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Reducing the Impact of EV Charging Operations on

the Distribution Network
Olivier Beaude, Samson Lasaulce, Martin Hennebel, and Ibrahim Mohand-Kaci

Abstract—A key assumption made in this paper is that electric
vehicle (EV) battery charging profiles are rectangular. This
requires a specific and new formulation of the charging problem,
involving discrete action sets for the EVs in particular. The
considered cost function comprises of three components: the
distribution transformer aging, the distribution energy losses,
and a component inherent to the EV itself (e.g., the battery
charging monetary cost). Charging start times are determined
by the proposed distributed algorithm, whose analysis is con-
ducted by using game-theoretic tools such as ordinal potential
games. Convergence of the proposed algorithm is shown to be
guaranteed for some important special cases. Remarkably, the
performance loss w.r.t. the centralized solution is shown to be
small. Simulations, based on realistic public data, allow one to
gain further insights on the issues of convergence and optimality
loss and provide clear messages about the tradeoff associated
with the presence of the three components in the considered cost
function. While simulations show that the proposed charging
policy performs quite similarly to existing (continuous) charging
policies such as valley-filling-type solutions when the non-EV
demand forecast is perfect, they reveal an additional asset of
rectangular profiles in presence of forecasting errors.

Index Terms—EV charging - Energy scheduling - Transformer
aging - Energy losses - Distributed algorithms - Game theory.

I. INTRODUCTION

The deployment of electric vehicles (EVs) at a large scale

is envisioned to have a significant impact on the existing and

future energy networks [2]. In the present paper, the impact

on the grid is assessed in terms of residential distribution

network (DN) costs. To be more specific, the main goal

pursued is to optimize EV charging schedules to minimize

a cost resulting from a linear combination of the residential

distribution transformer aging and the distribution energy

losses. While the emphasis will be put on these two particular

cost functions in this paper, all analytical results presented

here apply to a large variety of costs; these results include the

proposed problem formulation, the distributed charging algo-

rithm, and its analysis. Among possible problems which can be

considered we may mention voltage regulation [3], harmonic

distortion [4], and reactive power management [5]. Concerning

the component of the cost function which is referred as to

the transformer component, the following has to be noted.

Mathematically, it may correspond to any function of the past

load levels; transformer aging is one possible instance and is

the one made for the conducted numerical analysis. In practice,

as explained in [6]–[12], optimizing a long-term criterion such
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as the residential transformer lifetime becomes an important

concern in the presence of EVs. Indeed, transformers might

have to operate in a regime where aging is accelerated. In the

European Union, about 5 millions of distribution transformers

are used and about 70% of transformer failures are due to

aging [13]. Concerning energy losses in the DN, they represent

the most important fraction of power losses in the whole

electricity network; according to [14], in France two thirds

of energy losses are due to the DN. Despite the importance

of the problem1, the impact of EV charging on distribution

transformer aging and energy losses has only been addressed

in a relatively small number of papers. Among the relevant

related works we may cite [6][8][10][15]–[17]. The dominant

approach adopted, which is well illustrated by [6], consists

in exploiting a suitable model for the aging or energy losses,

and assessing the impact of charging for simple scenarios;

for instance, two possible scenarios are that all EVs start

charging at a given time of the day (e.g., at 7 pm) or at random

times. The algorithmic aspect is however not developed. This

is precisely what the present work proposes.

The algorithmic aspect of the charging problem has been

tackled in the literature but, mostly, for minimizing the mon-

etary cost the user has to pay for recharging his vehicle. In

this respect [18][19] constitute relevant works. Additionally,

in the present paper the focus is on distributed charging in

the sense that we assume the existence of several decision-

makers (DMs) and each of them has only partial control of

the variables which affect the cost or payoff function under

consideration. Distributed charging is relevant in at least two

key scenarios: the scenario in which charging policies have

to be computed by a single entity (e.g., an aggregator [20] or

a transformer computing device) but for complexity issues it

may be required to optimize the variables separately, forming

a set of virtual DMs; the scenario where each EV controls its

own charging policy, meaning that there are effectively several

physical DMs instead of a single one. In the latter scenario, as

far as advanced charging policies are concerned, DMs will be

automata embarked on the EVs. For a naive policy such as just

deciding when to plug the EV to the grid, the DMs might be

the EV users themselves but this is not the standpoint adopted

in this paper.

It turns out that game theory is very well suited2 to address

the distributed charging problem whether players or DMs are

1The problem directly concerns DN operators and car makers but may also
concern the EV users since they might be charged in an indirect manner the
extra costs induced by the impact of EV charging operations on the grid.

2In particular, as explained further, the convergence and efficiency analyses
for the proposed algorithm are conducted by introducing a charging game in
which each player has his own payoff function.
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persons or machines. In this respect, game-theoretic tools have

been applied to smart grids quite recently (see e.g., [21] for

a survey); very useful contributions include [20], [22]–[25].

In [22], these tools are used for the DN frequency regulation

problem in the context of the interaction between EVs and an

aggregator. Therein, the authors show the usefulness of a well-

chosen pricing policy to incite users to charge their vehicle in

order to regulate the frequency of the electrical system. In [20],

game theory is exploited to design a coordination mechanism

for the wind power integration. References [23] and [24] use a

similar methodology to study the more general problem of load

balancing whereas [25] applies this methodology for micro-

storage management in smart grids.

Compared to the application-oriented works where game

theory is used to optimize energy consumption at the user

side (at home, by the EVs, etc.), the present work possesses

several distinguishing features. Two of them are as follows.

First, to the best of our knowledge, our work is the first

to propose a distributed charging algorithm which can not

only minimize an individual cost, which is inherent to the

EV and only depends on its actions (the battery charging

monetary cost typically), but also the DN costs; the latter

are given by the residential distribution transformer aging and

energy losses over the DN. Second, we want to know to what

extent using rectangular charging profiles is relevant both in

terms of implementation and performance. The present work

therefore adopts a complementary approach to existing works

on charging algorithms which typically assume continuous

charging power levels (see e.g., [18][19][26]); the solutions

used in the latter references are considered in the simulations

section for comparison purposes. Although the focus of this

paper is on the EV charging problem and DN costs, the

obtained analytical and numerical results can be re-exploited

for other problems in smart grids such as the problem of

allocating or scheduling stored energy.

The paper is structured as follows. Sec. II provides the

model of the system and the network cost function components

under consideration. Sec. III describes how the distributed

EV charging problem is formulated. Sec. IV provides the

description of the proposed distributed charging algorithm and

its main properties. Sec. V allows one to assess numerically

the performance of the developed algorithm. The paper is

concluded by Sec. VI.

II. SYSTEM MODELING

The goal of this section is to express the transformer aging

and energy losses as a function of the sequence of the total

demand power or load levels. To this end, the considered

topology for the DN is as follows (see Fig. 1). It consists of

one residential transformer to which two groups of devices

are connected: a set of EVs and a set of other electrical

devices. The latter are assumed to induce a power demand

which is independent of the charging policies and therefore

called exogenous demand. The corresponding load is denoted

by Lexo
t , which is a deterministic function of the time which

is assumed to be slotted and whose index is denoted by t ∈
T = {1, ..., T }; this function is always assumed to be known

(except in the simulation part -Sec. V- where the influence of

not forecasting it perfectly is assessed). The load induced by

the EVs at time t will be denoted by LEV
t and the (average)

total transformer load thus writes as Lt = Lexo
t + LEV

t . Note

that our analysis concerns the impact of EV charging in terms

of active power; refinements related to the reactive power are

left as a possible extension.

12 am

Power

4 am 8 am 12 pm 4 pm 7 pm 12 am

Fig. 1: Considered network topology. A typical exogenous

(non-EV) demand profile Lexo
1 , ..., Lexo

T is represented.

A. Residential distribution transformer aging model

The most influential parameter for the transformer aging is

known to be the hot-spot (HS) temperature [27][28]. Indeed,

the transformer isolation damage is directly related to the

HS temperature: aging is accelerated (decelerated) when the

HS temperature is above (resp. below) its nominal value.

In general, the HS temperature depends on the history of

transformer load levels and that of the ambient temperature

levels. Even though the HS temperature at time t depends on

the sequence of ambient temperature levels (see [27][28] for

more details), we will not make this dependency explicit in

our notations3. Indeed, this sequence cannot be controlled and

in particular it does not depend on the power demand induced

by the EVs. The HS temperature at time t is given by

θHS
t = FHS

t

(
L

t
)
= FHS

t (L1, ..., Lt) (1)

where L
t = (L1, ..., Lt) represents the sequence of total

transformer load levels up to time t; the quantity Lt is

related to the charging power levels in Sec. III. By default,

no particular assumption will be made on the function FHS
t

throughout this paper. A few results will be provided for some

special cases such as the memoryless case. Indeed, a special

case of (1) is when the HS temperature does not depend on

the whole history of load levels but only on the current load

level:

θHS
t = F̃HS

t (Lt) . (2)

Case (1) (resp. (2)) will be referred to as the case with (resp.

without) thermal inertia. In [27]–[29] realistic models for the

HS temperature evolution are provided, which allow one to

have specific examples for FHS and F̃HS. The correspond-

ing specific expressions are only exploited in the numerical

analysis. The transformer aging acceleration factor at time t,

or aging for short, is assumed to be a function of the HS

3The choice of a particular sequence of ambient temperature levels only
intervenes in the numerical analysis.
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temperature at time t and is denoted by At. Again, unless

explicitly mentioned, no particular assumption will be made

on the function At. A typical choice, which will be assumed

in the numerical part, is as follows:

At = eaθ
HS
t +b = eaF

HS
t (Lt)+b (3)

where a > 0, b < 0 are some constants (see [27][28]).

Remark 1. All analytical results derived in this paper will

only assume that At is a function of the past load levels

(L1(s), ..., Lt(s)). On the other hand, numerical results will

we based on the particular choice corresponding to (3).

B. Distribution network energy losses model

Distribution energy losses mainly come from the trans-

former and the lines between the transformer and the active

electrical devices. At the transformer level, both voltage and

frequency are assumed to be fixed and thus independent of

the load level induced by the EVs. This is why no-load losses

will not be considered here. As the purpose of this paper is

not to obtain a model for energy losses which is as advanced

as possible, we assume a simple scenario which is sufficient

to show to what extent the mathematical problem formulation

and charging scheme are impacted. Energy losses on time-slot

t ∈ T are assumed to express as

J(Lt) = (Rtransfo +Rline)
(
Lexo
t + LEV

t

)2
(4)

where Rtransfo and Rline are the transformer resistance and

equivalent line resistance respectively; Lt = Lexo
t +LEV

t is the

total transformer load on time-slot t. As mentioned previously,

the assumed model can be improved but the retained model

has at least three attractive features: 1) provided that con-

tinuous charging power levels are allowed, the minimization

of
∑T

t=1 J(Lt) w.r.t. (LEV
1 , ..., LEV

T ) corresponds to a valley-

filling (VF) solution which is a well-known scheme [26]. VF

is performed over the sequence (Lexo
1 , ..., Lexo

T ). Here this

sequence corresponds to the exogenous demand profile but

it may also represent a sequence of prices (see e.g., [18]); 2)

the assumed energy losses model allows us to leave the load

flow problem as a separate problem which might be handled

with through an extension of our work [30]; 3) the model is

relevant when line energy losses are dominated by transformer

energy losses.

III. FORMULATION OF THE EV CHARGING PROBLEM

This section aims at formulating in a distributed manner (as

motivated in Sec. I the EV charging problem. The problem is

said to be distributed because the variables which affect the

payoff (or cost) functions of interest are not controlled jointly

but separately. Since the EV charging profiles are imposed to

be rectangular, these variables correspond to the charging start

times of the different EVs. The number of consecutive time

instances or time-slots required to have the battery charged

or to reach a required state of charge (SoC) for the next trip

of EV i is denoted by Ci while the effective charging start

time for EV i is denoted by si. The individual payoff function

which has to be maximized for EV i ∈ I, I = {1, ..., I}, is

assumed to have the following form:

ui(s1, ..., sI) = −fi
(
gDN
i (s) + gEV

i (si)
)

(5)

where s = (s1, ..., sI) and fi is the individual pricing function

for user i, which is assumed to be strictly increasing; for

instance, it may translate the technological costs induced by

charging into a monetary cost. The function gDN
i (s) represents

the cost associated with the DN. This cost is chosen to be

a linear combination of the transformer aging and energy

losses; its exact expression is provided a little further. The

function gEV
i can be any single-variable function of si. It

is an individual cost which only concerns EV i. It may

model the impact of the start time on EV i battery aging, the

individual electricity fare for user i, or its preference in terms

of availability. For example, if the sequence of prices for EV

i over the time period of interest is denoted by (πi,1, ..., πi,T )
(i.e., the price is a function of the time only), then a suitable

choice for gEV
i might be

gEV
i (si) = β

si+Ci−1∑

t=si

πi,t (6)

where β ≥ 0 is a weight which allows the tradeoff between

individual EV preferences and DN costs to be tuned. The

price model can even be more complicated mathematically

than what is assumed in (6) e.g., by assuming that πi,t is a

function of the current number of EVs charging at time t i.e.,

πi,t = φi,t(nt) (see [19] for more details on this model). One

of the main properties (namely, potentiality) of the charging

game studied in Sec. IV is retained.

To explicit gDN
i as a function of s, some notations have to be

introduced. Let ñt and nt respectively denote the numbers of

EVs starting to charge and charging at time t. These quantities

are related to s = (s1, ..., sI) by

ñt(s) =

I∑

i=1

1[si=t] and nt(s) =

I∑

i=1

Ci∑

t′=1

1[si=t−Ci+t′] (7)

where 1[.] is the indicator function. To evaluate the impact

of the charging policies on the DN, the key quantity is the total

transformer load or consumed power. The T−dimensional

sequence of total load levels is now also denoted by L
T (s) =

(L1(s), ..., LT (s)) and the total load on time-slot t is given

by

Lt(s) = Lexo
t + LEV

t (s) = Lexo
t + Pnt(s) (8)

where P is the common charging power of all the EVs. Using

the introduced notations, it is now possible to express gDN
i :

gDN
i (s) =

∑

t∈Wi(si)

αAt

(
L

t (s)
)
+ (1− α)J (Lt (s)) (9)

where 0 ≤ α ≤ 1 is the weight given to transformer aging

relatively to energy losses and Wi(si) is a discrete set which

represents the time window over which the EV i is considered

to be influential on the DN cost. We will dedicate more

attention to two special cases of practical interest for Wi(si).
The first case is when Wi(si) = {si, · · · , si +Ci − 1} , Wi

which means that each EV individual payoff is only related
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to the period of time over which the corresponding EV is

active. The second case corresponds to Wi(si) = T . The

parameter α can be seen as a simple way of tuning the tradeoff

between a short-term cost (energy losses) and a long-term cost

(transformer aging).

Now let us specify the action set for each EV. The arrival

and departure time of EV i ∈ I are denoted by ai ∈ T and

di ∈ T respectively. As it is assumed that an EV has to charge

its battery within the total time window, the action set for EV

i is chosen to be

Si = {ai, ai + 1, ..., di − Ci + 1} . (10)

The EV action profile s therefore lies in S =
∏I

i=1 Si; the

standard notation s−i = (s1, ..., si−1, si+1, .., sI), I ≥ 2, will

be used for referring to the reduced action profile in which

user i’s action is removed. A special case of interest is when

all users have the same charging constraint, that is ∀i, ai =
a, di = d, Ci = C. This case will be said to be symmetric.

In the symmetric case, it will be assumed, without loss of

generality, that a = 1 and d = T .

Remark 2. Maximizing the sum of weighted individual costs

provides a Pareto optimal point when the cost region is convex

[31]. By changing the weights, one moves along the Pareto

frontier of the cost region, which represents the best which

can be done in terms of tradeoff between aging and energy

losses. This therefore gives a motivation for considering the

linear combination. A natural question is about whether the

cost region is convex. In fact, the feasible average cost region

is convex whenever the cost is averaged over a large number

of stages (which is the number of days here). This follows by

a time-sharing argument: if there exist two charging strategies

which achieve each a given pair of individual costs, then any

convex combination of these pairs can be achieved by using

the two strategies with the appropriate fraction of the time.

Remark 3. As already mentioned, charging profiles are

assumed to be rectangular, which is why the charging power

can only have two possible levels namely either 0 or P .

Among the motivations for considering rectangular charging

profiles we may mention the following: 1) An important

argument is that rectangular profiles are currently being used

for existing EVs (e.g., the EVs built by the French car

maker RENAULT) and not only in papers; 2) for a given

charging start time, charging at full power without interruption

minimizes the delay to charge; 3) one technological reason is

that they allow one to manage the EV battery aging. Battery

aging seems to be accelerated when the charging operation

comprises interruptions [32]; 4) as shown further in Sec. V,

rectangular profiles are also fully relevant for cost functions

with memory such as the transformer aging. The charging start

time turns out to be a very influential variable, confirming

the observations made in [10]; 5) more specifically, from an

optimal control theory perspective, rectangular profiles may be

optimal. This happens for instance when the state (i.e., the hot-

spot temperature) is monotonically increasing with the control

(i.e., the charging power). If, for the time window of interest,

the transformer temperature can only increase, it is optimal

to delay the transformer heating. The optimal solution is then

to start charging as late as possible i.e., to charge at maximal

power at the end of the considered time window and charge at

zero power before. The duration of the corresponding charging

profile, which is rectangular, is given by the desired final state

of charge; 6) the charging start time will be seen to be less

sensitive to forecasting errors on the exogenous demand than

VF-type solutions; 7) profiles without interruption are even

required in some important scenarios encountered with home

energy management [33][34].

IV. A NEW DISTRIBUTED CHARGING ALGORITHM

A. Motivations

As explained in Sec. I, considering distributed charging

policies is relevant in at least two key scenarios. Assume a

scenario (say Scenario c) in which the charging policies are

computed by a single decision-making entity (e.g., an aggrega-

tor or a transformer computing device) and the maximization

of a quantity such as the sum-payoff function
∑I

i=1 ui(s) is

pursued. Finding an optimal solution may largely exceed the

available computational capacity; an exhaustive search would

roughly involve T I tests. Therefore, even if there is one single

decision-making entity, it may be required to optimize the

variables of s separately. Now, if we assume a scenario (say

Scenario d) in which each EV controls its own charging policy,

there are I physical DMs and the problem is distributed by

nature. In both scenarios, the total computational complexity

of the proposed algorithm will be seen to be typically linear in

the product T × I , showing the dramatic reduction in terms of

complexity allowed by the used distributed implementation.

The proposed distributed algorithm is based on a procedure

which is called the sequential best-response dynamics (BRD)

in game theory literature (see e.g., [35][36]). One of the strong

motivations for selecting such a procedure for the problem un-

der investigation is that convergence of the associated iterative

algorithm can be guaranteed with overwhelming probability.

Additionally, convergence is very fast, which is useful both in

Scenario c to avoid unnecessary computations and in Scenario

d to manage the amount of signaling between the EVs and the

aggregator. Other arguments in favor of using the BRD will

be provided further.

To clearly indicate that no strategic assumption such as

rationality or complete information is required on the DMs

which implement the BRD, the description of the algorithm

has been separated from its analysis. The analysis relies on

the use of game-theoretic tools such as the powerful notion of

potentiality, which guarantees the existence of a Nash point in

a game and the convergence of the BRD to a Nash point.

It turns out that the charging game under consideration is

effectively potential and therefore makes the BRD a good

candidate for computing the charging start instants.

B. Description of the algorithm

The proposed algorithm to determine the vector of start

times (s1, ..., sI) is an iterative algorithm which is inspired

from the sequential BRD. The algorithm is performed offline,

which means that the decisions which intervene in the algo-

rithm are intentions but not decisions which have effectively
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been taken; only the decisions obtained after convergence

will be effective and implemented online. Once the charging

instants are computed, the EV can effectively charge their

battery according to the schedule determined. In its most used

form, the BRD operates sequentially such that DMs update

their strategies in a round-robin manner. Within round m (with

m ≥ 1) the action chosen by DM i (which can be virtual

or physical depending on the assumed scenario) is computed

as (11). The proposed procedure is translated in pseudo-code

through Algorithm 1.

Algorithm 1: The proposed distributed EV charging algo-

rithm.

Initialize the round index as m = 0. Initialize the vector

of charging start times as s
(0).

while
∥∥s(m) − s

(m−1)
∥∥ > δ and m ≤ M do

Outer loop. Iterate on the round robin phase index:

m = m+ 1. Set i = 0.

Inner loop. Iterate on the DM index: i = i+ 1. Do:

s
(m)
i ∈ arg max

si∈Si

ui(s
(m)
1 , s

(m)
2 , ..., si,

s
(m−1)
i+1 , ..., s

(m−1)
I ) (11)

where s
(m)
i stands for action of DM i in the round

robin phase m. Stop when i = I and go to Outer

loop.
end

Comments on Algorithm 1.

• In (11), when the argmax set is not a singleton, s
(m)
i is

randomly drawn among the maximum points.

• The quantity δ ≥ 0 in Algorithm 1 corresponds to the

accuracy level wanted for the stopping criteria in terms of

convergence.

• To update the charging power levels m times, m×I iterations

are required.

• The order in which DMs update their action does not matter

to obtain convergence (see e.g., [37]). However, simulations

which are not provided here indicate that some gain in terms

of convergence time can be obtained by choosing the order

properly. A good rule seems to be to start updating at iteration

m the EV decisions in an increasing order in terms of start

times as obtained per iteration m− 1, which makes the order

iteration-dependent.

• The knowledge required to implement Algorithm 1 is

scenario-dependent. In Scenario c in which each decision is

computed by a single entity (the transformer typically), the

vector of effective charging instants can be computed from

its initial value s
(0), the (forecasted) sequence of exogenous

loads (Lexo
1 , ..., Lexo

T ), and the parameters which intervene in

the payoff functions; the latter include in particular the EV

mobility data (ai)i∈I , (di)i∈I , and (Ci)i∈I . In Scenario d

in which the EVs themselves update their decision, messages

have necessarily to be exchanged between the transformer and

the EVs. A possible communication protocol is as follows.

Without knowing anything about the exogenous demand L
exo

and the one associated with the other EVs, EV automaton i

chooses a start time say s
(0)
i and reports this to the transformer.

The latter aggregates the received signals and replies to the

EVs by sending them the predicted sequence of total load

levels L
(0)
t = Lexo

t + Pnt(s
(0)), t ∈ T . Therefore, EV 1

updates its intended start time as s
(1)
1 ∈ argmaxs1 u1(s1, s

(0)
−1)

and reports this change to the transformer: the latter updates

the aggregate signal into L
(1)
t = Lexo

t + Pnt(s
(1)), t ∈ T ,

where s
(1) = (s

(1)
1 , s

(0)
2 , ..., s

(0)
I ). This signal is sent to all

the EVs but only EV 2 is able to update its intended start

time. When all EVs have updated their start time at least

once, a new updating round can start. In practice, it might

happen that much less knowledge is available. For instance, if

only the knowledge of the forecast exogenous demand Lexo

is available then it is always possible to apply Algorithm 1

on the cost function (5) with α = 0. If the corresponding

charging scheme is used, it will induce, in general, a certain

loss of optimality.

• A variation of Algorithm 1 can be obtained by updating the

charging policies simultaneously. The main reason why we

have not considered the parallel version is that it is known

that there is no general analytical result for guaranteeing con-

vergence [36]. When converging, the parallel implementation

is faster but since start times are computed offline, convergence

time may be seen as a secondary feature.

C. Convergence analysis

One of the powerful links between distributed optimization

and game theory is that scenarios involving several individual

optimizers or DMs which update their decisions over time may

converge to a Nash equilibrium (NE) of a certain game. This is

one of the reasons why we now define the game of interest, that

we will refer to as the charging game. The main purpose of this

section is to show that, under additional realistic assumptions,

this game is an ordinal potential game (OPG) [38]. The

intuition behind this is that the considered cost functions all

depend on the EV charging loads through the sum-load. This

type of structures, which is present in games which are called

aggregate games (a congestion game [39] is a special instance

of them), may lead to the existence of a potential function.

Although exact potentiality is typically not available here, it

turns out that ordinal potentiality is available under some mild

conditions. In particular, the latter property guarantees the

convergence of the distributed charging algorithm proposed in

Sec. IV. A game under strategic-form is given by an ordered

triplet which respectively comprises the set of DMs or players,

their strategy sets, and their payoff functions (see e.g., [36]).

The charging game of interest is defined as follows.

Definition 1 (Charging game). The charging game is the

triplet G =
(
I, (Si)i∈I , (ui)i∈I

)
whose elements are defined

by (5) and (10).

Interestingly, this game is an OPG for typical scenarios

encountered in practice. An OPG is defined as follows [38].

Definition 2. [Ordinal Potential Game] A game whose payoff

functions are (ui)i∈I is an OPG if there exists a function Φ
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such that ∀i ∈ I, ∀s = (si, s−i), ∀s′i ∈ Si,

ui(s
′
i, s−i) ≥ ui(si, s−i) ⇔ Φ(s′i, s−i) ≥ Φ(si, s−i) .

Since the function Φ does not depend on the player index,

the game analysis amounts, to a large extent, to analyzing an

optimization problem. This attractive property is available at

least in the scenarios defined by the next proposition.

Proposition IV.1 (Potential property of the charging game).

If one of the following conditions is met, then G is an

OPG: (a) ∀i ∈ I, Wi(si) = W , where W is any discrete

set which is independent of the player index i and si; (b)

∀i ∈ I, Wi(si) = {si, · · · , si + Ci − 1} and there is

no thermal inertia i.e., θHS
t is given by (2). Two potential

function candidates are respectively given by: (a) Φ(a) (s) =

−
∑

t∈W

αAt

(
L

t (s)
)
+ (1 − α)J (Lt (s)) −

∑

i∈I

gEV
i (si); (b)

Φ(b) (s) = −
∑

t∈T

nt(s)∑

vt=0

αAt (Lt(vt)) + (1 − α)J (Lt(vt)) −

∑

i∈I

gEV
i (si) where Lt(vt) = Lexo

t + Pvt.

The proof is provided in App. A. The two scenarios in which

the game is potential are clearly of practical interest. Assuming

all the EVs to have a common time window Wi(si) = W for

charging (Scenario (a)) means that the total cost associated

with the DN is accounted for by all the EVs. This is clearly

the most interesting scenario for the aggregator. However, from

the user’s standpoint, this may be considered as unfair or

not acceptable. In such a case, it is more realistic that user

i be only charged a cost which corresponds to the period over

which his battery is effectively recharged namely, in the time

interval defined by Wi(si) = {si, si+1, ..., si+Ci−1} (note

that an alternative way of individualizing the cost would be

to use a cost sharing policy such as in [20] which would lead

us to use a common window W but weighting the total cost

by Ci∑
j Cj

for user i). This general scenario is mathematically

more involving than Scenario (a). It turns out that it becomes

quite simple to be analyzed for transformers with low thermal

inertia, which leads to Scenario (b). Obviously, when energy

losses represent the dominant cost (α → 0), the game is always

potential. All these comments lead us to the next proposition

which is the key result of this section.

Proposition IV.2 (Sufficient conditions for convergence). Al-

gorithm 1 converges if one of the following conditions is met:

(a); (b); α = 0.

As proved in [38], the sequential BRD converges in ordi-

nal potential games. The proof therefore follows. When the

charging game does not meet none of the conditions above, a

deeper analysis has to be conducted. In this paper, our choice

is to exploit Monte-Carlo simulations to provide additional

insights on the convergence issue. In Sec. V, the empirical

convergence probability is assessed for other typical scenarios

and is shown to be high. When converging, the proposed

algorithm converges to an NE of the charging game G. The

motivation of the next section is to analyze the existence,

uniqueness, and global efficiency of the convergence point(s)

which are NE.

D. Equilibrium analysis

A pure NE of G is a point which meets a certain condition

of stability [40]. Formally, it is defined as follows.

Definition 3 (Pure NE). The action profile s
∗ = (s∗1, ..., s

∗
I) ∈

S is a pure NE if ∀i, ∀si, ui(si, s
∗
−i

) ≤ ui(s
∗).

The existence of a pure NE in G is ensured under the

conditions assumed in the following proposition.

Proposition IV.3 (Existence of a pure NE). In Scenarios (a),

(b), or α = 0, the game G has at least one pure NE.

The proof of this result follows from the fact that in any

of the scenarios of Prop. IV.1, G is an OPG and after [38]

the existence of a pure NE is guaranteed. On the other hand,

and this is common in discrete games, uniqueness does not

hold. To prove this set T = 5, I = 3, Ci = C = 2, ai =
a = 1, di = d = 5, Lexo = (1, 2, 3, 2, 1), and P = 1. For a

small transformer inertia i.e., a small T 0 (see Sec. V), it can

be checked that s
∗ = (1, 1, 4), s∗∗ = (1, 4, 1), and s

∗∗∗ =
(4, 1, 1) are NE, showing that uniqueness is not guaranteed

in general. Since NE uniqueness is not guaranteed in general,

measuring the efficiency of the worst NE is important. The

most usual way of assessing the impact of decentralization

in a non-cooperative game has been formalized in [41] by

defining the notion of price of anarchy. Rather, we will slightly

modify the latter notion as the price of decentralization (PoD),

which we define below; the merit of the proposed definition

is just that the price is effectively zero when a distributed

algorithm or procedure leads to an equilibrium point which

performs as well as the centralized solution in terms of sum-

payoff w =
∑

i∈I ui.

Definition 4 (PoD). The PoD of G is defined by

PoD = 1−
max
s∈S

w(s)

min
s∈SNE

w(s)
(12)

where SNE is the set of NE of the game.

It can be seen that 0 ≤ PoD ≤ 1 and the larger the

PoD, the larger the loss due to decentralization. It is generally

difficult to express the above quantity as a function of the game

parameters [36]. This explains why these quantities are often

more relevant from the numerical point of view. Nonetheless,

it is possible to characterize it in some special cases. One of

the cases where PoD can be characterized is the limit case

of a large number of EVs, that is I → ∞, having the same

charging constraint ai = a, di = d and Ci = C, and the

transformer has no thermal inertia. In this asymptotic regime,
nt

I
→ xt ∈ R represents the proportion of EVs charging at

time t and the analysis of the game G amounts to analyzing the

so called non-atomic counterpart GNA of G. In the latter game,

the set of players is continuous and given by INA = [0, 1].
The action set of the EVs, S, is defined as in (10). In the

regime of large numbers of EVs, the transformer load becomes

L(x) = L
exo + px; the parameter p is introduced in order for
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the exogenous demand to scale with I . Indeed, after (8), when

I → +∞, if kept fixed, the exogenous demand Lexo
t tends to

vanish in comparison to the load induced by the EVs. This is

the reason why we introduce the parameter p (instead of P ).

The obtained non-atomic charging game can be proved to be

an OPG and the following result concerning efficiency can be

obtained.

Proposition IV.4 (PoD in the non-atomic case (I → ∞)).

Assume that: ai = a, di = d, Ci = C, and Wi(si) = T ;

gEV
i = 0; Lexo

t is a non-increasing (resp. non-decreasing)

function of t on {1, · · · , C} (resp. {T − C + 1, · · · , T });

Scenario (b) or α = 0 is considered. Then we have that

PoD = 0.

The proof of this result is provided in App. B. This result

has the merit to exhibit a scenario where decentralizing the

charging decisions induces no cost in terms of global optimal-

ity for the sum-payoff. Note that, in particular, if the exogenous

demand is either constant or negligible w.r.t. the demand

associated with the set of EVs, the above assumption holds and

there is therefore no efficiency loss due to decentralization.

Remark 2. The fact that there exist multiple Nash equilibria

might be seen as a crucial point since one does not not know to

which point Algorithm 1 will converge. However, Prop. IV.4

and the numerical results provided in the next section show

that the PoD is typically small. This means that the worst Nash

equilibrium and the best Nash equilibrium necessarily perform

similarly, showing that equilibrium selection is not a crucial

issue for the problem under consideration.

V. NUMERICAL ANALYSIS

We first provide the general simulation setup assumed by

default while particular choices will be specified in the figure

captions. Data corresponding to non-EV demand (or exoge-

nous) profiles and the ambient temperature are taken from the

ERDF French DN operator data basis. They concern France for

the year 2012 and can be found in [42], [43]. Unless specified

otherwise, simulations are performed over a year; the chosen

time unit corresponds to 30 min. We consider a 20 kV/410 V

transformer whose apparent power is 100 kVA and nominal

(active) power is 90 kW. The transformer HS temperature

evolution law is assumed to follow the ANSI/IEEE linearized

Clause 7 top-oil-rise model, which is described in [29]. The

transformer lifetime is inversely proportional to the average

aging:

lifetime = 40× Tyear ×




Tyear∑

t=1

At




−1

(years) (13)

where the non-EV or exogenous demand is normalized such

that without EV lifetime = 40 years; here Tyear = 366 × T .

The instantaneous aging At (see (3)) is computed by choosing

a = 0.12˚C−1, b = −11. The function FHS
t is not described

here but can be found in [29]. To make the simulations

reproducible we provide the values of the different parameters

of FHS
t : ∆t = 0.5 h; T 0 = 2.5h (thermal inertia) for all simu-

lations concerning the transformer, unless specified otherwise

(in which case we have that T 0 = 0.5h) ; γ = 0.83; R = 5.5;

∆θOFL = 55˚C; ∆θHS
FL = 23˚C; q = 1; r = 1; θHS

0 = 98˚C.

Energy losses are evaluated by choosing Rtransfo = Rline =
0.03 Ω. The load induced by one EV is P = 3 kW. For each

day, charging operations have to take place within the time

window from 5 pm (day number j) to 8 am (day number

j + 1), which corresponds to T = {1, 2, ..., 30}. Concerning

the EV mobility data, two scenarios will be considered. In

Scenario (s), all EVs need Ci = C = 16 time-slots of 30
minutes each to completely recharge their 24−kWh battery

and ai = a = 1 (5 pm), di = d = 30 (8 am); this scenario

can be seen as the worst case. In Scenario (t), the mobility

data are deduced from statistics taken from the French survey

ENTD 2008 available in [44]: ai, di, and Ci are taken to be the

closest integers of realizations of Gaussian random variables

ãi ∼ N (4, 1.5), d̃i ∼ N (29, 0.75) and C̃i ∼ N (5.99, 1.14).
By default, Scenario (s) will be assumed. Finally, unless

specified otherwise, the cost functions in (5) are defined by:

for all i, gEV
i = 0, which allows us to isolate the effects of the

exogenous demand; Wi(si) = {si, si + 1, ..., si + Ci − 1},

and fi = Id. The plug-and-charge (PaC) policy is obtained

by assuming that EVs start charging as soon as they plug to

the grid according to the data of [44]. To assess the impact

of not being able to forecast the non-EV demand perfectly

we assume that the available non-EV demand profile is given

by L̃exo
t = Lexo

t + Z , where Z ∼ N (0, σ2
day). We define the

forecasting signal-to-noise ratio by

FSNR = 10 log10


 1

σ2
day

×
1

Tday

Tday∑

t=1

(Lexo
t )2


 (dB) (14)

where Tday = 48.

Numerical convergence analysis. In Sec. IV-C, we have

provided sufficient conditions under which convergence is

guaranteed. Here, we consider a scenario in which these

conditions are not met (in fact the worst, with α = 1) and

assess the probability of convergence of Algorithm 1. For

Scenario (s), Fig. 2 represents the empirical probability of

convergence against the number of EVs for the 366 exogenous

demand profiles from [42] and for 10 000 draws from a

Gaussian random vector; the covariance matrix of the latter

is taken to be σ2×I{T×T}, where σ = 26kW is estimated by

using the data from [42]. All simulations performed showed

that only a few iterations are needed to obtain convergence,

which is a quite typical behavior for sequential BRD-type

iterative procedures [36].

To elaborate further on this point, we provide Fig. 3. It rep-

resents the total number of iterations needed for convergence

of Algorithm 1 as a function of the number of EVs when

Wi(si) = T . The middle curve corresponds to an average over

the 366 days of 2012 while the two others are associated with

a chosen confidence interval of 68%. The total convergence

time is observed to scale very well with the number of EVs

indicating no scalability issues for convergence. Note that

the scaling law seems almost piecewise linear here but many

other simulations performed for more diverse scenarios show

it might be "less linear" but always involves smooth variations.

To conclude on the convergence issue, we consider the vari-

ations of the individual payoff functions of the EVs and that
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Fig. 2: Even if the assumption of Prop. IV.2 is not met,

Algorithm 1 still converges with high probability. When the

number of EVs (I) is low or large, the (empirical) probability

of convergence tends to 1. When the number of EVs takes

intermediate values, the probability is typically above 90%.
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Fig. 3: Total number of iterations of Algorithm 1 against the

number of EVs (I). The dashed curves represent the 68%
confidence intervals. It is seen that Algorithm 1 is scalable

in terms of convergence time. Here convergence time scales

well with I since variations are smooth.

of a potential function over iterations; this is the purpose of

Fig. 4. For I = 10, ∀i, ai = 1, d1 = ... = d9 = 30, d10 = 24,

the night of January 1, 2012 [42], and now α = 0 (only

energy losses are taken into account), the figure shows that the

potential always decreases over iterations, which illustrates the

fact that it is a Lyapunov function of the considered dynamical

procedure. As a very positive result, it is seen here that only

one update per EV is needed to reach convergence. This very

fast convergence behavior is typical when a memoryless cost

is considered [36], which is the case here with α = 0.

HS temperature evolution. For Scenario (s), Fig. 5 represents

the HS temperature against time for the worst day of the year

2012 in France in terms of HS temperature peak (top curve)
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i
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Fig. 4: For 10 EVs, only 10 iterations are needed to converge,

which means that only one update per EV is sufficient to reach

convergence, showing a very fast convergence. The figure also

illustrates the fact that the potential is a Lyapunov function of

the considered dynamical procedure.

and the best day (bottom curve) in three scenarios: without EV,

with Algorithm 1, and with the PaC policy. The selected worst

day (which is a winter day) shows that the HS temperature

takes excessive values when the PaC policy is used. The

temperature peak is increased by about 80˚C w.r.t. to the case

without EV (see [45] for physical justifications on the value

of this excess). On the other hand, implementing Algorithm

1 does not induce any increase for the peak and roughly

tends to minimize HS temperature variations. Since the aging

acceleration factor At is exponential in the HS temperature,

the PaC policy has a dramatic effect in terms of transformer

lifetime. Note that this decrease might be made much slower

by choosing a transformer with a larger admissible active

power (e.g., 120 kW instead of 90 kW) but here, our goal

is to see the impact of EVs on residential transformers which

are already deployed and have therefore been sized to operate

without EV.

Performance comparison analysis and influence of the fore-

casting noise. Here, we set α to one. The transformer is

assumed to be chosen to be able to operate for 40 years without

EV. For Scenario (t), Fig. 6 represents the transformer lifetime

against the number of EVs when the exogenous demand

forecast is perfect (see the three curves in dotted lines) and

when FSNR = 4 dB (see the three curves in solid lines). The

top curve is an horizontal line which corresponds to the case

without EV; the bottom curve corresponds to the PaC policy.

The three non-trivial charging policies under consideration are

the one corresponding to Algorithm 1, that of Gan et al [18]

and Shinwari et al [26]. The Gan et al policy corresponds to

the convergence point of an iterative algorithm which aims at

minimizing a cost which results of two terms: if maximized

alone and assuming convergence, the first term would lead to

a VF solution; a second term whose role is to stabilize the

parallel implementation-based iterative algorithm. The weight

put on the latter penalty term (0.5) is tuned optimally for Fig.
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Fig. 5: Hot-spot temperature against time without EV (for

two extreme days in 2012), with Algorithm 1, and with

the PaC policy. Scheduling charging start times according

to Algorithm 1 instead of plugging-and-charging allows the

temperature variations to be minimized and does not induce

any excess for the peak. It is also seen that scheduling charging

needs properly is much more important during winter time (in

France).

6; if this weight is not tuned properly, the implementation of

Gan et al may lead to significant performance losses [46]. For

the Shinwari et al policy, the energy need of EV i is spread

by filling the "holes" of the exogenous demand. For each EV,

a proportion of the energy needed is allocated to a given time-

slot proportionally to δt∑
T
t=1 δt

with δt = −Lexo
t +maxt L

exo
t ,

and the remainder is uniformly allocated. Fig. 6 shows that

the PaC policy is seen to be non-acceptable, showing the

imperious need for advanced charging schemes. It is seen

that Algorithm 1, which is based on rectangular charging

profiles, performs as well as the continuous power level-based

scheme of Gan et al. Both schemes yield a relatively small

decrease of transformer lifetime in Scenario (t). This holds

under the assumption of perfect forecasting for the non-EV

demand profile. However, under the more realistic assumption

of imperfect forecasting (FSNR = 4 dB), as seen in Fig. 6,

transformer lifetime can severely be degraded as the number

of EVs increases for the two latter schemes. Algorithm 1,

which is based on rectangular charging profiles, is seen to be

much more robust against noise on the exogenous demand

than VF solutions. This observation is clearly confirmed by

Fig. 7 which is also obtained in Scenario (t) and represents the

transformer lifetime against FSNR for three charging schemes.

Rectangular profiles have the advantage to be less sensitive to

amplitude errors than the VF solution since the sole parameter

to be tuned is the charging start time. We have checked that this

message is not mobility data-dependent. Indeed, simulations

which are not provided here and exploit the (US) mobility data

of [47] and [48] confirm that rectangular charging profiles are

robust against forecasting errors. This provides a very strong
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Fig. 6: Transformer lifetime against the number of EVs (I).

The plug-and-charge policy is seen to be non-acceptable.

Algorithm 1 is seen to perform as well as existing valley-filling

type solutions under perfect forecasting of the non-EV demand

and outperforms these solutions under imperfect forecasting.
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Fig. 7: Transformer lifetime (years) against the forecasting

signal-to-noise ratio (dB) for I = 10 electric vehicles; α = 1
and mobility data of Scenario (t), namely those from [44], are

assumed.

argument in favor of using rectangular profiles. A parallel with

the problem of noise robustness for high-order modulations in

digital communications can be drawn and an optimal power

level might be identified, which is the purpose of the next

paragraph.

Existence of an optimal charging power level for rectangu-

lar profiles. While it is clear that the larger the charging power

the lower the time to charge, having a high charging power

can be suboptimal in the presence of forecasting noise. This

is what Fig. 8 shows in Scenario (s). It depicts the optimal

charging power in terms of transformer lifetime at the NE

obtained with Algorithm 1 as a function of the number of

EVs, the minimum (resp. maximum) charging power being set
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Fig. 8: In the presence of forecasting noise, charging at the

highest charging power possible is suboptimal in terms of

transformer lifetime. Rather, a non-trivial optimal charging

power level can be determined.

to 2.2 kW (resp. 24 kW). At one extreme, in the absence of

forecasting noise, the optimal power level is always 24 kW,

which corresponds to two 30−min time-slots. At the other

extreme, when the noise level is large, the best power level

would correspond to charge over the entire period namely at
24kWh
15h

= 1.6 kW if it was allowed and we find the minimal

value of 2.2 kW. For typical forecasting noise levels [49],

simulations reveal non-trivial optimal charging power levels,

as illustrated by Fig. 8.

Tradeoff between the transformer lifetime and energy losses.

Fig. 9 represents the Pareto frontier of the feasible cost region

for the first day of 2012 when the proposed algorithm is used:

the x-axis corresponds to the normalized transformer aging

while the y-axis corresponds to normalized energy losses. The

curves are obtained by varying α from 0 to 1 and considering

two different scenarios in terms of thermal inertia: T 0 = 0.5 h

(top curve) and T 0 = 2.5 h (bottom curve). The conclusion is

that it is preferable to design charging policies which minimize

the transformer aging, i.e., to set α = 1. The loss of optimality

in terms of energy losses will be rather small by using these

policies. It has been observed that changing the charging start

time by one hour or two does only affect energy losses in a

marginal way; Tab. I, which provides normalized energy losses

for different charging schemes and number of EVs, confirms

this. However, because of thermal inertia, changing the start

time by one hour or more has a significant impact on aging.

This is due to the fact that typical exogenous demand profiles

comprise a valley in the night, explaining the results of Fig.

9.

Tradeoff between transformer aging/energy losses and

charging monetary cost. The purpose of Fig. 10 and Fig. 11 is

to assess what is lost in terms of charging monetary cost when

pursuing transformer aging or energy losses minimization.

Indeed, these figures depict the charging monetary cost against

the number of EVs when: an EV aims at minimizing the
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Fig. 9: Charging start times have an important impact in terms

of transformer aging while they have much less influence on

energy losses.

H
H
H
H
H

J

I
5 10 20 30

Plug-and-Charge 1.14 1.30 1.70 2.18
Algorithm 1 1.09 1.21 1.50 1.86

Gan et. al. [18] 1.09 1.20 1.49 1.84
Shinwari et. al. [26] 1.10 1.22 1.50 1.85

TABLE I: Normalized energy losses J (they are normalized

relatively to the case without EV) against the number of

electric vehicles (I) for four charging schemes.

charging monetary cost (we force gDN
i to be zero in (5) and

only exploit the function gEV
i ); or it aims at minimizing the

transformer aging (i.e., when α = 1 in (9) and gEV
i = const.);

or it aims at minimizing energy losses (i.e., when α = 0 in (9)

and gEV
i = const.). This is done for two choices of electricity

fares: the French on/off peak fare; the market price (Epex Spot

prices in France [50]). It can be seen that choosing a good

charging scheme in terms of aging or energy losses leads to

a charging monetary cost which is reasonably close to the

one which is obtained by minimizing the monetary cost. The

explanation for this is as follows. If the local demand (e.g., at

the residential scale) is correlated to the global demand (at the

scale of the country), a good tradeoff between technological

costs and the monetary cost can be found. Indeed, when

looking at the non-EV demand and the electricity price profile,

it is seen in particular that there is an "evening peak" both

for the demand and the price. When using other data like

the ERCOT (Electricity Reliability Council of Texas, [51])

data, similar conclusions can be drawn. Now, if the non-EV

demand and prices are not correlated at all, the considered

cost function has to combine three terms and the value of

the weight β (relatively to α) will be very influential on the

charging profiles obtained with Algorithm 1. Corresponding

simulations might then be provided but as our initial goal was

to put the emphasis on the distribution network costs and not

on the monetary aspect, these simulations are not provided

here.
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Constant fare = 0.144 (euros / kWh)

Fig. 10: EV charging monetary costs at NE (converging point

of Algorithm 1) against the number of EVs (I) when the

individual payoff function (5) corresponds to: energy losses

(α = 0 and gEV
i = const.); transformer aging (α = 1,

gEV
i = const.); the charging monetary cost (gDN

i = 0 and

gEV
i =

∑si+Ci−1
t=si

πi,t). French on/off peak fares (for πi,t)

and Scenario (s) (Ci = C = 16, ai = a = 1, di = d = 30)

are assumed.
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Fig. 11: This figure correspond to the same setting as Fig. 10

except for the price model which is now the Epex Spot price

model ([50]).

Price of Decentralization. Computing the PoD in general

is a hard problem since it involves the maximization of

the sum-payoff. Nonetheless, all the numerical results we

obtained for various special cases allowed us to confirm what

Prop. IV.4 suggests namely, that the PoD is close to zero.

Concerning the case α = 1, it is seen from Fig. 6 that, under

perfect forecasting, the transformer lifetime obtained thanks

to Algorithm 1 is greater than 37.75 years while the no-

EV upper bound is at 40 years. This shows that the PoD is

necessarily less than 40
37.75 − 1 ≃ 6%. To elaborate further

into this direction, Fig. 12 is provided in the case where
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Fig. 12: Price of Decentralization (PoD) in the simple sym-

metric case L
exo = 0, α = 0 (energy losses only), ai = a = 1,

di = d = T . The PoD is small (less than 20% for I = 4 EVs

and Ci = C = 2).

α = 0. It represents the PoD against the number of EVs for

a simplified setting which allows exhaustive search for the

centralized solution to be implemented and which is detailed

on the figure itself. Since quantities under use are discrete,

there is a combinatorial effect which explains the different

peaks. But the general tendency is that the PoD is relatively

small and typically decreases with the number of EVs. All

these observations fully support the relevance of distributed

implementations of charging algorithms.

VI. CONCLUDING REMARKS

In this section, we summarize a couple of key messages of

this work and then provide possible extensions.

One key feature of this work is to consider rectangular pro-

files for charging electric vehicles (EVs) and study in details

the consequences of this choice. One important message is that

rectangular profiles have the advantage to be more robust to

errors on the non-EV demand forecast than existing charging

schemes which rely on continuous power levels (e.g., valley-

filling solutions). As far as transformer lifetime is concerned,

it is also seen that in the presence of forecasting noise, there

exists an optimal power level at which the EVs should charge.

It is seen that in the context of rectangular charging profiles,

it is possible to capture in a simple manner the tradeoff be-

tween transformer aging, energy losses, and charging monetary

cost. As a rule of thumb for the engineer, it is observed that

designing a good charging scheme in terms of aging will

imply a good scheme in terms of energy losses whereas the

converse does not hold in general (it may hold e.g., for a

transformer with a very low thermal inertia). When electricity

market prices and the non-EV demand are correlated e.g.,

by the importance of the evening peak, then a good scheme

in terms of aging typically also performs well in terms of

charging monetary cost. In more complex scenarios where

this correlation is not available, the tradeoff may be analyzed

through other simulations which are not provided here.
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The distributed formulation of the charging problem in the

considered context is shown to be fully relevant. Indeed, the

proposed algorithm is shown to be scalable regarding conver-

gence time, complexity, and required information. Concerning

the specific issue of convergence, the ordinality potentiality

property is proven to be available for key special cases

and therefore guarantees convergence. Otherwise, in more

general settings, simulations show that convergence is ensured

with overwhelming probability. A possible downside of a

distributed formulation of the problem is the potential loss

of optimality. However, several strong arguments are provided

to show that this issue is quite minor when the problem is

formulated as in this work.

A relevant extension is to use a dynamical approach which

would take as a system state the transformer hot-spot temper-

ature and charging policies as control policies. Since realistic

models for the temperature evolution law are typically non-

linear, the considered cost function is typically not quadratic,

and charging constraints have to be considered, the underlying

control problem seems to be non-trivial. Using a dynamical

approach is also relevant to account for the memory effect

in electricity prices. Additionally, the problem of robustness

against forecasting errors has to be accounted for. Therefore a

quite complete mathematical model would be to account both

for memory effects (given by the transfomer and the prices)

and uncertainty, which would lead to using the advanced tools

of stochastic control [52], [53] and games.

APPENDIX A

PROOF OF THE POTENTIAL PROPERTY OF THE CHARGING

GAME (PROP. IV.3)

Proof: We start with the case of assumption (a) i.e., ∀i ∈
I, Wi(si) = W . In this case, we have the following sequence

of statements:

1) the game in which the payoff function is the same for all

EVs and given by u1
i (s) = u1(s) =

∑

t∈W

αAt

(
L

t (s)
)
+

(1 − α)J (Lt (s)) is an (exact) potential game [38] (it

is a "team game" more precisely);

2) the game in which the payoff function of EV i is

u2
i (s) = gEV

i (si) is an (exact) potential game because

the payoff function of each player only depends on its

own strategy;

3) the game in which the payoff function of EV i is

u3
i (s) = u1

i (s) + u2
i (s) is an (exact) potential game

because the payoff functions of the players are the sum

of two payoff functions for which the game is an (exact)

potential game;

4) the game in which the payoff function of EV i is

u4
i (s) = −fi(u

3
i (s)) is an ordinal potential game

because composing the payoff functions of a potential

game by strictly decreasing functions leads to an ordinal

potential game4.

4Furthermore, when fi = Id, the charging game is an exact potential game.

We now treat case (b). We show that

Φ(b) (s) = −
∑

t∈T

nt(s)∑

vt=0

αAt (Lt(vt)) + (1− α)J (Lt(vt))

−
∑

i∈I

gEV
i (si) (15)

is an ordinal potential for the charging game. Suppose that

player i deviates from si to s
′

i. Assume, for example, that

this deviation is rational and brings him a payoff increase of

−fi
(
gDN
i (s′i, s−i) + gEV

i (s′i)
)
+ fi

(
gDN
i (s) + gEV

i (si)
)
> 0

We have the following relations

fi
(
gDN
i (s) + gEV

i (si)
)
− fi

(
gDN
i (s′i, s−i) + gEV

i (s′i)
)
> 0

⇔ gDN
i (s)− gDN

i (s′i, s−i) + gEV
i (si)− gEV

i (s′i) > 0 (16)

⇔
si+Ci−1∑

t=si

gDN (Lt (s))−

s′i+Ci−1∑

t=s′
i

gDN (Lt (s
′))

+ gEV
i (si)− gEV

i (s′i) > 0 (17)

⇔ Φ(b) (s
′)− Φ(b) (s) > 0 , (18)

where gDN (Lt (s)) = αAt (Lt (s)) + (1 − α)J (Lt (s)) to

simplify the notations.

The first equivalence (16) comes from the strict mono-

tonicity of fi, while (17) and (18) follow by observing

that the only terms changing in Φ(b) because of player i’s

deviation are nsi , nsi+1, ...nsi+Ci−1 (decreasing by one), and

ns′
i
, ns′

i
+1, ..., ns′

i
+Ci−1 (increasing by one), which modifies

the corresponding sums in (15) by, respectively, subtracting a

term for t = si, si + 1, ...si + Ci − 1, and adding a term for

t = s′i, s
′
i+1, ...s′i+Ci−1. It therefore gives the equivalence in

the Ordinal Potential Game definition (Def. 2) and concludes

the proof.

APPENDIX B

PROOF OF THE POD IN A SPECIAL CASE

Proof: We consider scenario (b) for the proof. The proof

for α = 0 is obtained directly from this one observing that

setting α = 0 leads to a DN cost without inertia. Again, let

gDN (Lt (s)) = αAt (Lt (s)) + (1 − α)J (Lt (s)) to simplify

the notations. By following the steps in the proof of App. A,

it can be shown that the nonatomic version of the charging

game is also an OPG, with a potential function candidate

ΦNA
(b) (x) = −

∑

t∈T

∫ xt

vt=0

gDN (Lt(vt)) dvt (19)

where Lt(vt) = Lexo
t + pvt . Note that there is no individual

term related to gEV
i in (19) given the assumption made in Prop.

IV.4.

Observe now that without the constraints x1 ≤ · · · ≤ xC

and xT−C+1 ≥ · · · ≥ xT , which ensure that no EV

starts charging before t = 1 or finishes after t = T , the

minimization problems of both −ΦNA
(b) and −w on the set

X̃ = {x ∈ [0, 1]
T
,
∑T

t=1 xt = C} are standard valley-

filling problems5 with a strictly convex cost function, here

5minx
∑

t
f(Lexo

t
+pxt) subject to x ≥ 0,

∑
t
xt = C, with f the cost

function.
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x 7−→
∫ x

v=0
gDN (Lt(v)) dv in the case of ΦNA

(b) (gDN is strictly

increasing) and x 7−→ gDN(Lt(x)) in the case of w. It is known

that the solution of this problem is unique and independent of

the strictly convex cost function (see e.g., Thm.2 in [18]). Let

x̃
∗ denote this solution. x̃∗ has the following "valley-filling"

structure: {
∀t, x̃∗

t > 0 ⇒ Lexo
t + px̃∗

t = L∗

∀t, x̃∗
t = 0 ⇒ Lexo

t ≥ L∗
, (20)

where L∗ denotes the "valley level" of the solution. This

implies here that the solutions of the minimization problems

of both ΦNA
(b) and w on X̃ coincide.

It remains to show that under the assumptions Lexo
1 ≥ · · · ≥

Lexo
C and Lexo

T−C+1 ≤ · · · ≤ Lexo
T , x̃∗ is still the solution of

both problems on X (instead of X̃), which is equivalent to

x̃
∗ ∈ X. In fact, it is easy to see that x̃∗

1 ≤ · · · ≤ x̃∗
C and

x̃∗
T−C+1 ≤ · · · ≤ x̃∗

T necessarily hold. Suppose indeed that

the converse is true e.g., x̃∗
1 > x̃∗

2. This implies Lexo
1 + px̃∗

1 >

Lexo
2 +px̃∗

2 which in turn implies x̃∗
1 = 0 because of (20), which

is contradictory. Then, x̃
∗ is the (unique) solution of both

optimization problems on X. Thus, the (unique) NE profile is

maximizing w on X and PoD = 0.
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