (Vandenberghe et al. (2012)) and several

definitions can be found in the recent literature. Since different combinations of probabilities

may produce the same return period, a multivariate return level is inherently ambiguous. Events

that have equal probability of exceedance define iso-hyper-surfaces, otherwise known as critical

layers. Salvadori et al. (2011) provide the following definition.
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Definition 1.1. Let X = (X1, . . . , Xd) be a random risk vector with joint distribution function

F . For α ∈ (0, 1) and d ≥ 2, the critical layer ∂L(α) at level α is defined as ∂L(α) = {x ∈ Rd :

F (x) = α}.

Definition 1.1 provides a partition composed of three probability regions: ∂L<(α) = {x ∈ Rd :

F (x) < α} (the sub-critical region); ∂L(α) (the critical region where all the events have a

constant F ); and ∂L>(α) = {x ∈ Rd : F (x) > α} (the super-critical region).

In practice, at any occurrence of the phenomenon, only these three mutually exclusive events

may occur (see Belzunce et al. (2007)). The multivariate return level can be defined with respect

to one of the above three areas. For instance, in hydrology, the sub-critical region may be of

interest if droughts are to be investigated, while the study of floods may require the use of super-

critical regions (Salvadori et al. (2012)). Chebana and Ouarda (2011b) propose a parametric

estimator for the critical layer and apply it to a bivariate flood real data-set. An estimation for

the bivariate critical layers ∂L(αn) by assuming αn → 1, as n → ∞, is presented in de Haan

and Huang (1995). In the last decade, Embrechts and Puccetti (2006), Nappo and Spizzichino

(2009), Prékopa (2012), and Cousin and Di Bernardino (2013) have used the notion of critical

layers (i.e., multivariate quantile curves) to generalize the notion of univariate return level in

the multivariate setting.

Conditional distribution on critical layers and considered multivariate extreme re-

turn levels We now introduce the conditional random variable Xi on the critical layer ∂L(α)
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for i = 1, . . . , d, that is,

Ti := [Xi |X ∈ ∂L(α)], for α ∈ (0, 1), (1)

where ∂L(α) is as in Definition 1.1, and the associated conditional distribution function is given

by Fi(x |α) = P[Xi ≤ x |X ∈ ∂L(α)]. One can interpret the random variable Ti in Equation (1)

as the contribution (or the responsibility) of the marginal risk Xi in the case where the whole risk

vector X belongs to the multivariate stress scenario represented by the critical layer ∂L(α), for

some suitable level α ∈ (0, 1). It should be borne in mind that Equation (1) can also be written

by using the Multivariate Probability Integral Transformation (MPIT) Z := F (X1, . . . , Xd).

Indeed, under regularity conditions on F , one can write Ti := [Xi |Z = α], for α ∈ (0, 1) (see,

e.g., Cousin and Di Bernardino (2013), Nelsen (2006), Genest and Rivest (2001)).

Using the above notation, in this paper we consider the multivariate return level, based on the

critical layers, that was recently proposed by Di Bernardino et al. (2015). This risk measure is

defined by the (1− p)-quantile of the random variable Ti in (1), that is,

xip := UTi

(
1

p

)
, for p ∈ (0, 1), (2)

where UTi(t) := F←i (1 − 1
t |α) for t > 1, and F←i (· |α) denotes the left-continuous inverse

of Fi(· |α).

Proposal of the present work The goal of this paper is to estimate the multivariate extreme

return levels xipn defined by Equation (2). To this end, two problematic points can be identified:
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i) Di Bernardino et al. (2015) analyse this measure and introduce a semi-parametric estima-

tion procedure. However, the aforementioned semi-parametric estimation and empirical

quantile estimators perform well only if the threshold is not too high. These methods

cannot handle extreme events, that is pn � 1/n, which are specifically required for hydro-

logical and environmental risk measures.

ii) As pointed out before, the considered conditional random variable Ti relies on the latent

MPIT Z, which is not observed. Therefore, in order to apply a quantile estimation proce-

dure, Z has to be previously estimated. This type of plug-in procedure increases the varia-

nce of the final estimation and introduces statistical difficulties (see, e.g., Di Bernardino

et al. (2013a)).

In order to overcome the drawback outlined in item i), in the present work we provide an

estimator of xipn in Equation (2), for a fixed α and when pn → 0, as n→ +∞, by using Extreme

Value Theory (EVT). In order to model the dependence structure of the multivariate risk vector

X, we consider Archimedean copulas. Recall that Archimedean copulas can be written as

Cφ(u1, . . . , ud) = φ−1(φ(u1) + . . . + φ(ud)), for all (u1, . . . , ud) ∈ [0, 1]d, where the function φ

is called the generator of the copula, and φ is a continuous, strictly decreasing function from

[0, 1] to [0,∞] such that φ(1) = 0 and φ(0) =∞ (see, e.g., Definition 2 in McNeil and Nešlehová

(2009)). Furthermore, the generator of an Archimedean copula also satisfies several additional

d−monotony properties ( for further details, see Theorem 2.2 in McNeil and Nešlehová (2009)).

The rationale for employing Archimedean copulas is motivated by the fact that under this
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assumption the distribution of Ti and its tail index can be easily obtained (see Proposition

2.1). Furthermore, in this framework, one can avoid having to previously estimate the latent

variable Z (see item ii)). Indeed, the proposed estimator procedure is only based on quantities

that can be directly estimated by using the observed d-dimensional independent and identically

distributed (i.i.d.) sample of (Xj), for j = 1, . . . , n (see Equation (8)).

We remark that Archimedean copulas play a central role in the understanding of dependencies

of multivariate random vectors (see Nelsen (2006), McNeil and Nešlehová (2009), Durante and

Salvadori (2010)).

Frequently, hydrological phenomena are characterized by upper tail dependence described by

Gumbel-Logistic models (e.g., see Fawcett and Walshaw (2012), Chebana and Ouarda (2011a),

de Waal et al. (2007)).

Following these considerations, under a regular variation condition for the generator φ and the

von Mises condition for the marginal Xi, we develop an extreme extrapolation technique in order

to estimate xipn (see, e.g., Cai et al. (2015)).

Organization of the paper In Section 2.1, we derive the tail index of the distribution of Ti.

Under suitable assumptions, a non-parametric estimation procedure for xipn is obtained, for a

fixed level α and when pn → 0, as n → +∞ (Section 2.2). The main result is the asymptotic

convergence of our estimator with p = pn → 0, as n → ∞ (Section 3). In Section 4, the

performance of the estimator x̂ipn is illustrated on simulated data. Finally, Section 5 concludes

with an application to a 3−dimensional rainfall data-set in order to illustrate how the proposed
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estimation procedure can help in the evaluation of multivariate extreme return levels.

2 Proposed extreme estimator for the multivariate return level xip

2.1 Tail index for Ti

In this section, we aim to study the tail behaviour of Ti, for i = 1, . . . , d. We assume the

existence of the limit in [1,∞] of

ρ = − lim
s↑1

(1− s)φ′(s)
φ(s)

. (3)

Equation (3) is equivalent to regular variation of φ at 1 with index ρ, that is, φ ∈ RVρ(1) (see

Charpentier and Segers (2009) for details). Furthermore, ρ ≥ 1 due to the convexity of φ. When

ρ > 1, the upper tail of the copula exhibits asymptotic dependence, while if ρ = 1, then the

upper tail exhibits asymptotic independence. Under condition (3) for the generator φ, we now

study the maximum domain of attraction (MDA) of Ti, for i = 1, . . . , d.

Proposition 2.1 (The von Mises condition for Ti). Let (X1, . . . , Xd) be a random vector with

Archimedean copula with twice differentiable generator φ. Assume that φ ∈ RVρ(1), with ρ ∈

[1,+∞]. Let i ∈ {1, . . . , d} and Fi be the twice differentiable distribution function of Xi. Assume

that Fi verifies the von Mises condition with index γi ∈ R. Let Ti be as in (1) with distribution

function Fi(·|α).

i) If ρ ∈ [1,+∞), then Fi(·|α) verifies the von Mises condition with tail index γTi = γi
ρ .

Specifically, Ti ∈MDA
(
γTi
)
.

ii) If ρ = +∞, then Fi(·|α) verifies the von Mises condition with tail index γTi = 0. In

particular, Ti ∈MDA (0).
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The proof and illustrations of Proposition 2.1 are given in the Supporting Information. Fur-

thermore, the von Mises condition and the explicit form of the distribution Fi(·|α) can also be

found in the Supporting Information.

Remark 2.1. Note that γTi depends on neither the risk level α nor on the dimension d. How-

ever, γTi depends on the domain of attraction of the respective margin Xi and on the regularly

varying index ρ of the generator of the Archimedean copula considered. It should be borne in

mind that assumptions of Proposition 2.1 can be easily satisfied . Indeed, in Table 1 in Char-

pentier and Segers (2009), various copula models with associated ρ index can be found and the

von Mises condition is verified for a large class of marginal distributions Fi (see illustrations in

the Supporting Information).

The relationship between the quantile functions UTi and UXi is established in the following

result. The proof of Proposition 2.2 is given in the Supporting Information.

Proposition 2.2 (Relation between UTi and UXi). Let (X1, . . . , Xd) be a random vector with

Archimedean copula with generator φ. Assume that φ ∈ RVρ(1), with ρ ∈ [1,+∞]. Let Ti be as

in (1) with distribution function Fi(·|α). Let k = k(n)→∞, k/n→ 0, as n→∞, and

kU (n) := n

{
1− φ−1

[(
1−

(
1− k(n)

n

)1/(d−1)
)
φ(α)

]}
. (4)

Therefore,

i) kU (n) is an intermediate sequence, that is, kU (n)→∞, kU/n→ 0 as n→∞.

ii) UTi
(
n
k

)
= UXi

(
n
kU

)
, where UXi is the marginal quantile function, that is, UXi(t) := F←i (1−

1/t).
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2.2 Proposed estimator using an extrapolation method

Henceforth, we will focus on the case: γi > 0 and ρ ∈ [1,+∞) (in particular, this implies

γTi > 0). This choice is motivated by our applications in hydrology and in particular in real

rainfall data-sets. Indeed, in these real-life applications, we can easily observe heavy tailed

distributions (see, for instance, Pavlopoulos et al. (2008) and Papalexiou et al. (2013)). For the

marginal distribution Xi, we therefore assume that there exists γi > 0 such that for all x > 0,

lim
t→∞

UXi(tx)

UXi(t)
= xγi . (5)

In this case, Propositions 2.1 and 2.2 yield, as n→∞,

xipn = UTi

(
1

pn

)
∼ UXi

(
n

kU

)(
k

n pn

)γi/ρ
= UXi

(
n

kU

)(
k

n pn

)γTi
, (6)

where kU is as in Equation (4) and k = k(n)→∞, k(n)/n→ 0, as n→∞.

Let (X1, . . . , Xd) be a d-dimensional random vector with continuous distribution function F and

Archimedean copula with generator φ. The goal is to estimate xipn in (6) based on d-dimensional

i.i.d. observations, (Xj), for j = 1, . . . , n, from F , where pn → 0, as n→ +∞. Let Xi
n−bkU c,n be

the (n− bkUc)-th order statistic of (Xi
1, . . . , X

i
n). Therefore, the natural estimator of UXi

(
n
kU

)
is its empirical counterpart, that is, Xi

n−bkU c,n (e.g., see de Haan and Ferreira (2006)).

From Equation (6), in order to define the estimator of xipn , it thus remains to estimate γi and

ρ. We estimate γi with the Hill estimator (see Hill (1975)):

γ̂i =
1

k1

k1−1∑
j=0

logXi
n−j,n − logXi

n−k1,n, (7)
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where k1 is an integer sequence such that k1(n) → ∞, k1/n → 0, n → ∞, and that Xi
n−k1,n

is the intermediate order statistic at level n − k1. In addition, the regularly varying index ρ is

estimated by taking into account the estimator of the upper tail dependence coefficient proposed

by Schmidt and Stadtmüller (2006) (for details, see the Supporting Information).

Let γ̂Ti := γ̂i
ρ̂ . We can therefore estimate xipn in (6) by

x̂ipn = Xi
n−bkU c,n

(
k

n pn

)γ̂Ti
. (8)

Remark 2.2. Notice that the proposed estimator in Equation (8) does not rely on the latent

MPIT Z := F (X1, . . . , Xd), which is not directly observed. Under assumptions of Proposition

2.1, the application of the proposed extrapolation technique precludes the necessity to previously

estimate Z. Indeed, the estimator x̂ipn in Equation (8) is only based on quantities that can be

directly estimated by using the observed d-dimensional i.i.d. sample (Xj), for j = 1, . . . , n. In

Section 4, we provide a comparison with an empirical quantile estimation of Ti constructed by

using the empirical multivariate distribution function Fn(Xj) (see Equation (10)).

3 Asymptotic normality

In order to prove the asymptotic normality of x̂ipn , we need to quantify the rate of convergence

in Equation (5). We therefore assume the following second-order regularity condition.

Assumption 3.1 (2RV condition on UXi). There exist τi < 0 and an eventually positive or

negative function Ai such that, as t→∞, Ai(t x)/Ai(t)→ xτi for all x > 0 and

supx>1

∣∣∣x−γi UXi
(t x)

UXi
(t) − 1

∣∣∣ = O(Ai(t)), (see Condition (3.2.4) in de Haan and Ferreira (2006)).
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For the sake of brevity, the auxiliary results necessary to obtain Theorem 3.1 are presented

in the Supporting Information. In the following, our main result is presented: the asymptotic

normality for the estimator x̂ipn in Equation (8).

Theorem 3.1 (Asymptotic normality of x̂ipn in the upper tail dependence case, ρ > 1). Let

(X1, . . . , Xd) be a random vector with Archimedean copula with twice differentiable generator φ.

Assume that φ ∈ RVρ(1), with ρ ∈ (1,+∞). Let i ∈ {1, . . . , d} and Fi be the twice differentiable

distribution function of Xi. Assume that Fi verifies the von Mises condition with index γi > 0.

Let Ti be as in (1) with distribution function Fi(·|α). Assume:

1. For (Xi, Xj), with i 6= j, the upper tail copula ΛU exists, has continuous partial derivatives,

and satisfies the second-order condition in Equation (10) in the Supporting Information

with auxiliary function Aρ(·).

2. UXi satisfies Assumption 3.1 with auxiliary function Ai(·), γi > 0 and τi < 0.

3. k = k(n)→∞, k/n→ 0, n→∞ such that Theorem 2.1 in the Supporting Information is

satisfied.

4. k1 = k1(n)→∞, k1/n→ 0, and
√
k1Ai(n/k1)→ λ, n→∞.

5. k2 = k2(n)→∞, k2/n→ 0, and
√
k2Aρ(n/k2)→ 0, n→∞.

Let r = limn→+∞

√
k1(n)√
k2(n)

, r′ = limn→+∞

√
kU (n) log(dn)√

k1(n)
and r′′ = limn→+∞

√
kU (n) log(dn)√

k2(n)
with

r, r′ and r′′ ∈ [0,∞].

Hence, as n→∞, if r ≤ 1 and limn→+∞
log(dn)√
k1(n)

= 0, then

11



min

(√
kU ,

√
k1

log(dn)

)(
x̂ipn
xipn
− 1

)
d→


B + r′(Θ1 + rΘ2), r′ ≤ 1;

1
r′B + Θ1 + rΘ2, r′ > 1,

and, if r > 1 and limn→+∞
log(dn)√
k2(n)

= 0, then

min

(√
kU ,

√
k2

log(dn)

)(
x̂ipn
xipn
− 1

)
d→


B + r′′(1

rΘ1 + Θ2), r′′ ≤ 1;

1
r′′B + 1

rΘ1 + Θ2, r′′ > 1,

where dn := k/(n pn), B ∼ N(0, γ2
i ), Θ1 ∼ N(µ/γi, 1) with µ = λ/(1 − τi) and Θ2 ∼

N(0, σ2/ρ2), with σ2 = σ2
U

(
log(2)

(2−λU ) log2(2−λU )

)2
, λU := Λ(1, 1) the upper tail dependence coeffi-

cient and σ2
U = λU+

(
∂
∂xΛU (1, 1)

)2
+
(
∂
∂yΛU (1, 1)

)2
+2λU

((
∂
∂xΛU (1, 1)− 1

) (
∂
∂yΛU (1, 1)− 1

)
− 1
)
.

The proof of Theorem 3.1 is presented in the Supporting Information.

Remark 3.1 (Asymptotic consistency of x̂ipn in the upper tail independence case, ρ = 1).

Notice that, if ρ = 1 (i.e. tail copula ΛU ≡ 0), then the asymptotic variance σ2
U in Theorem 3.1

vanishes (see the Supporting Information). However, in the upper tail independence case, the

consistency of the proposed estimator x̂ipn can be obtained. To be precise, if φ ∈ RV1(1) and the

second, third, and fourth conditions of Theorem 3.1 hold, then
x̂ipn
xipn

P→ 1, for n→∞.

4 Simulation study

The aim of this section is to evaluate the performance of x̂ipn in finite-size samples. Although

we restrict ourselves to a 3-dimensional case in this study, these illustrations could be adapt-
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able in any dimension d. The performance of our extreme estimator x̂ipn is also compared

with a pseudo-empirical estimator (denoted x̂pseudopn ), an empirical estimator (x̂emppn ) and a semi-

parametric empirical estimator (x̂∗pn). The construction of these three competitor estimators

is now described. In order to attain x̂pseudopn , it is assumed that the distribution function of

Ti is known (see Lemma 2.1 in the Supporting Information). We can then sample from the

random variable Ti by using the fact that Ti
d
= F−1

i

{
φ−1

[(
1− U1/(d−1)

)
φ(α)

]}
, where U is a

uniform random variable. Finally, the pseudo-empirical estimator x̂pseudopn can be defined as the

(n− bn pnc)-th order statistic of the sample obtained from Ti,

x̂pseudopn = T in−bn pnc,n. (9)

On the other hand, an empirical estimator (x̂emppn ) can be proposed without the need for any

information about Ti. To this end, we sample from the latent random variable Ti = [Xi|F (X) =

α] by using the empirical multivariate distribution function. Let (Xj), j = 1, . . . , n, be a d-

dimensional i.i.d. sample of X. For all t ∈ Rd, the d-dimensional empirical distribution function

of X is defined as Fn(t) := 1
n

∑n
i=1 1{Xj≤t}. T̃i is then obtained by collecting the points (Xi

j),

for j = 1, . . . , n, such that Fn(Xj) ∈ [α− h, α+ h] for a positive sufficiently small value h. The

quantity h is adjusted to each considered model and each sample size. The competitor estimator

x̂emppn is given by

x̂emppn = T̃ in−bn pnc,n. (10)

Finally, from Definition 5.1. in Di Bernardino et al. (2015), a semi-parametric empirical com-

petitor estimator is presented, denoted as x̂∗pn . Let B̃i = Xi
bsc,n be the s-th order statistic of Xi
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with s = nφ−1

θ̂n
(Si φθ̂n(α))) where Si is a random variable with Beta(1, d− 1) distribution. Bear

in mind that φ
θ̂n

is the semi-parametric estimator of the generator of the copula φθ obtained by

considering the maximum pseudo-likelihood estimator of the parameter θ associated to φθ (e.g.,

see Genest et al. (1995)). The competitor semi-parametric empirical estimator is given by

x̂∗pn = B̃i
n−bn pnc,n. (11)

We now consider the following 3-dimensional distributional models:

1. Joe copula and Fréchet margins: Fi(t) = exp{−t−β}, i = 1, 2, 3, and Cθ(u1, u2, u3) =

1− [1− exp{log(1− (1−u1)θ) + log(1− (1−u2)θ) + log(1− (1−u3)θ)}]1/θ. In this section,

we take the dependence copula parameter θ = 3 and the marginal parameter β = 3. Bear

in mind that the assumptions of Theorem 3.1 are satisfied. Indeed, φ ∈ RV3(1) and UXi

satisfies Assumption 3.1 with γi = 1/3 and τi = −1, for i = 1, 2, 3. In addition, the

associated tail-logistic model is given by ΛU (x, y) = x+y− (x3 +y3)1/3, which satisfies the

second-order condition in Equation (10) in the Supporting Information, and λU = 0.74.

2. Independence copula with Fréchet margins: Fi(t) = exp{−t−β}, i = 1, 2, 3, and Cθ(u1, u2, u3) =

u1 u2 u3. In this case, φ ∈ RV1(1) and the upper tail copula is given by ΛU = λU = 0.

However, using Remark 3.1, the consistency of γ̂Ti and x̂ipn is illustrated in this section.

3. Gumbel copula with Pareto margins: Fi(t) = 1−(δ1/(t+δ1))δ2 , i = 1, 2, 3, and Cθ(u1, u2, u3) =

exp
{
−
(
(− log(u1))θ + (− log(u2))θ + (− log(u3))θ

)1/θ}
. In the simulation study we take

the dependence copula parameter θ = 2 and the marginal parameters δ1 = 1 and δ2 = 2.

Bear in mind that the assumptions of Theorem 3.1 are satisfied. Indeed, φ ∈ RV2(1) and
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UXi verifies the 2RV condition with γi = 1/2 and τ = −1/2, for i = 1, 2, 3. Furthermore,

ΛU (x, y) = x+ y− (x2 + y2)1/2 verifies the second-order condition in Equation (10) in the

Supporting Information, and λU = 0.59.

Various sample sizes are taken and we consider pn = 1/n and pn = 1/2n, the critical layer level

α = 0.9, and 500 Monte Carlo simulations. Note that specific values for auxiliary sequences of

our procedure (k1, k2, and k) are chosen for each sample size as indicated in the figures. In

order to choose k1, the estimator of γi is plotted against various values of k1. By balancing

the potential estimation bias and variance, a common practice is to choose k1 from the first

stable region of the plots (see e.g., Cai et al. (2015)). Finally, in order to gain stability in the

estimates, the obtained values are averaged in this region. A similar procedure is developed for

the auxiliary sequence k2 (for the estimation of ρ). The sequence k is selected by observing the

stability of the final ratio x̂ipn/x
i
pn .

Boxplots of ratio γ̂Ti/γTi In Figure 1, we present the boxplots of ratio γ̂Ti/γTi for the three

distributional models considered, and for different sample sizes.
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Figure 1: Boxplots of the ratio γ̂Ti/γTi : for Joe copula with θ = 3 and Fréchet margins with

β = 3 (left panel); for Independence copula and Fréchet margins with β = 3 (centre panel);

and for Gumbel copula with θ = 2 and Pareto margins with δ1 = 1 and δ2 = 2. We consider

n = 150, n = 500, and n = 2000, and 500 Monte Carlo simulations.

Boxplots of ratio x̂ipn/x
i
pn Using Remark 3.1, an illustration of the consistency of the pro-

posed estimator is provided in the independent copula case. In Figure 2, the obtained boxplots

for the ratio x̂ipn/x
i
pn are presented for pn = 1/n and pn = 1/2n for n = 150 (left panel) and

n = 1000 (right panel). For pn = 1/n, we also provide the boxplots of the ratios x̂pseudopn /xipn ,

x̂emppn /xipn , and x̂∗pn/x
i
pn , with empirical competitor estimators previously defined in Equations

(9), (10) and (11), respectively.
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Figure 2: Independence copula and Fréchet margins with β = 3. Boxplots for the ratio x̂ipn/x
i
pn

with pn = 1/n, pn = 1/2n, and n = 150 (left panel), n = 1000 (right panel). Boxplots for the

competitor empirical estimators with pn = 1/n are also displayed. We consider α = 0.9 and 500

Monte Carlo simulations.

In Figure 3, the obtained boxplots for the ratio x̂ipn/x
i
pn are presented for pn = 1/n and

pn = 1/2n, in the Joe (first row) and Gumbel copula model (second row). For pn = 1/n,

the comparison with the empirical competitor estimators is also provided.
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Figure 3: First row: Trivariate Joe copula with θ = 3 and Fréchet margins with β = 3. Second

row: Trivariate Gumbel copula with θ = 2 and Pareto margins with δ1 = 1 and δ2 = 2. Boxplots

for the ratio x̂ipn/x
i
pn with pn = 1/n, 1/2n for n = 150, n = 500 and n = 2000. Boxplots for the

competitor empirical estimators with pn = 1/n are also displayed. We consider α = 0.9 and 500

Monte Carlo simulations.

In Figures 2 and 3, it can be noticed that the empirical (x̂emppn ), pseudo-empirical (x̂pseudopn ) and

semi-parametric empirical (x̂∗pn) competitor estimators underestimate the conditional quantile
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xipn and are consistently outperformed by the proposed EVT estimator x̂ipn . In addition, the

empirical estimators are not applicable for p < 1/n. Furthermore, the behaviour of the EVT

estimator x̂ipn remains stable when pn changes from 1/n to 1/2n.

Asymptotic normality Finally, the asymptotic normality in Theorem 3.1 is illustrated in

Figure 4 for the Joe copula model. The Q-Q plots in Figure 4 gather the sample quantiles of

min
(√

kU ,
√
k1

log(dn) ,
√
k2

log(dn)

)(
x̂ipn
xipn
− 1
)

versus the theoretical normal quantiles for various sample

sizes with pn = 1/n. Since the scatterplots line up on the line in Figure 4, this indicates that the

sample quantiles coincide largely with the theoretical quantiles from the asymptotic distribution.

Hence, Theorem 3.1 provides an adequate approximation for finite sample sizes.
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Figure 4: Joe copula with parameter θ = 3 and Fréchet margins with β = 3. Q-Q plots for

min
(√

kU ,
√
k1

log(dn) ,
√
k2

log(dn)

)(
x̂ipn
xipn
− 1
)

for pn = 1/n. We take n = 150, n = 500 and n = 2000.

We consider α = 0.9 and 500 Monte Carlo simulations.
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Behaviour of ratio x̂ipn in terms of α In Figure 5, the boxplots of ratio x̂ipn/x
i
pn are presented

for a Joe copula with θ = 4 and Fréchet margins with β = 4 by considering different values of

the critical layer level α. Note that the convergence rate kU in Proposition 2.2 (see Equation

(4)) satisfies ∂kU (α)
∂α ≤ 0, for fixed values of sample size n and dimension d. Therefore, as can be

observed in Figure 5, the performance of the proposed estimators decreases when α increases.
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Figure 5: Trivariate Joe copula with θ = 4 and Fréchet margins with β = 4. Boxplots for the

ratio x̂ipn/x
i
pn with pn = 1/n, n = 150 (left panel) and n = 500 (right panel). Different values of

α are taken, and 500 Monte Carlo simulations.
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5 Multivariate and univariate extreme return levels: an illus-

tration for hydrological data-set

In this section, we focus on estimating the risk of a flood in the Bièvre region in the south of

Paris (France) by using both the proposed multivariate extreme return level (see Equation (2))

and the classic univariate return level (see the Introduction section).

Presentation of the hydrological data-set The data-set contains the monthly mean of the

rainfall measurements recorded in 3 different stations of the Bièvre region, from 2003 to 2013.

The unit of measurement is mm. The size of the data-set is n = 125. The localization of the 3

stations is presented in Figure 6 and the data-set is represented in Figure 7 (left panel). Let Xi

denote the temporal series of the monthly mean of the rainfall measurements for station i, for

i = 1, 2, 3. Station 1 is called Geneste (denoted X1), station 2 Loup Pendu (X2), and station

3 Trou salé (X3). The data-set considered was provided by the Syndicat Intercommunal pour

l’Assainissement de la Valle de la Bièvre (SIAVB, see http://www.siavb.fr/). Di Bernardino

and Prieur (2014) discussed the plausibility of the temporal independence assumption for these

3-dimensional monthly rainfall measurements.
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Figure 6: Localization of the three stations in the Bièvre region (in the south of Paris, France).

For the sake of completeness, a test of exchangeability is developed (e.g., see Genest et al. (2012))

for the three pairs (X1, X2), (X1, X3), and (X2, X3): we obtain p−values of 0.511, 0.206 and

0.181, respectively. The test is performed with the function exchTest of the R package copula

and suggests exchangeability for all pairs (see Figure 7, left panel). Furthermore, by using a

goodness-of-fit test for various parametrical multivariate distributions, Di Bernardino and Prieur

(2014) proposed for this data-set a 3-dimensional Gumbel copula with dependence parameter

θ = 3.93. The critical layers ∂L(α) of this data-set for different values of α are displayed in

Figure 7 (right panel).
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Figure 7: Left panel: Scatterplot of the 3-dimensional hydrological data-set considered. Right

Panel: Associated critical layers ∂L(α), for α = 0.75 and 0.9.

Univariate versus multivariate return levels Given the temporal series Xi of the monthly

mean of the rainfall measurements for station i, one can define the classic univariate return level

with associated probability p as the quantity:

xi,univp = UXi

(
1
p

)
, for i = 1, 2, 3,

where p = 1/T and T is called the return period. As proposed by Salvadori et al. (2011),

the return level associated to the three stations can be obtained by considering the vector

−→x univp :=
(
x1,univ
p , x2,univ

p , x3,univ
p

)
, that is, the aggregation of univariate quantiles.

However, −→x univp does not take into account the dependence structure between the three temporal

series. As discussed in the introduction section, while the return level in the univariate setting is
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usually identified without ambiguity (see, for instance, Corbella and Stretch (2012) and Salvadori

et al. (2011)), in the multivariate setting, it is a troublesome task (Vandenberghe et al. (2012),

Gräler et al. (2013)).

In this present paper, a possible procedure is proposed for the identification of the contribution

of the margins to the global (regional) multivariate risk. As mentioned in the introduction

section, the information concerning the dependence structure of the three considered rainfall

measurements is integrated in order to calculate the associated multivariate return levels. We

consider xip := UTi

(
1
p

)
, for i = 1, 2, 3, where Ti := [Xi | (X1, X2, X3) ∈ ∂L(α)], with α ∈ (0, 1)

(see Equation (2)), and we define our multivariate return level as −→x p :=
(
x1
p, x

2
p, x

3
p

)
. In this

case, xip represents the return level associated to the i-th station conditioned to the fact that

the 3-dimensional rainfall data-set belongs to the iso-surface ∂L(α).

Estimation procedure and obtained results In the following, the return levels xi,univp and

xip on the considered rainfall data are estimated, for i = 1, 2, 3. We consider here α = 0.9.

To estimate xip, firstly we deal with the estimation of γ̂Ti for each station. In Figure 8 (left

panel), the Hill estimator γ̂i is presented versus k1 for each station; k1 ∈ [7, 27] is chosen since

this window is the first stable region of this plot. Similarly, the stable region chosen for the

considered ρ̂ corresponds to k2 ∈ [25, 50] (see Figure 8, centre panel). Furthermore, the adaptive

sequence k̂U (n) is estimated as described in the Supporting Information. In addition, the stable

region chosen for x̂ipn is k ∈ [38, 80] (see Figure 8, right panel). Finally, to gain stability, the

estimations γ̂i, ρ̂ and x̂ipn are averaged in the chosen stable regions (see also Cai et al. (2015)).
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The obtained extreme estimation for −→x p is presented in Table 1 for different probability levels p.

In Table 1, the empirical estimator x̂i,emp1/n given in Equation (10) is also included. Unsurprisingly,

x̂i,emp1/n underestimates the risk (see also the simulation study in Section 4). Furthermore, using

the extreme quantile estimator proposed in Theorem 4.3.8 in de Haan and Ferreira (2006), the

univariate return level xi,univp is estimated for different probability levels p (see Table 2).
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Figure 8: Hill estimators γ̂i versus k1, for i = 1, 2, 3 (left panel). Estimator ρ̂ based on the

subvector (X1, X3) versus k2 (centre panel). Estimates x̂ipn against various values of the inter-

mediate sequence k, for i = 1, 2, 3, and pn = 1/2n (right panel).

Note that in Table 1, γ̂i > 0 (i.e., the monthly mean of the rainfall measurements for each

station i belongs to the Fréchet MDA) and ρ̂ > 1 (i.e., upper tail dependency). Values gathered

in Table 1 (resp. in Table 2) represent the estimated multivariate return levels (resp. univariate

return levels) in mm with an associated return period of around 10 years (for p = 1/n), 20 years

(for p = 1/2n), 52 years (for p = 1/5n) and 105 years (for p = 1/10n).
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i Station γ̂i ρ̂ x̂i,emp1/n x̂i1/n x̂i1/2n x̂i1/5n x̂i1/10n

1 Geneste 0.227 4.852 52.33912 53.82129 55.59621 58.03267 59.94646

2 Loup Pendu 0.239 4.852 58.55755 59.98556 62.07613 64.95194 67.21560

3 Trou salé 0.222 4.852 41.49933 54.04171 55.78875 58.18519 60.06618

Table 1: Estimated extreme multivariate return level x̂ipn , for different values of pn. Hill estima-

tor γ̂i is calculated by taking the average for k1 ∈ [7, 27]; ρ̂ is obtained by taking the average for

k2 ∈ [25, 50]; x̂ipn are calculated by taking the average for k ∈ [38, 80]. The empirical estimator

x̂i,emp1/n in Equation (10) is also displayed.

i Station x̂i,univ1/n x̂i,univ1/2n x̂i,univ1/5n x̂i,univ1/10n

1 Geneste 71.63235 83.84691 103.24705 120.85247

2 Loup Pendu 81.12761 95.79985 119.34466 140.92860

3 Trou Salé 72.41996 84.51017 103.64423 120.94719

Table 2: Estimated extreme univariate return level x̂i,univp , for different values of pn.

In Tables 1 and 2, a major contribution of the second station (i.e., X2) can be observed. One

can interpret that the manager of the Bièvre region needs to pay more attention to this station

since it contributes towards producing a flood in the region to a greater degree, both in the

univariate and multivariate return level cases.

Conclusions The proposed multivariate return level approach in the present paper has the

advantage of using a mathematically consistent way of defining the multivariate probability of

dangerous events by relying on the iso-curves ∂L(α). However, there is no universal choice of
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an appropriate approach to all real-world problems (see also the introduction section). It is

necessary to address to the problem from a probabilistic point of view and to be aware of the

practical implications of the approach chosen.

It is also evident in our hydrological study, but not necessarily the case, that the more vari-

ables/information included, the smaller the design quantiles become (see multivariate and uni-

variate return levels in Tables 1 and 2). Indeed, marginal components of the multivariate levels

(i.e., x̂ip) are considerably lower than the corresponding univariate return levels (i.e., x̂i,univp )

(see Tables 1 and 2). This fact can be intuitively interpreted: the probability of an extreme

event which simultaneously exceeds a return level in all margins is liable to be much lower than

the probability of an event which exceeds the same level in any one of the margins considered

alone. Therefore, the univariate levels xi,univp should be much higher to obtain the same small

exceedance probability p. Salvadori and De Michele (2013) discuss this dimensionality paradox

and provide a theoretical explanation. The interested reader is also referred to Salvadori et al.

(2011) and Gräler et al. (2013) for analogous considerations.

In particular, in our study, the large discrepancy between the estimated x̂ip and x̂i,univp depends

on the considered parameter setting (α = 0.9, pn = 1
n ,

1
2n ,

1
5n ,

1
10n , with n = 125) and on the

theoretical properties of the considered multivariate return level xip. For further details about

the properties of this risk measure, the interested reader is referred to Propositions 2.3-2.5 and

Corollary 4.4 in Di Bernardino et al. (2015).

Furthermore, one should also be aware of the fact that our Ti-quantile approach (see Equation
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(2)) is only applied to variables that are positively associated and with a focus on extremes in

terms of large values. In all other cases, adaptations should be made in order to operate in the

correct area of the copula (such as the directional multivariate return levels proposed by Torres

et al. (2015)).

From a practical perspective, it is impossible to provide a general suggestion for an appropriate

approach to estimate multivariate design events applicable to a vast set of design exercises.

Hitherto, many applications have been based on the concept of univariate return level, since the

concept of multivariate return level has a different meaning and is potentially less conservative

(as can be observed by comparing Tables 1 and 2).

On the other hand, when the analyst estimates the extension of flood inundation, a joint return

period approach could prove appealing. Indeed, an ensemble of equally rare scenarios (i.e. those

with the same return probability p) could be used to assess the variability of the flood maps

obtained due to the selection of a single design event.

28



Supporting Information

1 Proofs

Proof of Proposition 2.1

We first prove item i). Let Fi(·|α) as in Lemma 2.1 below. Since, by assumptions, φ ∈ RVρ(1),

φ′ ∈ RVρ−1(1) and Fi verifies the von Mises condition with index γi (see Definition 2.1 below),

then,

lim
x↑xFi

(α)

(1− Fi(x|α))F ′′i (x|α)

(F ′i )
2(x|α)

= lim
z↑1

d− 2

d− 1

[(
1− φ(z)

φ(α)

)−(d−1)

− 1

]

+
φ(α) [(−ρ+ 1)− (γi + 1)]

(d− 1)φ′(z)(1− z)

[
−
(

1− φ(z)

φ(α)

)2−d
+ 1

]

−
(
−1

ρ

)
1

d− 1
[(−ρ+ 1)− (γi + 1)] .

Since φ(1) = 0, the first summand approaches 0 when z approaches 1. We denote C =(
−1
ρ

)
[(−ρ+1)−(γi+1)]

d−1 . For the second summand it is verified that:

lim
z↑1

φ(α)C

φ(z)

[
−
(

1− φ(z)

φ(α)

)2−d
+ 1

]
=

2ρ+ 2γi − dρ− dγi
ρ(d− 1)

.

Hence,

lim
x↑xFi

(α)

(1− Fi(x|α))F ′′i (x|α)

(F ′i )
2(x|α)

= −
(
γi
ρ

+ 1

)
.

The random variable Ti therefore verifies the von Mises condition with γTi = γi
ρ . Similar to

the proof of item i), the von Mises condition for Ti when ρ = +∞ is satisfied with γTi = 0.
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Therefore item ii) is also proved. From Theorem 1.1.8 in de Haan and Ferreira (2006), others

assertions of Proposition 2.1 are shown directly. �

Proof of Proposition 2.2

For item i), since k(n)/n → 0, as n → ∞, and φ−1(0) = 1, kU/n → 0 holds, as n → ∞.

Furthermore, we have the following asymptotic approximation

kU (n) ∼ n (φ(α)(d− 1))1/ρ

(
k(n)

n

)1/ρ

, (12)

as n → +∞. From Equation (12), it holds that k(n)/kU (n) → 0, as n → ∞, for ρ ∈ (1,+∞].

Then, kU (n)→ +∞ as n→ +∞.

Since UXi(t) = F←i (1− 1/t) and using Lemma 2.1 below,

UTi

(
n

k(n)

)
= UXi

(
1

1− φ−1
[(

1− (1− k(n)/n)1/(d−1)
)
φ(α)

]) .
Therefore,

UTi

(
n

k(n)

)
= UXi

(
n

kU (n)

)
, where kU (n) = n

{
1− φ−1

[(
1−

(
1− k(n)

n

)1/(d−1)
)
φ(α)

]}
.

Therefore item ii) of Proposition 2.2 is also proved. �

Proof of Theorem 3.1

Firstly, we provide a normality result for the ratio γ̂Ti

γTi
. Since UXi satisfies Assumption 3.1 with

γi > 0 and τi < 0, from Theorem 3.2.5 in de Haan and Ferreira (2006) and Slutsky’s Theorem

(e.g., see Serfling (1980)), it is verified that

√
k1

(
γ̂i
γi
− 1

)
d→ N (µ/γi, 1) , (13)
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with µ = λ/(1−τi) and limn→∞
√
k1(n)Ai(n/k1(n)) = λ < +∞. Since the distribution function

of the random vector (X1, . . . , Xd) is given by a d−dimensional Archimedean copula Cφ with

generator φ, then the distribution function of every bivariate subvector (Xi, Xj), i 6= j, is given

by the same bivariate Archimedean copula. In addition, since under the assumptions of Theorem

3.1, conditions of Corollary 2.1 below are satisfied, by using the Delta Method, it is verified that

√
k2

(
ρ

ρ̂
− 1

)
d→ N

(
0, σ2/ρ2

)
, (14)

with σ2 provided by

σ2 := σ2
U

(
log(2)

(2− λU ) log2(2− λU )

)2

, (15)

with λU := Λ(1, 1) the upper tail dependence coefficient and

σ2
U := λU+

(
∂

∂x
ΛU (1, 1)

)2

+

(
∂

∂y
ΛU (1, 1)

)2

+2λU

((
∂

∂x
ΛU (1, 1)− 1

)(
∂

∂y
ΛU (1, 1)− 1

)
− 1

)
.

We now write

γ̂Ti
γTi

=
γ̂i
γi
× ρ

ρ̂
=: M1 ×M2

and we deal with the two factors separately.

- From (13), M1 = Θ1√
k1

+ oP

(
1√
k1

)
+ 1, with Θ1 ∼ N (µ/γi, 1).

- From (14), M2 = Θ2√
k2

+ oP

(
1√
k2

)
+ 1, with Θ2 ∼ N

(
0, σ2/ρ2

)
.

Hence, (
γ̂Ti

γTi
− 1

)
= M1 ×M2 − 1 =

Θ1√
k1

+
Θ2√
k2

+ oP

(
1√
k1

)
+ oP

(
1√
k2

)
.
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Let r = limt→+∞

√
k1(n)√
k2(n)

∈ [0,∞] and γTi := γi
ρ . Then, as n→∞, we get

min(
√
k1,
√
k2)

(
γ̂Ti

γTi
− 1

)
d→


Θ1 + rΘ2, if r ≤ 1,

1
rΘ1 + Θ2, if r > 1.

(16)

We now write

x̂ipn
xipn

=
Xi
n−bkU c,n

UXi

(
n
kU

) × ( k

n pn

)γ̂Ti−γTi
=: N1 ×N2.

From Theorem 2.1 below,

N1
d→ B√

kU
+ 1 + oP

(
1√
kU

)
, where B ∼ N(0, γ2

i ). (17)

By using the normality for the ratio γ̂Ti

γTi
in Equation (16), we can get

min(
√
k1,
√
k2)

log(dn)

(
d γ̂

Ti−γTi
n − 1

)
d→


Θ1 + rΘ2, if r ≤ 1,

1
rΘ1 + Θ2, if r > 1,

where dn = k
npn

. The interested reader is also referred to the proof of Theorem 4.3.8 in de Haan

and Ferreira (2006). Consequently,

N2
d→


log(dn)√

k1
(Θ1 + rΘ2) + 1 + oP

(
log(dn)√

k1

)
, if r ≤ 1,

log(dn)√
k2

(
1
rΘ1 + Θ2

)
+ 1 + oP

(
log(dn)√

k2

)
, if r > 1.

(18)

Combining the asymptotic relations in (17) and (18), if r ≤ 1, we have

x̂ipn
xipn
− 1 =

B√
kU

+
log(dn)√

k1
(Θ1 + rΘ2) + oP

(
1√
kU

)
+ oP

(
log(dn)√

k1

)
. (19)

Similarly, if r > 1, then

x̂ipn
xipn
− 1 =

B√
kU

+
log(dn)√

k2

(
1

r
Θ1 + Θ2

)
+ oP

(
1√
kU

)
+ oP

(
log(dn)√

k2

)
. (20)

Hence, Theorem 3.1 comes down from Equations (19) and (20). �
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2 Auxiliary results

In this section, some brief reminders and auxiliary results are described. These are only intended

to outline some notation and references, and to help in the proofs developed in Section 1.

2.1 The von Mises condition and the distribution of Ti

Definition 2.1 and Lemma 2.1 introduced below are crucial in the proof of Propositions 2.1 and

2.2. In particular, Lemma 2.1 can be obtained by adapting Lemma 3.4 in Brechmann (2014) in

the case of j = 1.

Definition 2.1 (the von Mises condition). Let F be a distribution function and x∗ its right

endpoint. Let F ′ and F ′′ be the first and the second derivatives of F , respectively. Suppose

F ′′(x) exists and F ′(x) is positive for all x in some left neighborhood of x∗. The von Mises

condition for F holds if

lim
t↑x∗

(1− F (t))F ′′(t)

(F ′(t))2
= − γ − 1.

Under the von Mises condition in Definition 2.1, the maximum domain of attraction (MDA) of

the distribution function F can be determined by using the tail parameter γ (e.g., see Theorem

1.1.8 in de Haan and Ferreira (2006)).

Lemma 2.1. Let (X1, . . . , Xd) be a random vector which follows an Archimedean copula Cφ

with generator φ. Let Fi(x|α) = P[Xi ≤ x|X ∈ ∂L(α)]. Therefore, for i = 1, . . . , d,
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Fi(x|α) =


(

1− φ(Fi(x))
φ(α)

)d−1
, if x > Qi(α);

0, if x ≤ Qi(α),

where Fi is the marginal distribution of Xi and Qi(α) is the associated quantile function at

level α ∈ (0, 1).

Tail index and the von Mises condition for Ti In the following, certain tail indexes for

Ti are derived. The ρ indexes for the classic bivariate Archimedean copulas are collected in

Table 1 in Charpentier and Segers (2009). From this table and from Proposition 2.1, Table 3

below is constructed. Table 3 (left panel) contains the tail index γTi of Ti when Xi is in the

Weibull domain (i.e., γi < 0), Gumbel domain (i.e., γi = 0) and Fréchet domain (i.e., γi > 0),

for different values of ρ. In Table 3 (right panel), some specific models are considered.

ρ γi < 0 γi = 0 γi > 0

(1,+∞) γi/ρ 0 γi/ρ

1 γi 0 γi

+∞ 0 0 0

Copula U(0, 1) Exp(λ) Par(δ, 1)

Gumbel −1/θ 0 1/δθ

Ali-Mikhail-Haq −1 0 1/δ

18 0 0 0

Table 3: Left panel: The tail index γTi when (X1, . . . , Xd) follows an Archimedean copula with

φ ∈ RVρ(1) and Fi verifies the von Mises condition with index γi. Right panel: The tail index

γTi for some specific models.
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2.2 Estimation of the regularly varying index ρ

We now deal with the estimation of the regularly varying index ρ of the Archimedean generator φ.

The corollary obtained below constitutes a major auxiliary result in the proof of Theorem 3.1.

In this paper, we use an estimator of ρ derived by the estimator of the upper tail dependence

coefficient proposed by Schmidt and Stadtmüller (2006). This procedure is recalled in this

section.

Let G be a d−dimensional distribution function with margin distributions Gi, i = 1, . . . , d. If,

for the subsets I, J ∈ {1, . . . , d}, I ∩ J = ∅, the following limit exists everywhere on Rd+ =

[0,∞]d \ (∞, . . . ,∞)

ΛI,JU (x) := lim
t→∞

P
[
Xi > G−1

i (1− xi/t), ∀ i ∈ I |Xj > G−1
j (1− xj/t), ∀ j ∈ J

]
,

then the function ΛI,JU : Rd+ → R is called an upper tail copula associated with G w.r. to I, J .

Let (Xi, Xj), i 6= j, be a bivariate random vector with distribution functions Gi and Gj . It is

said to be upper tail dependent if ΛU (1, 1) exists and

λU := ΛU (1, 1) = lim
t→1−

P [Xi > G−1
i (t) |Xj > G−1

j (t)] > 0.

Conversely, if λU = 0, (Xi, Xj) is called upper tail independent. Further, λU is referred to as the

upper tail dependence coefficient. If the distribution function of a random vector (X1, . . . , Xd)

is given by a d−dimensional Archimedean copula Cφ with generator φ, then the distribution

function of every bivariate subvector (Xi, Xj) is given by the bivariate Archimedean copula

with the same generator. As a consequence, to estimate ρ, we focus on the bivariate subvector
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(Xi, Xj). Furthermore, under our assumption, one can prove that λU = 2 − 21/ρ (e.g., see

Corollary 2.1. in Di Bernardino and Rullière (2014)). Therefore, we can consider the estimator

ρ̂ := log(2)

log(2−λ̂U )
. In this paper, we use the nonparametric rank-based estimator of λU proposed by

Schmidt and Stadtmüller (2006). Assume that (Xi, Xj), (X
(1)
i , X

(1)
j ), . . ., (X

(n)
i , X

(n)
j ), i 6= j,

are i.i.d. bivariate random vectors with distribution function G having marginal distribution

functions Gi and Gj . The estimator of λU in Schmidt and Stadtmüller (2006) is given by

λ̂U = Λ̂U,n(1, 1), where

Λ̂U,n(x, y) := 1
k2

∑n
w=1 1{R(w)

i >n−k2 x and R
(w)
j >n−k2 y}

,

with k2 = k2(n) → ∞, k2/n → 0, as n → ∞ and R
(w)
i =

∑n
h=1 1{X(h)

i ≤X
(w)
i } (resp. R

(w)
j =∑n

h=1 1{X(h)
j ≤X

(w)
j }) is the rank ofX

(w)
i inX

(1)
i , . . . , X

(n)
i (resp. is the rank ofX

(w)
j inX

(1)
j , . . . , X

(n)
j ),

for w = 1, . . . , n.

Under a second-order condition for the bivariate upper tail copula ΛU (x, y) (see condition in

Equation (21)), we can obtain an asymptotic normality result for the estimator ρ̂ (see Corollary

2.1 below). The proof of Corollary 2.1 follows from Corollary 2 in Schmidt and Stadtmüller

(2006) and the Delta Method technique.

Corollary 2.1 (Asymptotic normality of ρ̂). Let G be a bivariate distribution function of

(Xi, Xj) with continuous marginal distribution functions Gi and Gj. Let Cφ be the copula of

(Xi, Xj) with generator φ ∈ RVρ(1), with ρ ∈ (1,+∞). Let k2 = k2(n) → ∞ and k2/n → 0 as

n→∞. Assume that the bivariate upper tail copula ΛU (x, y) exists and has continuous partial

derivatives. Furthermore, let Aρ : R+ → R+ be an auxiliary function such that Aρ(t) → 0 as

36



t→∞ and

lim
t→∞

ΛU (x, y)− t C(x/t, y/t)

Aρ(t)
= g(x, y) <∞, (21)

locally uniformly for (x, y)2 ∈ R2
+ for some nonconstant function g, where C represents the

survival copula. Therefore, if
√
k2Aρ(n/k2)→ 0 as n→∞, then

√
k2(ρ̂− ρ)

d→ N
(
0, σ2

)
,

where N
(
0, σ2

)
is a centred normal-distributed random variable with σ2 = σ2

U

(
log(2)

(2−λU ) log2(2−λU )

)2

and σ2
U = λU +

(
∂
∂xΛU (1, 1)

)2

+

(
∂
∂yΛU (1, 1)

)2

+2λU

((
∂
∂xΛU (1, 1)−1

)(
∂
∂yΛU (1, 1)−1

)
−1

)
.

Note that the asymptotic variance in Corollary 2.1, vanishes in the asymptotically independent

case. Therefore, in the case ΛU = 0, it is verified that λ̂U
P→ 0 (for more details see Theorem

A.1. and Corollary A.1. in Di Bernardino et al. (2013b)). Consequently, ρ̂
ρ

P→ 1.

Second-order condition for the bivariate upper tail copula ΛU (x, y) In Table 4, the

second-order condition for the bivariate upper tail copula ΛU (x, y) in Equation (21) is illustrated

for some classic Archimedean copula models with ΛU (x, y) = x+ y − (xθ + yθ)1/θ. We consider

the Gumbel copula, Joe copula, and Copulas (12), (14), (15) and (21) in Table 4.1 in Nelsen

(2006). Observe that the property in Equation (21) is not verified for Copula (2) in Table 4.1

in Nelsen (2006).
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Copula φ(t) Aρ(t)

Gumbel (− log(t))θ t−1

Joe − log(1− (1− t)θ) t−θ

(12) (1/t− 1)θ t−1

(14) (t−1/θ − 1)θ t−1

(15) (1− t1/θ)θ t−1

(21) 1− (1− (1− t)θ)1/θ t−θ

Table 4: Bivariate Archimedean copula models with ρ = θ and λU = 2− 21/θ.

2.3 Intermediate Order Statistics

In the following, we adapt in our setting the well-known Central Limit Theorem for the interme-

diate order statistics. This result follows easily from Theorems 2.4.1 and 2.4.2 in de Haan and

Ferreira (2006). Further details are given in Theorem 2.1 in Drees (1998). Theorem 2.1 below

is crucial in the proof of our main result (see Theorem 3.1).

Theorem 2.1 (Theorem 2.1 in Drees (1998)). Let (X1, . . . , Xd) be a random vector with Ar-

chimedean copula Cφ with twice differentiable generator φ. Assume that φ ∈ RVρ(1), with ρ ∈

[1,+∞]. Let i ∈ {1, . . . , d}. Assume that UXi satisfies Assumption 3.1 with auxiliary function

Ai(·), γi > 0 and τi < 0. Let k = k(n)→∞, k/n→ 0, n→∞ such that limn→∞
√
kU Ai(n/kU )

exists and is finite with the sequence kU defined by kU (n) := n

{
1− φ−1

[(
1−

(
1− k(n)

n

)1/(d−1)
)
φ(α)

]}
.
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Then, it holds that, as n→∞,

√
kU (n)

 Xi
n−bkU c,n

UXi

(
n

kU (n)

) − 1

 d→ γiN(0, 1).

Proof of Theorem 2.1

From Proposition 2.2, it is verified that UTi
(
n
k

)
= UXi

(
n
kU

)
, and kU (n) → ∞, kU/n → 0 as

n → ∞. Since, by assumptions, UXi satisfies Assumption 3.1 with auxiliary function Ai(·),

γi > 0, τi < 0 and
√
kUAi(n/kU ) → λ′ < ∞, as n → ∞, then from Theorem 2.4.2 in de Haan

and Ferreira (2006), the result is attained. �

2.4 Adaptive version of the estimator x̂ipn

The intermediate sequence kU (n) in Proposition 2.2 and Theorem 3.1 is an unknown sequence

which depends on the generator of the considered Archimedean copula. In this section, a plug-in

procedure based on the estimation of kU is presented. This can be seen as an adaptive version of

the results of Section 3. For this purpose, the notion of self-nested diagonal of a copula and the

associated nonparametric estimator proposed by Di Bernardino and Rullière (2013) are recalled

in the following.

Recall that the diagonal section of a d−dimensional copula C is given by δ1(u) = C(u, . . . , u), u ∈

[0, 1], and δ−1 is the inverse function of δ1, such that δ1◦δ−1 is the identity function. From Lemma

3.4 in Di Bernardino and Rullière (2013), one can write the family of self-nested diagonals of an

Archimedean copula Cφ at each order r ∈ R as: δr(u) = φ−1(d rφ(u)), for u ∈ (0, 1), r ∈ R.

Di Bernardino and Rullière (2013) introduce the following estimation of a self-nested diagonal
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δr, by using an interpolation procedure (see also Lemma 3.6 in the aforementioned paper).

Definition 2.2 (Definition 4.2 in Di Bernardino and Rullière (2013)). Let δ̂1 be an estimator

of δ1, and δ̂−1 be an estimator of the inverse function δ−1. Estimators of δh and δ−h can be

obtained for any h ∈ N\{0} by setting



δ̂h(u) = δ̂1 ◦ . . . ◦ δ̂1(u), (h times)

δ̂−h(u) = δ̂−1 ◦ . . . ◦ δ̂−1(u), (h times)

δ̂0(u) = u.

At any order r ∈ R, an estimator of δ̂r of δr is

δ̂r(u) = z

((
z−1 ◦ δ̂h(u)

)1−η (
z−1 ◦ δ̂h+1(u)

)η)
, for u ∈ [0, 1], (22)

with η = r − brc and h = brc where brc denotes the integer part of r, and where z is a strictly

monotone function driving the interpolation, ideally the inverse of the generator of the copula.

Several different estimators for δ1 can be found in the literature. In particular, one can propose

δ̂1(u) = FY,n(u), where FY,n(u) is the empirical distribution function of Y := max(U1, U2, . . . , Ud).

Similarly, we consider δ̂−1(u) = F−1
Y,n(u), with F−1

Y,n(u) the empirical quantile function of Y .

Using the self-nested diagonal family δr, we write the sequence kU (n) as: kU (n) = n (1 −

δr(n)(α)), where r(n) := log

(
1−

(
1− k(n)

n

)1/(d−1)
)
/ log(d) is a negative real sequence. There-

fore, using the nonparametric estimator δ̂r(n) in Definition 2.2, we introduce the estimator

k̂U (n) = n (1− δ̂r(n)(α)), for α ∈ (0, 1). (23)

The following consistency result for k̂U (n) can now be proved.
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Lemma 2.2. Let kU (n) be the intermediate sequence defined as in Theorem 2.1. Let δ̂1(u) =

FY,n(u), with FY,n(u) the empirical distribution function of Y := max(U1, U2, . . . , Ud) and δ̂−1(u) =

F−1
Y,n(u), with F−1

Y,n(u) the empirical quantile function of Y . Let k̂U (n) be the associated estima-

tor proposed in Equation (23) for a fixed α ∈ (0, 1) and where z is a strictly monotone function

driving the interpolation. Then,

k̂U (n)
kU (n)

P→ 1, as n→∞.

Proof of Lemma 2.2

Firstly, we prove that δ̂h(u)
δh(u)

P→ 1, for u ∈ (0, 1) and for fixed h ∈ Z, where δh is intro-

duced at the beginning of this section and δ̂h(u) is defined in Definition 2.2. Consider that

h ∈ Z+. Since δ̂1(u) := FY,n(u), where FY,n(u) is the empirical distribution function of

Y := max(U1, U2, . . . , Ud), then from Glivenko Cantelli’s Theorem, it is verified that

supu∈[0,1] |δ̂1(u)− δ1(u)| = supu∈[0,1] |FY,n(u)− FY (u)| P→ 0, as n→∞.

By induction, we assume that supu∈[0,1] |δ̂m−1(u)−δm−1(u)| P→ 0. Since C is a Lipschitz function

(see Definition 6.2.6 in Nelsen (2006)), from Theorem 1 in Kasy (2015) and from the uniformly

convergence of δ̂1(u), then supu∈[0,1] |δ̂m(u) − δm(u)| P→ 0, as n → ∞. Let h ∈ Z−. We have

δ̂−1(u) := F−1
Y,n(u), where F−1

Y,n(u) is the empirical quantile function of Y . From Theorem 3 in

Mason (1982),

supu∈(0,1) |δ̂−1(u)− δ−1(u)| = supu∈(0,1) |F−1
Y,n(u)− F−1

Y (u)| P→ 0, as n→∞.

By induction, we suppose that supu∈(0,1) |δ̂m(u) − δm(u)| P→ 0. Since C−1 is a uniformly conti-

41



nuous function in [0, 1], then from Theorem 1 in Kasy (2015) and from the uniformly convergence

of δ̂−1(u), we obtain supu∈(0,1) |δ̂m−1(u) − δm−1(u)| P→ 0, as n → ∞. Therefore, δ̂h(u)
δh(u)

P→ 1, for

u ∈ (0, 1) and for fixed h ∈ Z. Furthermore, by using the Slutsky’s Theorem (e.g., see Serfling

(1980)), one can prove that δ̂r(u)
δr(u)

P→ 1, ∀u ∈ (0, 1) and ∀ r ∈ R fixed. Therefore, since δr is

also a continuous and bounded function in r, from Polya’s Theorem (e.g., see Section A.1.1 in

Embrechts et al. (1997)), then, for u ∈ (0, 1), supr∈R |δ̂r(u) − δr(u)| P→ 0, as n → ∞. By using

this uniform consistency we obtain the assertion of Lemma 2.2. �

Using Lemma 2.2, it can be proved that Xi
n−bk̂U c,n

is asymptotically as efficient as Xi
n−bkU c,n.

To be more precise, an adaptive plug-in version of Theorem 2.1 can be obtained, i.e.,

√
k̂U (n)

 Xi
n−bk̂U c,n

UXi

(
n

kU (n)

) − 1

 d→ γiN(0, 1), as n→∞. (24)

Further details are given in Hall and Welsh (1985), Drees and Kaufmann (1998), and Danielsson

et al. (2001). Then, an adaptive version of Theorem 3.1 for x̂ipn can also be provided. The proof

is a slightly modified version of the proof of Theorem 3.1, by using the result in Equation (24)

instead of Theorem 2.1. Illustrations of this plug-in estimation of x̂ipn , by using k̂U instead of

kU , can be found in Section 5.

In particular, to estimate the adaptive sequence k̂U (n) in Section 5, we consider z(x) = exp(−x).

This choice is recommended in Di Bernardino and Rullière (2013) when there is positive depen-

dence, since it is the best choice for any Gumbel copula, whatever the parameter of the copula

(see Corollary 3.7 in Di Bernardino and Rullière (2013)). Another natural choice could be any
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estimator of the inverse of the generator of the copula. Finally, it should be borne in mind that

this function z does not change values of any δk, for k ∈ Z. Therefore, the global shape of δr,

as a function of r ∈ R, is not heavily impacted by the choice of z. For a in-depth analysis of

the weak impact of the interpolation function z in the evaluation of δr, the reader is referred to

Section 4.3.1 in Di Bernardino and Rullière (2013).

Illustrations of estimators δ̂r and k̂U In Figure 9, illustrations of δ̂r with r ∈ R are

provided for two different interpolation functions. As in Di Bernardino and Rullière (2013), a

2−dimensional Gumbel copula is generated with θ = 3 and sample size n = 2000 and n = 7000.

We consider z(x) = exp(−x) (first row of Figure 9) and z(x) = exp(−x1/θ), i.e., the inverse of

the Gumbel generator copula (see second row of Figure 9) with r = −3.5, −2.4, −1.2, 0.6, 1.2,

2.4, 3.5. As pointed out before, it can be observed that the modification of the interpolation

function z does not produce significant differences in the estimation of δr.
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Figure 9: Gumbel copula with dependence parameter θ = 3. Estimation of δr(x) by considering

z(x) = exp(−x) (first row) and z(x) = exp(−x1/θ) (second row) with r = −3.5, −2.4, −1.2, 0.6,

1.2, 2.4, 3.5, for n = 2000 (left panels) and n = 7000 (right panels).

Finally, an illustration of Lemma 2.2 is provided in Figure 10 where the boxplots of the ratio

k̂U (n)/kU (n) are gathered for a Joe copula θ = 3 with Fréchet margins β = 3 by considering

different sample sizes, with k(n) =
√
n (left panel) and k(n) = n0.9 (right panel). In this case,

we choose z the inverse of the generator of the considered Joe copula.
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Boxplots of k̂U (n)/kU (n)

Figure 10: Joe copula with dependence parameter θ = 3 and Fréchet margins with β = 3.

Boxplots for the ratio k̂U (n)/kU (n) for various values of n, α = 0.9, k(n) =
√
n (left panel) and

k(n) = n0.9 (right panel). 500 Monte Carlo simulations are taken.
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Statistique, 153(3):151–173.

50



Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence. Scan-

dinavian Journal of Statistics. Theory and Applications, 33(2):307–335.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley Series in

Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York.

Torres, R., Lillo, R. E., and Laniado, H. (2015). A directional multivariate value at risk.

Insurance: Mathematics and Economics, 65:111–123.
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