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A Generalised Twinning Property for Minimisation
of Cost Register Automata
Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot

Aix Marseille Université, CNRS, LIF UMR 7279

Abstract
Weighted automata (WA) extend finite-state automata by associating weights with trans-

itions. Unambiguous WA are such that for each word, there is at most one accepting run.
Unambiguous WA are equivalent to functional WA, i.e. WA such every two runs on the same
input have the same weight. Recently, cost register automata have been introduced as an al-
ternative model to describe any function realised by a WA by means of a deterministic machine.
Given a monoid (M,⊗), we denote by CRA⊗c(M) the cost register automata whose registers take
their values in M , and are updated by operations of the form x := y ⊗ c, with c ∈M .

We introduce a twinning property and a bounded variation property parameterised by an
integer k, such that the corresponding notions introduced by Choffrut are obtained for k = 1.
Given an unambiguous weighted automaton W over an infinitary group (G,⊗), we prove that
the three following properties are equivalent: i) W satisfies the twinning property of order k, ii)
the function it realises satisfies the k-bounded variation property, and iii) this function can be
described by a CRA⊗c(G) with at most k registers. We actually prove this result in the more
general setting of finite-valued weighted automata. We show that if the operation of the group
is computable, then one can decide whether a WA satisfies the twinning property of order k. As
a corollary, this allows to decide the register minimisation problem for the class CRA⊗c(G).

Last, we prove that a similar result holds for finite-valued finite-state transducers, and that
the register minimisation problem for the class CRA·c(B∗) is Pspace-complete.

1 Introduction

Finite state automata can be viewed as functions from words to Booleans and, thus, de-
scribe languages. Such automata have been extended to define functions from words to
various structures yielding a very rich literature, with recent applications in quantitative
verification [5]. Weighted automata [13] (WA) is the oldest of such formalisms. They are
defined on semirings (S,⊕,⊗) by adding weights from S on transitions; the weight of a run
is the product of the weights of the transitions, and the weight of a word w is the sum
of the weights of the accepting runs on w. Many problems have been considered for such
machines such as equivalence [11], determinisation [12, 4, 10] and minimisation [12]. Most
of the results highly depend on the considered semiring and are often undecidable.

Recently, Alur et al. have introduced a new model of machine, named cost register auto-
mata (CRA) [2]. These automata are deterministic but use registers that aim to store along
the computation computed values from a given set S. A final output function associates
with each final state a register. Hence, a step of computation boils down to register update:
for each register a new value is computed from the stored values and a collection of opera-
tions defined on S. Considering a semiring S = (S,⊕,⊗), Alur et al. showed that WA over
S and CRA defined over S with operations ⊕ and ⊗c (ie the function x 7→ x⊗ c for c in S)
compute the same functions [2]. Moreover, they showed that when unambiguous WA are
considered (ie automata having at most one successful computation per input, thus making
the additive law of the semiring useless), they turn out to be equivalent to CRA over S with
⊗c as unique operation, denoted by CRA⊗c(S). In the particular case S = (Z,+,×), we
obtain the model called "additive cost register automata" (ACRA) in [3].

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 A Generalised Twinning Property for Minimisation of Cost Register Automata

Transducers [7] generalise automata by associating finite words to transitions. This way,
they define rational relations over words. They can be viewed as weighted automata on the
semiring of finite sets of words (thus, built over the free monoid); product is the set union
and sum is the concatenation extended to sets. A transducer is functional (resp. finite-
valued) if it associates a singleton with each input (resp. if, for some k ∈ N, it associates
at most k output words with each input). Deterministic (or sequential) transducers are
those such that the underlying automaton is deterministic; they are thus functional. De-
terminisability is the decision problem asking whether for some transducer, there exists an
equivalent deterministic one. In [6], Choffrut introduced two properties: first, a property
of transducers named "twinning property" (TP) and second, a property of string functions
named "bounded variation". He showed that a transducer T is determinisable iff T satis-
fies the twinning property iff the function f computed by T satisfies the bounded variation
property. It has been first shown in [14] that the twinning property is decidable in Ptime.

Finite-valued weighted automata. As several problems are undecidable for general weighted
automata, it is important to identify large subclasses with decidability results. While equi-
valence is undecidable for non-deterministic transducers, it is decidable for finite-valued
ones. This class also enjoys other interesting properties, such as equivalence with finitely
ambiguous transducers, and decomposition as finite unions of unambiguous transducers.
These positive results motivated the study of WA with a "set" semantics in order to obtain
decidability results for a large and expressive subclass. Instead of aggregating the weights
of the different runs on the same input by using the first operation of the semi-ring, the se-
mantics is defined as the set of these weights. A functional (resp. k-valued) WA is such that
all accepting runs on the same input word have same weight (resp. such that, for every input
word w, the set of values computed by all the accepting runs on w has cardinality at most k).
It is finite valued if it is k-valued for some k. For instance, unambiguous and functional WA
are equivalent, and determinisability is proven to be decidable for functional weighted auto-
mata using a twinning property under some hypotheses on the semiring (see [12, 10]). More
recently, determinisability has been studied for functional weighted automata over groups
satisfying the so-called infinitary condition [8]. Results on decomposition and inclusion have
also been obtained in [9] for the class of finite-valued weighted automata.

For automata, a very important problem is to simplify the models. For instance, determ-
inisation is essential in order to derive efficient evaluation algorithms. Similarly, reducing
the size of the models allows to reduce the computation time of most algorithms, and thus
minimisation has been extensively studied. For CRA, the most important problem con-
cerns the minimisation of the number of registers: can we compute the minimal number of
registers necessary to realise a given function? This highly challenging problem has been
addressed in a recent paper for the particular case of ACRA [3].

One can notice that the class of CRA⊗c(S) with a single register coincides with the class
of deterministic weighted automata on S. Hence, when (S,⊗) is an infinitary group, [8]
entails that the twinning property characterises functional weighted automata on S that
can be expressed by a CRA⊗c(S) with a single register.

Contributions. We start with the framework of infinitary groups and generalise this char-
acterisation to finite-valued weighted automata and to an arbitrary number of registers using
a twinning property of order k (TPk). As a first step, and in order to capture the expressive-
ness of finite-valued weighted automata, we allow the final output function of CRA⊗c(S) to
produce a subset of the register’s values, and denote by CRA+

⊗c(S) the resulting class. Then,
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our main result states that a finite-valued weighted automaton satisfies the TPk iff it can
be expressed by a CRA+

⊗c(S) with k registers. In addition, we also provide a generalisation
of the bounded variation property that is also equivalent to the previously described class
of functions. Provided that the group (S,⊗) is commutative and that the operation ⊗ and
the equality on S are computable, we describe a procedure to decide whether a finite-valued
WA satisfies the TPk. As a corollary, we obtain the decidability of the problem of register
minimisation for the class CRA+

⊗c(S). In particular, we obtain a Pspace procedure for the
group (Z,+), hence a slight generalisation of the result obtained in [3] for ACRA. It is worth
noticing that our result relies on a general methodology, while the proof of [3] was tailored
to the setting of ACRA.

As a complement to the previous results, we study the framework of transducers from
A∗ to B∗. It is known that streaming string transducers (i.e. CRA with a special set
of updates) are expressively equivalent to regular string functions [1], and that the class
CRA·c(B∗) coincides with the class of rational functions. In order to apply the above results,
and as the set of words equipped with concatenation is not a group, we consider the free
group over B. We prove that if a CRA over the free group only produces as output words in
B∗, then there exists an equivalent CRA over B∗. The above results yield: a finite-valued
transducer satisfies the TPk iff it can be expressed by a CRA+

·c(B∗) with at most k registers.
In addition, we also prove that the twinning property of order k can be decided in Pspace,
hence so register minimisation in the class CRA+

·c(B∗).

Organisation of the paper. We start with definitions in Section 2. In Section 3, we intro-
duce the generalised twinning and bounded variation properties.We state our main result,
in the context of infinitary groups in Section 4 and sketch its proof. We turn to transducers
in Section 5. Last we present our decidability results and their application to the register
minimisation problem in Section 6. Omitted proofs can be found in the Appendix.

2 Preliminaries

Prerequisites and notations. We denote by A a finite alphabet, by A∗ the set of finite
words on A, by ε the empty word and by |w| the length of a word w. Given a set S, the set
of the finite subsets of S is denoted by Pf (S).

A monoid M = (M,⊗,1) is a set M equipped with an associative binary operation ⊗
with 1 as neutral element; the product α ⊗ β in M may be simply denoted by αβ. Given
O,O′ ⊆ M , O ⊗ O′ (or simply OO′) is the set {αβ | α ∈ O, β ∈ O′}, Ok denotes the set
OO · · ·O︸ ︷︷ ︸
k times

, O<k = ∪06i<kO
i and O6k = O<k ∪ Ok. If every element of a monoid possesses

an inverse - for all α ∈ S, there exists β such that αβ = βα = 1 (such a β is unique and is
denoted by α−1) - then M is called a group. In this case, given O ⊆ M , O−1 denotes the
set {α−1 | α ∈ O}. The monoid (resp. group) is said commutative when · is commutative.

A semiring S is a set S equipped with two binary operations ⊕ (sum) and ⊗ (product)
such that (S,⊕,0) is a commutative monoid of neutral element 0, (S,⊗,1) is a monoid of
neutral element 1, 0 is absorbing for ⊗ (i.e. α ⊗ 0 = 0⊗ α = 0) and ⊗ distributes over ⊕
(i.e. α⊗ (β ⊕ γ) = (α⊗ β)⊕ (α⊗ γ) and (α⊕ β)⊗ γ = (α⊗ γ)⊕ (β ⊗ γ)).

For a monoid M, the set Pf (M) equipped with the two operations ∪ (union of two sets)
and · is a semiring denoted Pf (M).

From now on, we may confuse algebraic structures (monoid, group, semiring) with the
set they are defined on when the operations are clear from the context.
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Delay and infinitary group. There exists a classical notion of distance on words (i.e. on the
free monoid) measuring their difference: dist is defined for any two words u, v as dist(u, v) =
|u|+ |v| − 2 ∗ |lcp(u, v)| where lcp(u, v) is the longest common prefix of u and v.

When considering groups, this notion is similar to the notion of delay:

I Definition 1 (delay). Let G be a group. Given α, β ∈ G, the delay between α and β is
α−1β. It is denoted by d(α, β).

I Lemma 2. Given a group G, for all α, α′, β, β′, γ, γ′ ∈ G,
1. d(α, β) = 1 if and only if α = β,
2. if d(α, α′) = d(β, β′) then d(αγ, α′γ′) = d(βγ, β′γ′).

I Definition 3. A group G is said to be infinitary if for all α, α′, β, β′ ∈ G such that
d(α, α′) 6= d(αβ, α′β′):

|{d(αβn, α′β′n) | n ∈ N}| = +∞

Classical examples of infinite groups such as (Z,+, 0), (Q,×, 1) and the free group gen-
erated by a finite alphabet are all infinitary. Other examples are given in [8].

Weighted automata. Given a semiring S, weighted automata are non-deterministic finite
automata in which transitions have weights as elements of S. They compute functions from
the set of words to S. The weight of a run is the product of the weights of the transitions
along the run and the weight of a word w is the sum of the weights of the accepting runs
labelled by w.

We will consider, for some monoidM, weighted automata over the semiring (Pf (M),∪,⊗).
Wlog, we assume that transitions are labelled by elements in M.

A weighted automaton W over the alphabet A with weights in the monoid M is a tuple
(Q,Qinit, Qfinal, t, T ) where Q is a finite set of states, Qinit ⊆ Q is the set of initial states,
Qfinal ⊆ Q is the set of final states, t : Qfinal → M is the output function and T ⊆ Q× A×
M×Q is the finite set of transitions.

A run ρ on a word w = w1 · · ·wk ∈ A∗ where for all i, wi ∈ A, is a sequence of transitions
(q1, w1, α1, q2), (q2, w2, α2, q3), . . . , (qk, wk, αk, qk+1). The output (or value) of such a run is
the element of M α1α2 · · ·αk. A state q is accessible (resp. co-accessible) if there exists
such a run with q1 ∈ Qinit and q = qk (resp. qk+1 ∈ Qfinal and q = q1). The run ρ is said
to be accepting if q1 ∈ Qinit and qk+1 ∈ Qfinal. Moreover we say that the value of such an
accepting run is α = α1α2 · · ·αkt(qk+1). We depict this situation as q1

w|α−−→ qk+1.
This automaton W computes the (total) function [[W ]] which associates with any word

w the set of the values of the accepting runs on w (and so, ∅ if there is no such run).
A weighed automaton is unambiguous if it admits at most one accepting run for each

input. For such automata, the additive operation of the semiring is somehow useless.
Given a weighted automaton W over a group G, we denote by ∆W the set of all the

elements of G occurring on the transitions of W as well as their inverse.

I Definition 4 (Valuedness / Ambiguity). For any positive integer `, a weighted automaton
W is said to be:

`-valued if for all words w, the set [[W ]](w) contains at most ` elements,
`-ambiguous if for all words w, there are at most ` accepting runs labelled by w.

A weighted automaton is said to be finitely valued (resp. finitely ambiguous ) if it is `-valued
(resp. `-ambiguous) for some positive integer `.
WA` denotes the set of functions A∗ → Pf (M) computed by `-valued weighted automata.
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I Example 5. Let us consider A = {a, b} and (M,⊗,1) = (N,+, 0). The weighted auto-
maton given in Figure 1 (on the left) associates with a word wa (resp. wb) its number of
occurrences of the letter a (resp. b). It is 1-valued and 1-ambiguous.

Cost register automata. Cost register automata (CRA) [2] are defined over a set C
equipped with a collection of operations O. A CRA is a deterministic automaton with
registers containing values from C and that are updated through the transitions: for each
register, its new value is computed from the old ones combined using an operation in O. The
output value is computed from the values taken by the registers at the end of the processing
of the input. Hence, a CRA defines a function from words in A∗ to elements of C.

In this paper, we focus on a particular structure (M,⊗c) defined over a monoid (M,⊗,1)
that we denote CRA⊗c(M). In such a structure, the only operations are unary and defined
as x 7→ x ⊗ c with c is an element from M. When M is (N,+, 0), this class of automata is
called additive cost register automata [3]. When M is the free monoid (A∗, ., ε), this class is
a subclass of streaming string transducers [1] and turns out be to equivalent to the class of
rational functions on words, i.e. realized by finite-state transducers.

Moreover, we want to extend CRA⊗c(M) to compute not only single values from M but
also finite sets of such elements. For this, we slightly modify the definition of CRA, allowing
to produce a set of values computed from register contains. The new class of machines
denoted CRA+

⊗c(M) is defined formally as follows:

I Definition 6. A cost register automaton on the alphabet A over the monoid (M,⊗,1)
with updates ⊗c is a tuple (Q, qinit,X , δ, µ) where Q is a finite set of states, qinit ∈ Q is
the initial state and X is a finite set of registers. The transitions are given by the function
δ : Q×A→ (Q×UP(X )) where UP(X ) is the set of functions X → X ×M that represents
the updates on the registers. Finally, µ : Q→ Pf (X ×M) is the output function.

The semantic of such an automaton is as follows: if an update function f labelled a
transition and f(Y ) = (X,α), then the register Y after the transition will take the value
βα where β is the value contained in the register X before the transition. More precisely, a
valuation ν is a mapping from X to M and let V be the set of such valuations. The initial
valuation νinit is the function associating with each register the value 1. A configuration is an
element of Q×V. The initial configuration is (qinit, νinit). A run on a word w = w1 · · ·wk ∈
A∗ where for all i, wi ∈ A, is a sequence of configurations (q1, ν1)(q2, ν2) . . . (qk+1, νk+1)
satisfying that for all 1 6 i 6 k, δ(qi, wi) = (qi+1, gi) with for all registers X, if gi(Y ) =
(X,α) then νi+1(Y ) = νi(X)α. Moreover, the run is said to be accepting if (q1, ν1) is the
initial configuration.

A cost register automaton R defines a (total) function [[R]] from words to finite subsets
of M such as for all w, [[R]](w) is equal to

{νk+1(X)α | (q1, ν1)(q2, ν2) . . . (qk+1, νk+1) is an accepting run on w and (X,α) ∈ µ(qk+1)}

I Definition 7 (Output size). The output size of a cost register automaton with output
function µ is the integer max{|µ(q)| | q ∈ Q}.

The class of such cost register automata whose output size is at most ` is denoted
CRA`⊗c(M). CRA+

⊗c(M) is defined as the union of CRA`⊗c(M) over ` > 1.
Let RA`(k) (resp. RA(k), RA`) denote the set of functions A∗ → Pf (M) computed by

cost register automata with at most k registers and output size at most ` (resp. at most k
registers, of output size at most `).
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q1

q2

q3
0

a : 1

b : 0

a : 0

b : 1

a : 1

b : 1

q1

q2

q3

Xa

Xb

a :
{
Xa := Xa + 1
Xb := Xb

b :
{
Xa := Xa

Xb := Xb + 1

a
:
{ Xa

:=
Xa

+ 1

Xb
:=
Xb

b :
{
X

a :=
X

a

X
b :=

X
b + 1

a :
{
Xa := Xa + 1
Xb := Xb

b :
{
Xa := Xa

Xb := Xb + 1

Figure 1 Examples of weighted automaton (left) and of cost register automaton (right).

I Example 8. Consider A = {a, b} and (M,⊗,1) = (N,+, 0). The cost register automaton
given in Figure 1 (on the right) computes the same function as the one computed by the
weighted automaton from Example 5. The register Xa (resp. Xb) stores the number of
occurrences of the letter a (resp. b). It uses two registers and is of output size 1.

3 Generalised twinning and bounded variation properties

In this section, we present a twinning property and a bounded variation property paramet-
erised by an integer k, such that the corresponding notions introduced by Choffrut in [6] are
obtained for k = 1. Our properties are defined for the setting of groups.

3.1 Generalised twinning property (TPk)
The idea behind the twinning property of order k is to consider k + 1 runs labelled by the
same word with k synchronized cycles. If the twinning property of order k is satisfied then
there are two runs among these k+ 1 such that the values along these two runs remain close
(i.e. the delay between these values stays within a fixed and finite subset of G).

I Definition 9. A weighted automaton on a group G satisfies the twinning property of order
k (denoted by TPk) if:

for all states {qji | i, j ∈ {0, . . . , k}} with q
j
0 initial and qjk co-accessible for all j,

for all words u1, . . . , uk, v1, . . . , vk such that there are k + 1 runs satisfying for all 0 ≤

j ≤ k, for all 1 ≤ i ≤ k, qji−1
ui|αj

i−−−→ qji and qji
vi|βj

i−−−→ qji (see Figure 2),
there are j 6= j′ such that for all i ∈ {1, . . . , k},

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) = d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

We can now state some properties on runs of weighted automata depending whether they
satisfy TPk or not. The next lemma formalizes the intuition that when the TPk is satisfied,
there are two runs which are close at the end (∆W is defined in the preliminaries).
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q0
0 q0

1 q0
2 q0

k

u1|α0
1 u2|α0

2

v1|β0
1 v2|β0

2 vk|β0
k

q1
0 q1

1 q1
2 q1

k

u1|α1
1 u2|α1

2

v1|β1
1 v2|β1

2 vk|β1
k

qk0 qk1 qk2 qkk

u1|αk
1 u2|αk

2

v1|βk
1 v2|βk

2 vk|βk
k

k
+

1
ru

ns

Figure 2 Twinning property of order k.

I Lemma 10. Let W be a weighted automaton with n states satisfying TPk. Then, for all
words w, for all initial states q0, . . . , qk and co-accessible states p0, . . . pk such that there are
k + 1 runs

qj
w|αj

−−−→ pj for all j ∈ {0, . . . , k},

there are j 6= j′ such that d(αj , αj′) ∈ ∆62nk+1

W .

This lemma relies on the fact that the group G is infinitary.

I Lemma 11. Let W be a weighted automaton on an infinitary group that does not satisfy
TPk. Then, for all positive integers m, there is a word w, initial states q0, . . . , qk, co-
accessible states p0, . . . , pk and k + 1 runs:

qj
w|αj

−−−→ pj for all j ∈ {0, . . . , k},

such that for all j 6= j′, d(αj , αj′) /∈ ∆6m
W .

We introduce a definition expressing the fact that two runs are always close:

I Definition 12. Let Λ be a finite subset of G, W be a weighted automaton on G and w =

w1 . . . wk be a word. Let ρ1, ρ2 be two runs on w, with ρj = q1
w1|βj

1−−−−→ q2 · · · qk
wk|βk−−−−→ qk+1,

j = 1, 2. ρ1, ρ2 are said to be Λ-close if for all i ≥ 1, d(β1
1 . . . β

1
i , β

2
1 . . . β

2
i ) ∈ Λ.

I Lemma 13. Let W be a weighted automaton with n states satisfying TPk. Then, for
all r, for all words w, for all runs ρ1, . . . , ρr on w, from an initial state to a co-accessible
state, there is a subset P ⊆ {1, . . . , r} containing at most k elements such that for all
j′ ∈ {1, . . . , r}, there is j ∈ P such that ρj , ρj′ are (∆62nk+1

W )-close.

3.2 Finite-valued weighted automata and TPk

Based on the Lemmas from the previous subsection, we exhibit now the strong relationship
between the twinning property and the finite-valuedness property for weighted automata.

I Proposition 14. A weighted automaton over an infinitary group satisfies TPk for some
natural k if and only if it is finitely valued.
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First, if a weighted automaton is `-valued then it satisfies TPn` where n is its number
of states. This is proved by contradiction using Lemma 11. The converse follows from
Lemma 13 applied on a set of accepting runs.

3.3 Bounded variation property
The bounded variation property is defined on functions and is thus a machine independent
property: whenever two WA are equivalent, either both or none of them satisfy this property.

Given a partial mapping f : A∗ ⇀ B∗, the twinning property introduced by Choffrut
in [6] states that for every N ∈ N, there exists n ∈ N such that for all w,w′ ∈ A∗ such that
f(w), f(w′) are defined, if dist(w,w′) 6 N , then dist(f(w), f(w′)) 6 N . Intuitively, this
property states that whenever two words only differ by a small suffix, so do their images by
f . This corresponds to the intuition that the function can be expressed by means of a CRA
with a single register (a behaviour can be deduced from the other one).

When lifting this property to functions that can be expressed using at most k registers,
we consider k + 1 input words pairwise close, and require that two of them must have close
images by f . The extension to partial mappings f : A∗ ⇀ Pf (B∗) requires that for all k+ 1
pairwise close input words, and all k + 1 output words chosen in the images of these input
words, two of them should be close.

Last, our framework is that of infinitary groups. Instead of dist(, ), we use the delay
d(, ) to compare the images. In order to quantify the "distance" between these outputs, we
introduce a notion of generator that depends on the function under study. Given a mapping
f : A∗ → Pf (G) computed by a weighted automaton, we say that a subset E of G is a
generator w.r.t. f if {d(α, α′) | α ∈ f(w), α′ ∈ f(w′), w, w′ ∈ A∗} ⊆

⋃
n>0 E

n. If this holds,
we say that E satisfies the criterion (Cf ). Note that if G is finitely generated, then any
finite set of generators of E satisfies (Cf ).

We present now our definition that generalises the original one of Choffrut [6]:

I Definition 15. A function f : A∗ → Pf (G) satisfies the k-bounded variation property if
for all naturals N > 0 and all subsets E of G satisfying (Cf ), there is a natural n such that
for all words w0, . . . , wk ∈ A∗, if for all 0 6 i, j 6 k, dist(wi, wj) 6 N then for all 0 6 i 6 k,
for all αi ∈ f(wi), there is j 6= i such that d(αi, αj) ∈ E6n.

4 Relating finite-valued weighted automata and cost-register automata

We present our main result stating the equivalence between the twinning property of order
k, the k-bounded variation property, and the register complexity at most k.

I Theorem 16. Let W be an `-valued weighted automaton over the semiring Pf (G) where
(G,⊗) is an infinitary group, and k be a positive natural number. The following assertions
are equivalent:
1. W satisfies the twinning property of order k,
2. [[W ]] satisfies the k-bounded variation property,
3. [[W ]] is computed by a CRA`⊗c(G) with k registers.

The proof of this theorem is obtained by showing the equivalence between 1 and 2 and
then between 1 and 3. These proofs are sketched in Section 4.1 and Section 4.2.

This result allows to describe a hierarchy of functions as described in Figure 3 where
WA(k) (resp. WA`(k)) denotes the set of functions computed by a weighted automaton
(resp. `-valued weighted automaton) satisfying TPk.
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1 2 · · · k

1

2

··
·

`

DET Functional

1
re
gi
st
er WA`(k)

= RA`(k)
WA`

= RA`

WA(k)
= RA(k)

Figure 3 Hierarchy.

Consider an alphabet over k letters A = {a1, . . . , ak} and the function defined for all
words w by:

f : wai 7→ {|w|i + 1, |w|i + 2, . . . , |w|i + `}

where |w|i represents the number of occurrences of the letter ai in w. One can prove that
this function is in the class RA`(k), but not in the classes RA`′(k′) for k′ < k or `′ < `,
showing that this hierarchy is strict.

4.1 Proof of the machine independent characterisation
In this section, we sketch the proof of the equivalence of assertions 1 and 2 of Theorem 16.

First, consider a weighted automatonW with n states satisfying TPk. By Lemma 10, we
can find a bound N such that among any k+1 runs, there always exists two runs with delay
in ∆6N

W . Then, for all subset E satisfying criterion (Cf ), we can prove that we can find a
bound N ′ such that the lemma still holds for E. It allows us to prove that the function
computed by W satisfies the k-bounded variation property.

Conversely, if the function computed by W satisfies the k-bounded variation property, it
means that there is an integer N such that among any k + 1 runs over a same word, there
are two runs with delay in ∆6n

W . By using Lemma 11, we can prove that W satisfies TPk.

4.2 Proof of the equivalence with cost register automata
In this section, we sketch the proof of the equivalence of assertions 1 and 3 of Theorem 16,
which amounts to prove the equality RA`(k) =WA`(k).

The inclusion RA`(k) ⊆ WA`(k) is the easiest one. The construction is similar to the
one given in [2] to construct a weighted automaton from a cost register automaton. One
can verify that parameters k and ` are preserved by this construction.

Let us focus on the reverse inclusion and denote by WA`-amb(k) the set of functions
computed by a `-ambiguous weighted automaton satisfying TPk. It is proved in [9] that
WA` =WA`-amb. Moreover, thanks to the equivalence of assertions 1 and 2 of Theorem 16
that we just proved, the twinning property of order k is a machine independent property.
We can deduce that WA`(k) =WA`-amb(k).
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It is then sufficient to prove that WA`-amb(k) ⊆ RA`(k). Consider a `-ambiguous
weighted automaton W with set of states Q satisfying TPk, and let Γ = ∆2|Q|k+1

W . We
build R ∈ CRA`⊗c(G) with k registers computing the same function.

The idea underlying the construction is to store in the states of R the delays between
the values of the runs of W labelled by a given word. We will use the fact that there are at
most k diverging behaviours (thanks to TPk) to prove that we can store the delays up to a
finite bound and use only k registers to capture the k diverging behaviours.

More precisely, let w be a word and q ∈ Q. We write ρ1
q, ρ2

q, . . . , ρ
`q
q the runs in W

labelled by w from an initial state to q. Let α1
q , α2

q , . . . , α
`q
q denote their respective weights.

By `-ambiguity of W , for all q ∈ Q, we have `q 6 `.
Let f be the function from (Q× {1, . . . , `})2 to Γ ∪ {∞,⊥} such that:

f((q, κ), (q′, κ′)) =


d(ακq , ακ

′

q′ ) if κ 6 `q, κ
′ 6 `q′ , (ρκq , ρκ

′

q′ ) Γ-close
∞ if κ 6 `q, κ

′ 6 `q′ , (ρκq , ρκ
′

q′ ) not Γ-close
⊥ otherwise (i.e. one of the two runs doesn’t exist)

The cost register automaton R is constructed such that the unique run labelled by w in
R from the initial state ends in a state representing the function f .

By Lemma 13 (that holds thanks to TPk), one can choose a set P ⊆ ∪q∈Q({q} ×
{1, . . . , `q}) of k elements such that for all q ∈ Q and κ ∈ {1, . . . , `q}, there is (q′, κ′) ∈ P
such that the runs ρκq and ρκ′

q′ are Γ-close.
The k elements of P are mapped onto the k registers of R, and the updates of the

registers are defined such that the values stored in the registers after reading w in R are the
weights of these k runs. Thanks to the property of the set P stated above, the weight of
any run along w can be obtained from one of the registers of R.

This allows to prove the correction of this construction.

5 The case of transducers

This section is devoted to prove that Theorem 16 still holds if we consider transducers
from A∗ to B∗. To this end, we view such transducers as weighted automata over the free
semigroup on B, and the equivalence 1 ⇔ 2 follows. The equivalence 1 ⇔ 3 requires more
attention.

More precisely, given a finite alphabet B, let WAB` (k) (resp. RAB` (k)) denote the set of
functions computed by a `-valued weighted automaton satisfying TPk (resp. a cost register
automaton with k registers and output size `) only using elements in B∗.

I Theorem 17. WAB` (k) = RAB` (k)

The proof of the inclusion RAB` (k) ⊆ WAB` (k) is the same as the one done in the group
case: in this proof, we never use group structure and the weights are preserved by the
construction.

Let us now sketch the proof of the reverse inclusion. Let F denote the set of functions
A∗ → Pf (B∗). By Theorem 16, we have the following sequence of inclusions:

WAB` (k) ⊆ WA`(k) ∩ F ⊆ RA`(k) ∩ F

Thus, by proving Proposition 18, we will obtain the expected result.

I Proposition 18. RA`(k) ∩ F ⊆ RAB` (k)
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Consider a cost register automaton R that computes a function in F . On can prove that
there is a bound N such that along the runs of R, the value stored in the registers always
belong to B∗(B ∪ B−1)6N . These values are thus of the form α1α2 with α1 ∈ B∗ and
α2 ∈ (B∪B−1)6N . The idea is then to output the shortest α1 satisfying these conditions and
store the value α2 in the states of the automaton. This construction preserves parameters
k and `.

6 Decidability and application to register minimisation

In this section, we prove the decidability of the twinning property, and as a consequence
that of the register minimisation problem. We consider the two following problems:
Problem TPk: given a weighted automaton W and a number k, does W satisfy the TPk?
Problem Register Minimisation: given R ∈ CRA+

⊗c(S) and a number k, does there exist
R′ ∈ CRA+

⊗c(S) with k registers such that [[R]] = [[R′]]?
We start with a preliminary result. Let us denote by TP′k the property obtained from

the TPk by requiring the property not only for k cycles, but for m cycles, for every m > k.

I Lemma 19. For all positive integer k, a weighted automaton satisfies TPk if and only if
it satisfies TP′k.

As a consequence, a witness of the violation of the TPk can be identified as one of the
violation of the TP′k, i.e. a set of k + 1 runs, with m > k cycles, such that for each pair
i 6= j, there exists a cycle that induces different delays between i-th and j-th runs.

Case of commutative groups. We write W = (Q,Qinit, Qfinal, t, T ) and let n = |W |. In
order to decide the twinning property, we will consider the k + 1-th power of W , denoted
W k+1, which accepts the set of k + 1 synchronised runs in W . We write its runs as ~ρ =
(ρi)06i6k and denote by αi the weight of run ρi.

I Theorem 20. Let G = (G,⊗) be a commutative group such that the operation ⊗ and the
equality check are computable. Then the TPk problem is decidable.

Sketch. It is easy to observe that for commutative groups, the constraint expressed on the
delay in the twinning property boils down to checking that loops have different weights. The
result follows from the two following facts:

first, given two vectors of states v, v′ ∈ Qk+1, checking that there exists a path from v

to v′ in W k+1 is decidable,
second, the following problem is decidable: given a vector of states v ∈ Qk+1 and a pair
i 6= j, check that there exists a cycle ~ρ around v in W k+1 such that d(αi, αj) 6= 1. The
procedure non-deterministically guesses the cycle in W k+1 (its length can be bounded
by 2nk+1) and computes incrementally the value of d(αi, αj).

The overall procedure simply guesses a run in W k+1 with a cycle for each pair i 6= j, and
checks that this cycle induces distinct delays between the i-th and j-th runs. J

If we consider the setting of ACRA, i.e. the group (Z,+), we can verify that the above
procedure runs in Pspace if k is given in unary, yielding:

I Theorem 21. Over the group (Z,+), the TPk problem is in Pspace (k is given in unary).

The construction from CRA+
⊗c(S) to WA over S is polynomial. Wlog, we suppose that k is

given in unary. This is reasonable as k is smaller than the actual number of registers of R.
As a consequence we deduce: (the hardness follows from the result of [3])
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I Corollary 22. The register minimisation problem for CRA+
+c(Z) is Pspace-complete.

This result slightly generalises that of [3], as we allow more general output functions. In
addition, it follows from a general framework, and similar results for other infinitary groups
can be derived similarly.

Case of transducers. Let us first recall the procedure of [14] to decide the twinning property
in Ptime for transducers. They prove that the TP is violated iff there exists a pair of runs
such that either the output words on cycles v1, v2 are such that |v1| 6= |v2|, or the output
words on paths leading to the cycle, say u1, u2, have a mismatch (i.e. a position on which
they differ). Using a similar reasoning, we prove the following lemma:

I Lemma 23. Let T be a transducer violating the TPk. Then there exist:
states {qji }06i6m,06j6k with k 6 m 6 k2, and qj0 initial and qjk co-accessible for all j,
words u1, . . . , um, v1, . . . , vm such that there are k + 1 runs satisfying for all 0 ≤ j ≤ k,

for all 1 ≤ i ≤ m, qji−1
ui|αj

i−−−→ qji and qji
vi|βj

i−−−→ qji
and such that for all 0 6 j < j′ 6 k:

either there exists 1 6 i 6 m such that |βji | 6= |β
j′

i |,
or there exists 1 6 i 6 m such that |βji | = |βj

′

i | 6= 0, the words αj1 . . . α
j
i and αj

′

1 . . . α
j′

i

have a mismatch, and the runs qj0
u1...ui−−−−→ qji and q

j′

0
u1...ui−−−−→ qj

′

i are
(
B ∪B−1)nk+1

-close.
This allows to derive a non-deterministic procedure running in polynomial space (assuming
k is given in unary): we first guess the vectors of states associated with cycles, and guess,
for every 0 6 j < j′ 6 k, which of the two cases holds. Using a procedure similar to the
one described for the commutative case, one can check the existence of a cycle verifying
the guessed property. Last, we verify the existence of the mismatches. Given a pair of
runs (ρ, ρ′), we proceed as follows: one non-deterministically guess ρ and ρ′ and stores the
difference between the lengths of the outputs of the two runs. Non-deterministically, one
can record the letter produced by the run that is ahead (say ρ). Then one continues the
simulation until ρ′ catches up ρ, and checks that the letter produced by ρ′ is different. This
can be achieved in polynomial space using the fact that ρ and ρ′ are close.

I Theorem 24. Over (B∗, ·), the TPk problem is in Pspace (k is given in unary).

I Corollary 25. The register minimisation problem for CRA+
·c(B∗) is Pspace-complete.

7 Conclusion

We have studied so-called finite-valued weighted automata on one side, and a class of cost
register automata on the other side.

We have introduced a twinning property and a bounded-variation property that gener-
alise the original properties introduced by Choffrut for transducers and obtained an elegant
generalisation of a well-known result of Choffrut for transducers. In addition, this led to
a decision procedure of a register minimisation problem for a large class of cost register
automata.

Our setting includes both infinitary groups and transducers. It is worth observing that
important classes of quantitative languages such as sum, discounted sum and average auto-
mata fit into the setting of infinitary groups (see [8]).

As a particular case, for the setting of additive cost regular functions, we obtain a
generalization of the result of [3] on the minimisation of registers.
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In all the results and proofs in the appendix,W = (Q,Qinit, Qfinal, T ) denotes a weighted
automaton computing a function f and k a positive integer. Let Θ denote the set of elements
of S occurring on the transitions of W , ∆W = Θ ∪Θ−1 and Γ = ∆62|Q|k+1

W = ∆2|Q|k+1

W .

A Delays

I Lemma 2. For all α, α′, β, β′, γ, γ′ ∈ S,
1. d(α, β) = 1 if and only if α = β,
2. if d(α, α′) = d(β, β′) then d(αγ, α′γ′) = d(βγ, β′γ′).

Proof. 1. d(α, β) = α−1β = 1 if and only if α = β.
2. d(αγ, α′γ′) = γ−1α−1α′γ′ = γ−1d(α, α′)γ′ = γ−1d(β, β′)γ′ = d(βγ, β′γ′)

J

B Infinitary group

I Lemma 26. Let S be an infinitary group and Γ be a finite subset of S. For all α, α′, β, β′ ∈
S such that d(α, α′) 6= d(αβ, α′β′), for all non negative integers m, there is N such that for
all n > N ,

d(αβn, α′β′n) /∈ Γ6m

Proof. Suppose that for some non negative integers n 6= p, d(αβn, α′β′n) = d(αβp, α′β′p).
Then by using the second item of Lemma 2, for all non negative integers i, d(αβn+i, α′β′n+i) =
d(αβp+i, α′β′p+i), and thus |{d(αβn, α′β′n) | n ∈ N}| would be finite, that contradicts the
hypothesis. Thus, for all non negative integers n 6= p, d(αβn, α′β′n) 6= d(αβp, α′β′p), and
finally, for all m > 0, since Γ6m is finite, there is N such that for all n > N ,

d(αβn, α′β′n) /∈ Γ6m

J

C Equivalent definition of TPk

We give here another definition of the twinning property of order k and prove that the two
definitions are equivalent.

A weighted automaton satisfies TP′k if:
for all m > k,
for all states {qji | i ∈ {0, . . . ,m}, j ∈ {0, . . . , k}} with q

j
0 initial and qjm co-accessible for

all j,
for all words u1, . . . , um, v1, . . . , vm such that there are k + 1 runs like described in the
Figure 4,

then there are j 6= j′ such that for all i ∈ {1, . . . ,m}:

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) = d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

I Lemma 27. For all positive integer k, a weighted automaton satisfies TPk if and only if
it satisfies TP′k.

Proof. By definition, TP′k implies TPk. For the converse implication, suppose that TP′k is
not satisfied. Then, there are:
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q0
0 q0

1 q0
2 q0

m

u1|α0
1 u2|α0

2

v1|β0
1 v2|β0

2 vm|β0
m

q1
0 q1

1 q1
2 q1

m

u1|α1
1 u2|α1

2

v1|β1
1 v2|β1

2 vm|β1
m

qk0 qk1 qk2 qkm
u1|αk1 u2|αk2

v1|βk1 v2|βk2 vm|βkm

k
+

1
ru

ns

Figure 4 Equivalent definition of the twinning property of order k

an integer m > k,
words u1, . . . um, v1, . . . , vm,
states {qji | i ∈ {0, . . . ,m}, j ∈ {0, . . . , k}} with q

j
0 initial and qjm co-accessible for all j,

k + 1 runs like described in Figure 4,
such that for all j 6= j′, there is i ∈ {1, . . . ,m} satisfying:

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) = d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

We prove now that we can only consider k loops and still preserve the property. For all
i ∈ {0, . . . ,m}, we construct a partition Pi of the set {0, . . . , k}.

P0 = {{0, . . . , k}},
Pi+1 is a refinement of Pi such that j and j′ remains in the same class if and only if
d(αj1α

j
2 · · ·α

j
i+1, α

j′

1 α
j′

2 · · ·α
j′

i+1) = d(αj1α
j
2 · · ·α

j
i+1β

j
i+1, α

j′

1 α
j′

2 · · ·α
j′

i+1β
j′

i+1)
By hypothesis, we know that Pm is the set of singleton sets. Moreover, since the partitioned
set contains k+ 1 elements, there are at most k indices i ∈ {1, . . . ,m} such that Pi−1 6= Pi.
Let us note them i1 < . . . < ik. Then for all j 6= j′, consider is the smallest index
such that j and j′ are not is the same class in Pis . Then d(αj1α

j
2 · · ·α

j
is
, αj

′

1 α
j′

2 · · ·α
j′

is
) 6=

d(αj1α
j
2 · · ·α

j
is
βjis , α

j′

1 α
j′

2 · · ·α
j′

is
βj

′

is
), that proves that TPk is not satisfied and concludes the

proof. J

D Lemmas about TPk

I Lemma 10. If W satisfies TPk then for all words w, for all initial states q0, . . . , qk and
co-accessible states p0, . . . pk such that there are k + 1 runs:

qj
w|αj

−−−→ pj for all j ∈ {0, . . . , k},
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there are j 6= j′ such that d(αj , αj′) ∈ Γ.

Proof. If W satisfies TPk then it also satisfies TP′k. Let w be a word, q0, . . . , qk initial
states and p0, . . . pk co-accessible states, such that:

qj
w|αj

−−−→ pj for all j ∈ {0, . . . , k}

We will now extract synchronised loops in these runs. If |w| 6 |Q|k+1 then for all j 6= j′,
d(αj , αj′) ∈ Γ, otherwise there are:

a positive integer m > k,
words u1, . . . , um, v1, . . . , vm such that w = u1v1 · · ·umvm and |u1 · · ·um| 6 |Q|k+1 ,
states qji for i ∈ {0, . . . ,m} and j ∈ {0, . . . , k} such that qj0 = qj and qjk = pj ,
elements of S, αji , β

j
i for i ∈ {1, . . . ,m} and j ∈ {0, . . . , k} such that αj = αj1β

j
1 · · ·αjmβjm,

such that there are k + 1 runs like described in Figure 4.
By TP′k, there are j 6= j′ such that for all i ∈ {1, . . . ,m},

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) = d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

Thus, by using at each step the item 2 of Lemma 2,

d(αj , αj
′
) = d(αj1β

j
1α

j
2 · · ·αjmβjm, α

j′

1 β
j′

1 α
j′

2 · · ·αj
′

mβ
j′

m)

= d(αj1α
j
2 · · ·αjmβjm, α

j′

1 α
j′

2 · · ·αj
′

mβ
j′

m) (since d(αj1, α
j′

1 ) = d(αj1β
j
1, α

j′

1 β
j′

1 ))
...

= d(αj1α
j
2 · · ·αjm, α

j′

1 α
j′

2 · · ·αj
′

m) ∈ Γ (since |u1 · · ·um| 6 |Q|k+1)

J

I Lemma 11. If W does not satisfy TPk, then for all positive integers m, there is a word
w, initial states q0, . . . , qk, co-accessible states p0, . . . , pk and k + 1 runs:

qj
w|αj

−−−→ pj for all j ∈ {0, . . . , k},

such that for all j 6= j′, d(αj , αj′) /∈ ∆6m
W .

Proof. Let m be a positive integer. Since W does not satisfy TPk, then there are:
states {qji | i, j ∈ {0, . . . , k}} with q

j
0 initial and qjk co-accessible for all j,

words u1, . . . , uk, v1, . . . , vk such that there are k+ 1 runs like described in the Figure 2,
such that for all j 6= j′, there are i ∈ {1, . . . , k} satisfying:

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) 6= d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

We construct by induction (in decreasing order) a sequence of positive integers tk, . . . , t1. Let
us give the construction of ti. Let L be the length of the word ui+1v

ti+1
i+1 · · ·ukv

tk
k . Consider

all the pairs (j, j′) such that:

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) 6= d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

Thanks to Lemma 26, we can choose an integer n (the same for all such pairs (j, j′)) such
that d(αj1α

j
2 · · ·α

j
i (β

j
i )n, α

j′

1 α
j′

2 · · ·α
j′

i (βj
′

i )n) /∈ ∆62L+m
W . Let us set ti = n.
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Then, the word w = u1v
t1
1 · · ·uiv

ti
i · · ·ukv

tk
k fulfils the conclusions of the Lemma: Let

j 6= j′, and i the minimal index such that

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) 6= d(αj1α
j
2 · · ·α

j
iβ
j
i , α

j′

1 α
j′

2 · · ·α
j′

i β
j′

i )

By using the second item of Lemma 2 at each steps before index i, one gets:

d(αj1(βj1)t1αj2 · · ·α
j
k(βjk)tk , αj

′

1 (βj
′

1 )t1αj
′

2 · · ·α
j′

k (βj
′

k )tk )

= d(αj1α
j
2 · · ·α

j
i−1α

j
i (β

j
i )
ti · · ·αjk(βjk)tk , αj

′

1 α
j′

2 · · ·α
j′

i−1α
j′

i (βj
′

i )ti · · ·αj
′

k (βj
′

k )tk )

= (αji+1(βji+1)ti+1 · · ·αjk(βjk)tk )−1

d(αj1α
j
2 · · ·α

j
i−1α

j
i (β

j
i )
ti , αj

′

1 α
j′

2 · · ·α
j′

i−1α
j′

i (βj
′

i )ti)

(αj
′

i+1(βj
′

i+1)ti+1 · · ·αj
′

k (βj
′

k )tk )

/∈ ∆6m
W

J

I Lemma 28. If W satisfies TPk then for all words w, for all runs ρ1, . . . , ρk+1 from an
initial state to a co-accessible state, labelled by w, there are j 6= j′ such that ρj , ρj′ are
Γ-close.

Proof. The ideas are similar to the one given in Lemma 10. Consider k+1 runs ρ1, . . . , ρk+1

labelled by w from an initial state to a co-accessible state and suppose that for all j 6= j′,
ρj , ρj

′ are not Γ-close.
Then we can construct k + 1 runs ρj1ρ

j
1ρ
j
2ρ
j
2 · · · ρjnρjnρ

j
n+1 where n = k(k − 1) such that:

for all i, j, ρji is a loop (start and end in the same state),
for all j, ρj = ρj1ρ

j
2 · · · ρjnρ

j
n+1,

for all j 6= j′, there is i such that

d(αj1α
j
2 · · ·α

j
i , α

j′

1 α
j′

2 · · ·α
j′

i ) 6= d(αj1α
j
2 · · ·α

j
iα

j
i , α

j′

1 α
j′

2 · · ·α
j′

i )

where αij (resp. αij) is the weight of the run ρij (resp. ρij).
These k + 1 runs give a counter example of TPk. J

I Lemma 13. If W satisfies TPk then for all n, for all words w, for all runs ρ1, . . . , ρn

from an initial state to a co-accessible state, labelled by w, there is a subset P ⊆ {1, . . . , n}
containing k elements such that for all j′ ∈ {1, . . . , n}, there is j ∈ P such that ρj , ρj′ are
Γ-close.

Proof. It is a direct application of Lemma 28. J

E Relating TPk and finite-valued weighted automata

I Proposition 29. A `-valued weighted automaton with n states satisfies TPn`.

Proof. Suppose that a weighted automaton W does not satisfy TPn`, then from Lemma 11,
for m = n + 1, there is a word w, initial states q0, . . . , qn`, co-accessible states p0, . . . , pn`

and n`+ 1 runs:
qj

w|αj

−−−→ pj for all j ∈ {0, . . . , n`}

such that for all j 6= j′, d(αj , αj′) /∈ ∆m
W . Among the states p0, . . . , pn`, at least ` + 1 are

the same one. Thus, the corresponding runs can be completed in accepting runs using the
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same word (of length less than n). The delay between the values of two such runs (labelled
by the same word) is necessarily different from 1: for all j 6= j′, d(αj , αj′) /∈ ∆n+1

W so by
completing with a word of length less than n, the delay necessarily does not belong to ∆W

(either 1 ∈ ∆W , either 1 does not belong to any ∆m
W for all m) and so is different from 1.

Finally, there are `+ 1 different values for the same word, that contradicts the fact that W
is `-valued. J

I Proposition 30. A weighted automaton satisfying TPk for some natural k is finitely
valued.

Proof. Consider the accepting runs labelled by a given word w and their values α0, . . . , αm.
By Lemma 13, there is a subset P ⊆ {0, . . . ,m} with k elements such that for all j′ ∈
{0, . . . ,m}, there is j ∈ P such that d(αj , αj′) ∈ Γ. Since αj′ = αjd(αj , αj′) then a value of
an accepting run labelled by w is of the form αβ where α can take k values and β belongs
to Γ. So the automaton is k|Γ|-valued. J

F Proof of Section 4.1

I Theorem 31. If S is an infinitary group, the two following assertions are equivalent:
The automaton W does not satisfy TPk.
There is an integer N > 0 and a subset E of S satisfying (Cf ) such that for all positive
integers n, there are w0, . . . , wk ∈ A∗, α0, . . . , αk ∈ S such that:

for all 0 6 i, j 6 k, dist(wi, wj) 6 N ,
for all 0 6 i 6 k, αi ∈ f(wi),
and for all i 6= j, d(αi, αj) /∈ E6n.

Proof. First, suppose that W does not satisfy TPk. Then, by applying Lemma 11, for all
positive integers r, there is a word w, initial states q0, . . . , qk, co-accessible states p0, . . . , pk

and k + 1 runs:
qj

w|βj

−−−→ pj for all j ∈ {0, . . . , k},
such that for all j 6= j′, d(βj , βj′) /∈ ∆6r

W . We can complete these k + 1 runs into accepting
runs with words u0, . . . , uk such that for all i, |ui| 6 |Q|. Let us write wi = wui and denote
by α0, . . . , αk the weights of these runs. Since for all j 6= j′, d(βj , βj′) /∈ ∆6r

W and |ui| 6 |Q|,
then d(αj , αj′) /∈ ∆6r−2|Q|

W . Take r > n+ 2|Q| to obtain the expected result with E = ∆W

and N = 2|Q|.
Conversely, suppose that there is an integer N > 0 and a set E satisfying (Cf ) such that

for all positive integers n, there are w0, . . . , wk ∈ A∗, α0, . . . , αk ∈ S such that:
1. for all 0 6 i, j 6 k, dist(wi, wj) 6 N ,
2. for all 0 6 i 6 k, αi ∈ f(wi),
3. and for all i 6= j, d(αi, αj) /∈ E6n.

Since ∆62|Q|k+1+2N
W is finite then there is an integer n such that (∆62|Q|k+1+2N

W ∩⋃
n>0 E

n) ⊆ E6n.
By item 2., there are k+ 1 accepting runs in W labelled respectively by w0, . . . , wk with

values α0, . . . , αk. They induce k+1 runs labelled by w, where w denote the longest common
prefix of the wi, starting in an initial state and ending in a co-accessible state. Let us denote
by β0, . . . βk their values.

By contradiction, suppose now that there is i 6= j such that d(βi, βj) ∈ Γ. Then, by item
1. there is i 6= j such that d(αi, αj) ∈ ∆62|Q|k+1+2N

W . But d(αi, αj) ∈
⋃
m>0 E

m. Thus,
d(αi, αj) ∈ E6n. This is a contradiction with item 3.
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Thus, for all i 6= j, d(βi, βj) /∈ Γ. By Lemma 10, this implies that W does not satisfy
TPk. J

G Proof of Section 4.2

G.1 RA`(k) ⊆ WA`(k)
We suppose that S is an infinitary group. We fix two positive integers k and `. Given
R = (Q, qinit, R, δ, µ) a cost register automaton with k registers and output size `, we
want to construct an equivalent `-valued weighted automaton W = (Q′, Qinit, Qfinal, t, T )
satisfying TPk.

The idea is that the states of W will represent couples of a state and of a register of R.
There will be a run labelled by w in W from an initial state ending in a state (p,X) if there
is a run in R labelled by w ending in p. Moreover, the current value of the run in (p,X)
will be the value stored in the register X after reading w in R.

More formally, we set:
Q′ = (Q×R) ∪ (Q× {1, . . . , `}),
Qinit = {qinit} ×R,
Qfinal = Q× {1, . . . , `},
for all q ∈ Q, we arbitrarily choose an injective function τq : µ(q) → {1, . . . , `} and we
set t(q, τq(Y, β)) = β if it is defined and 1 otherwise,
The set of transitions is defined as the union of two sets T = T1 ∪ T2 where:

T1 = {((p,X), a, α, (q, Y )) | p, q ∈ Q, X, Y ∈ R, δ(p, a) = (q, g) with g(Y ) = (X,α)}

and

T2 = {((p,X), a, α, (q, fq(Y, β))) | δ(p, a) = (q, g), g(Y ) = (X,α), (Y, β) ∈ µ(q)}

The automata R and W compute the same function: Let w be a word. Let α ∈ S an
output associated to w by R. Let (qinit, νinit), . . . , (q, ν) the accepting run in R on w. Then,
there is Y ∈ R such that α = ν(Y )β where (Y, β) ∈ µ(q). By definition, there is a register
X such that the value of Y in q depends on the value of X in qinit. By construction, there
is a run in W from (qinit, X) to (q, νq(Y, β)) labelled by w. This run is accepting and with
output ν(Y )β = α.

Conversely, let α ∈ S an output associated to w by W . Then there is an accepting run
from (qinit, X) to (q, i) labelled by w with output α. By construction, there is an accepting
run going from (qinit, νinit) to (q, ν) in R labelled by w, for some ν, and a register Y , such
that α = ν(Y )β where (Y, β) ∈ µ(q) and τq(Y, β) = i. Thus, one of the output (the one
associated to (Y, β)) is α.

The automaton W is `-valued: It is a direct consequence of the fact that R and W

compute the same function: R is of output size `, thus every word has at most ` values and
so W is `-valued.

The automaton W satisfies TPk: By contradiction, if the automaton does not satisfy
TPk, then by using Lemma 11, for all positive integers m, there is a word w, initial states
q0, . . . , qk and co-accessible states p0, . . . , pk and k + 1 runs:

qj
w|αj

−−−→ pj for all j ∈ {0, . . . , k}

such that for all j 6= j′, d(αj , αj′) /∈ ∆6m
W .
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By construction, there is p ∈ Q, such that for all j, there is Xj ∈ R or ij ∈ {1, . . . , `}
such that pj = (p,Xj) or pj = (p, ij). Since we are considering k + 1 runs, there are two
different runs such that the last transitions come from the same state (q, Y ). Thus, there
are j 6= j′ such that we are in one the two following cases:

pj = (p,Xj), pj
′ = (p, ij′) and there is α ∈ S such that τp(Xj , α) = ij′ .

pj = (p, ij), pj
′ = (p, ij′) and there are X ∈ R and α, β ∈ S such that τp(X,α) = ij and

τp(X,β) = ij′ .
Let n be an integer such that for all q ∈ Q, X ∈ R, α ∈ S such that (X,α) ∈ µ(q), α ∈ ∆6n

W .
By construction, the delay between αj and αj′ belongs to ∆2n

W . Thus by considering an m
greater than 2n, we have a contradiction.

G.2 WA`-amb(k) ⊆ RA`(k)

Consider a `-ambiguous weighted automaton W = (Q,Qinit, Qfinal, t, T ) satisfying TPk.
We will construct a cost register automaton R = (Q′, qinit, R, δ, µ) with k registers and
output size ` computing the same function.

Recall that Θ denote the set of elements of S occurring on the transitions of W , ∆W =
Θ ∪Θ−1 and Γ = ∆2|Q|k+1

W .
The idea behind the construction is to store in the states of R the delays between the

values computed in the states of W reached by runs labelled by a given word. We will
use the fact that there are at most k diverging behaviours (thanks to TPk) to prove that
we can store the delays up to a bound and use only k registers to capture the k diverging
behaviours.

Construction of the set of states Q′.

Let Ω denote the set of functions from (Q × {1, . . . , `})2 to Γ ∪ {∞,⊥} such that for all
x, y ∈ Q× {1, . . . , `}:

f(x, y) = f(y, x)−1 (with the convention ∞−1 =∞ and ⊥−1 = ⊥),
f(x, x) ∈ {1,⊥},
if f(x, x) = ⊥, then f(x, y) = f(y, x) = ⊥,
if f(x, x) = f(y, y) = 1 then f(x, y) 6= ⊥.

Given f and g in Ω, we say that f is equivalent to g (denoted by f ≡ g) if for all q ∈ Q,
there is a permutation σq of {1, . . . , `} such that for all p, q ∈ Q, 1 6 i, j 6 `,

g((q, i), (p, j)) = f((q, σq(i)), (p, σp(j)))

We denote by σ(f,g)
q this permutation if it exists. Remark that ≡ is an equivalence relation.

Let f denote the equivalence class of f .
The set of states Q′ is defined as the set of the equivalence classes of ≡.

Initial state and registers.

Let finit be the function in Ω defined by f(x, y) = 1 if x, y ∈ Qinit × {1} and f(x, y) = ⊥
otherwise. The initial state qinit is finit. The set of registers is R = {X1, . . . , Xk}.
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Transition function.

Let a be a letter. We will define the transitions labelled by a.
For all p ∈ Q, f ∈ Ω, set:

E(f,a)
p = {(q, i) | there exist (q, a, α, p) ∈ T and f((q, i), (q, i)) = 1}

Remark that |E(f,a)
p | = |E(g,a)

p | if f ≡ g. If |E(f,a)
p | > ` then the transition from f

labelled by a is undefined.
Otherwise, suppose that |E(f,a)

p | 6 `, and consider a one-to-one function τ (f,a)
p : E(f,a)

p →
{1, . . . , `}. If g ≡ f , then we can choose τ (g,a)

p and τ (f,a)
p such that τ (g,a)

p (q, i) = τ
(f,a)
p (q, σ(f,g)

q (i)).
Fix now such functions τ (f,a)

p compatible over the equivalence classes (when there are
defined).

Let fa be the function defined by:

fa((p′, i′), (q′, j′)) =



α−1f((p, i), (q, j))β if τ (f,a)
p′ (p, i) = i′, τ (f,a)

q′ (q, j) = j′,

(p, a, α, p′) ∈ T , (q, a, β, q′) ∈ T
and α−1f((p, i), (q, j))β ∈ Γ

∞ if τ (f,a)
p′ (p, i) = i′, τ (f,a)

q′ (q, j) = j′,

(p, a, α, p′) ∈ T , (q, a, β, q′) ∈ T
and α−1f((p, i), (q, j))β /∈ Γ ∪ {⊥}

⊥ otherwise

with the convention that for all x ∈ S ∪ {∞}, x∞ = ∞x = ∞, and for all x ∈ S ∪ {∞,⊥},
x⊥ = ⊥x = ⊥.

Since f ∈ Ω, fa also belongs to Ω. Moreover, if g ≡ f then ga ≡ fa and more precisely,
ga((p, i), (q, j)) = fa((p, σ(fa,ga)

p (i), (q, σ(fa,ga)
q (j)).

Given f ∈ Ω, we define Zf the set of functions:

rf : {1, . . . , k} → Q× {1, . . . , `}

such that:
for all κ ∈ {1, . . . , k}, f(rf (κ), rf (κ)) 6= ⊥,
and for all x ∈ Q × {1, . . . , `} satisfying f(x, x) 6= ⊥, there is κ ∈ {1, . . . , k} such that
f(rf (κ), x) /∈ {∞,⊥}.

If f ≡ g then Zf 6= ∅ if and only if Zg 6= ∅. Moreover, if rf ∈ Zf then the function
rg defined by rg(κ) = (p, σf,gp (i)) if rf (κ) = (p, i) belongs to Zg. For all f ∈ Ω such that
Zf 6= ∅, we fix now a function rf ∈ Zf such that the choices are compatible over the
equivalence classes.

If Zf or Zfa are empty then we define (it will never be the case for accessible f): δ(f, a) =
(fa, h) for an arbitrary chosen function h.

Suppose now that Zf and Zfa
are not empty. Given κ′ ∈ {1, . . . , k}, let (q′, i′) = rfa

(κ′)
and q, i, α such that τ (f,a)

q′ (q, i) = i′ and (q, a, α, q′) ∈ T . By property of rf , there is
κ ∈ {1, . . . , k} such that f(rf (κ), (q, i)) /∈ {∞,⊥}. We set β(f,a)

κ′ = f(rf (κ), (q, i))α. If g ≡ f
then β(g,a)

κ = β
(f,a)
κ .

In this case, the transition is defined by:

δ(f, a) = (fa, h) with for all κ′ ∈ {1, . . . , k}, h(Xκ′) = (Xκ, β
(f,a)
κ′ )
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Output function.

For x ∈ Qfinal×{1, . . . , `} such that f(x, x) = 1, let κ(f)
x ∈ {1, . . . , k} such that f(rf (κ(f)

x ), x) =
αx /∈ {∞,⊥}. Set also βx = t(q) where x = (q, i). If g ≡ f then we can make the choices
before such that κ(g)

(q,i) = κ
(f)
(q,σ(f,g)

q (i)
.

Let Ef be a maximal set of elements x ∈ Qfinal × {1, . . . , `} such that f(x, x) = 1 and
for all x, y ∈ Ef , f(x, y) 6= 1. The output function is defined by:

µ(f) = {(Xκx , αxβx) | x ∈ Ef}

By construction, the automaton R uses k registers.
Automata W and R compute the same function. Let us note Q = {q1, . . . , q|Q|}. We

suppose that all states are co-accessible.
Given a word w, denote by ρ1

i , . . . , ρ
`i
i the runs labelled by w from an initial state to qi.

Remark that `i 6 ` sinceW is `-ambiguous. Let us note α1
i , . . . , α

`i
i their respective weights.

I Lemma 32. If there is i such that `i 6= 0 then there is an accepting run in R labelled by
w. Moreover, there is f such that this run ends in f such that:

f((qi, κ), (qi′ , κ′)) =


d(ακi , ακ

′

i′ ) if κ 6 `i, κ
′ 6 `i′ , ρ

κ
i , ρ

κ′

i′ Γ− close
∞ if κ 6 `i, κ

′ 6 `i′ , ρ
κ
i , ρ

κ′

i′ not Γ− close
⊥ otherwise

Proof. Suppose that there is `i 6= 0. The proof is made by induction on the length of the
word w. If w = ε then there is an accepting run in R on w ending in finit and finit satisfies
the condition.

Suppose now that w = w′a for some letter a. If there is a run from an initial state labelled
by w, there is also a run from an initial state labelled by w′. Let us denote by τ1

i , . . . , τ
`′

i
i the

runs on w′ ending in qi and by β1
i , . . . , β

`′
i
i their respective weights. By induction hypothesis,

there is an accepting run in R labelled by w′ ending in f such that:

f((qi, κ), (qi′ , κ′)) =


d(βκi , βκ

′

i′ ) if κ 6 `′i, κ
′ 6 `′i′ , τ

κ
i , τ

κ′

i′ Γ− close
∞ if κ 6 `′i, κ

′ 6 `′i′ , τ
κ
i , τ

κ′

i′ not Γ− close
⊥ otherwise

By `-ambiguity, for all p, |E(g,a)
p | 6 `. Thus, by construction, there is an accepting run

labelled by w in R ending in fa. Moreover,

fa((qj ,m), (qj′ ,m′)) =



α−1f((qi, κ), (qi′ , κ′))β if τ (f,a)
qj (qi, κ) = m, τ (f,a)

qj′ (qi′ , κ′) = m′,

(qi, a, α, qj) ∈ T , (qi′ , a, β, qj′) ∈ T
and α−1f((qi, κ), (qi′ , κ′))β ∈ Γ

∞ if τ (f,a)
qj (qi, κ) = m, τ (f,a)

qj′ (qi′ , κ′) = m′,

(qi, a, α, qj) ∈ T , (qi′ , a, β, qj′) ∈ T
and α−1f((qi, κ), (qi′ , κ′))β /∈ Γ ∪ {⊥}

⊥ otherwise

If κ 6 `i, κ′ 6 `i′ , ρκi , ρκ
′

i′ Γ-close, then we are in the first case and fa((qj ,m), (qj′ ,m′)) =
α−1f((qi, κ), (qi′ , κ′))β = α−1d(βκi , βκ

′

i′ )β = d(αmj , αm
′

j′ ). If κ 6 `i, κ′ 6 `i′ , ρκi , ρκ
′

i′ not
Γ-close then we are in the second case and fa((qj ,m), (qj′ ,m′)) =∞. Otherwise, we are in
the third case and fa((qj ,m), (qj′ ,m′)) = ⊥. J
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I Lemma 33. If for all i, `i = 0 then either there is no accepting run on w in R, or the
unique accepting run ends in f where f maps all the pairs to ⊥.

Proof. The proof is made by induction. If w = ε, it means that there is no initial state in
W , and thus the property is satisfied since finit maps all the pairs to ⊥. Suppose now that
w = w′a for some letter a.

The first possibility is that there is no run in W on w′. Thus by induction hypothesis,
either there is no accepting run on w′ in R, and then there is no accepting run on w in R,
or the unique accepting run ends in f where f maps all the pairs to ⊥, and thus if there is
an accepting run in R on w, it also ends in f (since fa = f in this case).

The second possibility is that there are runs in W on w′ ending in a set of states F , but
no transition labelled by a starting in F . By using Lemma 32, there is a run on w′ ending
in g with g satisfying the conditions of Lemma 32. By construction of ga, since there is no
transition from F labelled by a, then ga is the function that maps all the pairs to ⊥. J

I Lemma 34. If f is an accessible state in R then rf is well-defined.

Proof. It is a direct consequence of Lemma 32 and Lemma 13. J

I Lemma 35. Suppose that there is an accepting run on w in R to (f, ν), then for all
1 6 κ 6 k, ν(Xκ) = αji such that rf (κ) = (qi, j).

Proof. The proof is made by induction on the length of w. If w = ε then for all 1 6 κ 6 k,
ν(Xκ) = 1 and the property is satisfied. Otherwise, suppose that w = w′a for some letter
a. Then there is an accepting run on w′ in R to some (g, ν) such that ga = f and ν(Xκ′) =
ν′(Xκ)β(g,a)

κ′ = αji by induction hypothesis, the construction of the transitions and Lemma
32. J

Let us finally prove that W and R compute the same function. Consider an accepting
run on w in W of weight α ending in some final state q. Then by Lemma 32, there is an
accepting run in R to some (f, ν) such that there is x = (q, i) for some i corresponding to
this run. By definition of rf , there is κ such that f(rf (κ), (q, i)) ∈ Γ. Moreover, by Lemma
35, αt(q) = ν(Xκ)f(rf (κ), (q, i))t(q). Finally, by the construction of the output function,
(Xκ, f(rf (κ), (q, i))t(q)) belongs to µ(f) and thus αt(q) is associated with w by R. The
converse is similar, if R associates some value α with w, then W also associates α with w.

R is of output size `. Consider an accessible state f of R. Pairs (q, i) such that
f((q, i), (q, i)) = 1 corresponds to runs starting in an initial state and ending in q labelled
by a same word. Moreover, thanks to Lemma 32, if f((q, i), (q′, i′)) 6= 1, then the two cor-
responding runs must be different. By `-ambiguity of W , there is at most ` accepting runs
labelled by a given word. Thus, |Ef | 6 ` and R is of output size `.

H Hierarchy

I Theorem 36. For all positive integers `, k,
WA` = RA`
WA(k) = RA(k)

Proof. First item:
WA` ⊆ RA`: Consider a `-valued weighted automaton with n states. By Proposition 29,
the function computed belongs to WA`(n`), that is equal to RA`(n`) by Theorem 16.
Thus, WA` ⊆ ∪n∈N−{0}RA`(n`) ⊆ RA`.
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RA` ⊆ WA`: Consider a function in RA`. It is computed by a register automaton of
output size `, with k registers for some k, thus belongs to RA`(k). Finally, it belongs to
WA`(k) by Theorem 16 and thus to WA`.

Second item:
RA(k) ⊆ WA(k): Consider a function computed by a register automaton with k re-
gisters. Let ` denote its output size. Then the function belongs to RA`(k) = WA`(k)
by Theorem 16 and finally to WA(k).
WABk ⊆ RA(k): Consider a weighted automaton satisfying TPk, then by Proposition 30,
it is finitely valued, and the function it computes belongs toWA`(k) for some `. Finally,
WA`(k) = RA`(k) ⊆ RA(k) by Theorem 16.

J

I Proofs of Section 5

I Proposition 18.
RA`(k) ∩ F ⊆ RAB` (k)

Proof. Let (Q, qinit, R, δ, µ) denote a register automaton over S = (B ∪B−1)∗ computing a
function f ∈ F .

Set E the minimal subset of Q×R such that:
(q,X) ∈ E if there is α ∈ S such that (X,α) ∈ µ(q),
(q,X) ∈ E if there is (p, Y ) ∈ E, a ∈ A such that δ(q, a) = (p, h) for some h such that
h(Y ) = (X,α) for some α ∈ S.

We say that a register X is alive in q if (q,X) ∈ E.

I Lemma 37. There is a non negative integer N such that for all configurations (q, ν), for
all runs from (qinit, νinit) to (q, ν), for all alive registers X in q, ν(X) belongs to B∗(B ∪
B−1)6N .

Proof. Consider the set of outputs occurring on the updates of the registers:

{α ∈ S | δ(q, a) = (p, h), h(Y ) = (X,α), q, p ∈ Q, a ∈ A,X, Y ∈ R}

This set is finite, thus there is an integer m such that it is included in (B ∪B−1)6m.
Consider also the set of outputs occurring in the output function:

{α ∈ S | (X,α) ∈ µ(q), X ∈ R, q ∈ Q}

This set is finite, thus there is an integer s such that it is included in (B ∪B−1)6s.
Set N = |Q|m+ s. Consider a run from (qinit, νinit) to (q, ν) and an alive register X in

q such that ν(X) = c ∈ S. The run can be completed in a run that ends in some (q′, ν′)
such that there are a register Y , α ∈ (B ∪ B−1)6|Q|m, β ∈ (B ∪ B−1)6s with ν′(Y ) = cα,
(Y, β) ∈ µ(q′) and thus cαβ ∈ B∗. Finally, c ∈ B∗(B ∪B−1)6N . J

We construct now an equivalent register automaton R′ over B∗. Set G the set of functions
R→ (B ∪B−1)6N where N is the integer given in Lemma 37.

The set of states of R′ is Q′ = Q× G. The initial state is (qinit, rinit) where rinit is the
function that associates each register to 1 and the set of registers is R.

For α ∈ B∗(B∪B−1)6N , let us denote by α1 and α2 the two elements such that α = α1α2
and α1 is the shortest element of B∗ such that α2 ∈ (B ∪B−1)6N . Remark that α1 and α2
always exist in this case.
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The transition function δ′ is defined in the following way: given q ∈ Q, a ∈ A, let (p, g) =
δ(q, a). We set: δ′((q, r), a) = ((p, t), h) where h(Y ) = (X, (r(X)α)1), t(Y ) = (r(X)α)2 for
X,Y ∈ R such that g(Y ) = (X,α).

The output function µ′ associates a state (q, r) to the set {(X, r(X)α) | (X,α) ∈ µ(q)}.
The cost register automaton R′ has, by construction, the same number of registers and

the same output size as R. Let us prove now that they compute the same function.

I Lemma 38. For all words w, there is a run in R on w from (qinit, νinit) to some (q, ν) if
and only if there is a run in R′ on w from ((qinit, rinit), νinit) to ((q, r), σ) such that for all
registers X, ν(X) = σ(X)r(X).

Proof. The proof is made by induction on the length of w. By construction the property
holds for w = ε. Suppose now that w = w′a for some a ∈ A.

Suppose that there is a run in R on w from (qinit, νinit) to (q, ν). Set (q′, ν′) the con-
figuration such that there is a run in R on w′ from (qinit, νinit) to (q′, ν′) and δ(q′, a) =
(q, g). By induction hypothesis, there is a run in R′ on w′ from ((qinit, rinit), νinit) to
((q′, r′), σ′) such that for all registers X, ν′(X) = σ′(X)r′(X). Moreover, by construction,
δ′((q′, r′), a) = ((q, r), h) where h(Y ) = (X, (r′(X)α)1), r(Y ) = (r′(X)α)2 for X,Y ∈ R

such that g(Y ) = (X,α). The values (r′(X)α)1 and (r′(X)α)2 are well-defined thanks
to Lemma 37. Thus there is a run in R on w from ((qinit, rinit), νinit) to ((q, r), σ) with
σ(Y )r(Y ) = σ′(X)(r′(X)α)1(r′(X)α)2 for X,Y ∈ R such that g(Y ) = (X,α). Thus,
σ(Y )r(Y ) = ν′(X)α = ν(Y ).

Conversely, suppose that there is a run in R′ on w from ((qinit, rinit), νinit) to ((q, r), σ).
Set ((q′, r′), σ′) the configuration such that there is a run in R′ on w′ from ((qinit, rinit), νinit)
to ((q′, r′), σ′) and δ′((q′, r′), a) = ((q, r), h). Then by induction hypothesis, there is a run
in R on w′ from (qinit, νinit) to (q′, ν′) such that for all registers X, ν′(X) = σ′(X)r′(X).
Moreover, by construction, δ(q, a) = (q, g) and if g(Y ) = (X,α) then h(Y ) = (X, (r′(X)α)1),
r(Y ) = (r′(X)α)2 for X,Y ∈ R. The values (r′(X)α)1 and (r′(X)α)2 are well-defined
thanks to Lemma 37. Thus, there is a run in R on w from (qinit, νinit) to (q, ν) with
ν(Y ) = ν′(X)α = σ′(X)r′(X)α = σ′(X)(r′(X)α)1(r′(X)α)2 = σ(Y )r(Y ). J

Finally, let us prove that [[R]](w) = [[R′]](w). Consider a run in R on w from (qinit, νinit) to
(q, ν) and (Y, α) ∈ µ(q). Then, by Lemma 38, there is a run inR′ on w from ((qinit, rinit), νinit)
to ((q, r), σ) for some σ such that ν(Y ) = σ(Y )r(Y ). Thus, ν(Y )α = σ(Y )r(Y )α and by
construction, (Y, r(Y )α) ∈ µ′(q, r).

Conversely, suppose that there is a run in R′ on w from ((qinit, rinit), νinit) to ((q, r), σ)
and a register Y such that (Y, r(Y )α) ∈ µ′(q, r). Then by Lemma 38, there is a run in R on
w from (qinit, νinit) to (q, ν) such that ν(Y ) = σ(Y )r(Y ). Thus, σ(Y )r(Y )α = ν(Y )α and
by construction, (Y, α) ∈ µ(q). J
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