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Abstract 
This papers deals with the Modular Multilevel Converter (MMC). This structure is a real breakthrough 
which allows transmitting huge amount of power in DC link. In the last ten years, lots of papers have 
been written but most of them study some intuitive control algorithms. This paper proposes a formal 
analysis of MMC model which leads to the design of a control algorithm thanks to the inversion of the 
model. The Energetic Macroscopic Representation is used for achieving this goal. All the states 
variables are controlled to manage the energy of the system, avoid some instable operational points 
and determine clearly all the dynamics of the different loops of the system. 

Introduction 
The Modular Multilevel Converter is a power electronics structure which permits to reach high power 
and high voltage applications such as HVDC link or medium-voltage motor drives [1-6]. MMC 
presents lots of advantages: transformer less, modularity, high voltage quality, no high voltage DC 
bus, but also some drawbacks: difficulty to model [7] and to control due principally to high number of 
components [8].  
The fig. 1 gives the structure of the converter. The three arms of this three-phased converter are 
composed of elementary modules. Each module is a simple switching cell. Depending on the state of 
the cell, the voltage of the capacitor is introduced or not in series with the main electrical circuit. 
Doing so, the voltage between the ‘+’ pole (or ‘-‘ pole) and a phase (1,2,3) may be modulated with a 
quasi sinusoidal shape. The discretization of the sinus is depending on the number of modules which 
can reach, for high power applications, several hundreds. 
There exist many control structures for the MMC in the literature. Some of them are very simple but 
leads to non-sinusoidal output voltages and high voltage ripples on capacitor voltages [9] due to an 
important second harmonic component in arm currents. To improve voltage quality and reduce 
capacitor voltage ripples one can uses the CCSC (Circulating Current Suppression Controller) [10] or 
the control structures established in [9] or in [11]. These controls leads to satisfying characteristics in 
normal operation but it is difficult to predict the behavior in particular operating conditions such as 
unbalanced AC voltages. For example, Hagiwara and Akagi have been proved in [12] that the control 
presented in [11] can be unstable in certain conditions of operation and certain value of the controller 
parameters. This is the same problem as in the well known case of a buck converter with an L-C input 
filter and with constant output power [13]. 
Some of the controls presented in the literature have in common to be introducing by a heuristic way. 
One consequence is that these different controls have not the same number of controllers. But, to have 
a fully control of the energy stored in the system, the number of controllers must be equal to the 
number of independent state variables of the system. If not, some state variables may be out of control, 
can take unacceptable values and lead to unstable modes in particular operating conditions. 
Other controls are inversion based controls which have been developed by a global inversion of the 
model and a feed-forward action to correct the error of the model. In this case, the global control can 



ensure an efficient behavior of the entire system, but without taking into account energetic properties 
or behavior of each device [14], that can lead to common misconception [15]. Moreover these type of 
control structure leads to an important computation time. 
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Fig.1: Circuit configuration of the MMC 

 
To solve this problem the paper proposes to represent and control the MMC by the use of the 
Energetic Macroscopic Representation (EMR) [16]. EMR is a graphical description exclusively based 
on physical causality (i.e. integral causality), it highlights energy properties of the power components 
such as energy storage, energy conversion and energy distribution. Moreover, an inversion-based 
control can be systematically deduced, step-by-step, by inverting each element of the EMR [17]. Then, 
the control structure is not obtained “heuristically” but results from inversion rules application. The 
obtained control structure is composed of cascaded loops which ensure a physical and efficient energy 
management of each device. This inversion based control leads to have as many controllers as state 
variables in the system which thus increases the robustness of the system [18]. All the state variables 
are under control, which ensures all the dynamic of the system to be clearly defined in respect with a 
appropriate behavior of this type of system. 

Modeling of the MMC 
The study of MMC can be simplified by decoupling the problem of capacitor voltage balancing inside 
each arm and the problem of global control (currents and output power control). This decoupling has 
been first proposed in [9] and is now currently used. If the balancing is well done (uc1=uc2=…=ucn) 
each arm is equivalent to a capacitor of C/N capacitance with a voltage uctot=uc1+uc2+…+ucN and an 
ideal dc/dc converter controlled by its duty cycle as show in Fig. 2. So v=m.uctot and ic=m.i with 
m=n/N where n corresponds to the number of active cells. Moreover, if N is great, m can be 
assimilated to the value α of the duty cycle so v=α.uctot and ic=α.i. The voltage balancing system can 
be done by using the cells with most charged capacitors when arm current is negative (to decrease 
voltage capacitor of the active cells) and using the cells with lower charged capacitors when arm 
current is positive (to increase voltage capacitor of the active cells). In this paper, we consider that the 
balancing system works properly and we focus the study on the global control of the structure.  
Each arm of the MMC structure (Fig. 1) is aggregated in the proposed equivalent structure (Fig. 3). 
Using the Kirchhoff laws leads to 11 independent differential equations. The system is then 
characterized by 11 independent state variables: the six voltages across the 6 equivalent capacitors and 



5 currents (for example three arm currents and two phase currents, the other currents are linear 
dependant of the 5 chosen currents). 

 

 
Fig.2: Equivalent arm circuit configuration 
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Fig.3: Equivalent circuit configuration of the MMC 

 
To reduce the ripple voltage across the equivalent capacitors, arm currents should be composed of a 
continuous component (equal to 1/3 of the DC current in the DC voltage source) and a sinusoidal 
component (equal to ½ of the corresponding phase current). It is by the control that these objectives 
will be achieved. In this purpose, the modeling is oriented by performing the now classic following 
change of variables: 
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The system then can be split in two sub-systems as shown, for one leg, in Fig. 4 and then equations 
can be deduced: 
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For each of the three phase     
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The 3 equations (2) are not independent because iv1+iv2+iv3=0. The application of Park transformation gives the 
following relationships (4) which replace the equations (2): 
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and for each of the six equivalent converters and capacitors  
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We can count 11 independent differential equations: 6 for the six voltages across the 6 equivalent 
capacitors (6), 3 for the 3 differential currents (3) and 2 for line currents in dq frame (4) 
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Fig.4: Arm decomposition 

 
The 11 state variables are: the 5 current variables (idiff1, idiff2, idiff3, ivd and ivq) + the 6 voltage variables 
(ucl1, ucl2, ucl3, ucu1, ucu2, ucu3) 
The control aims to have three phase balanced sinusoidal currents iv1, iv2, iv3 (so constant ivd an ivq 
currents) to obtain a given value of active and reactive power at the AC side. A constraint for the 
control is to have, in steady state, continuous differential currents idiff1, idiff2 et idiff3 and constant 
equivalent capacitor voltage (ucl1, ucl2, ucl3, ucu1, ucu2, ucu3), in average value. 

EMR of the MMC 
Each equation is translated into EMR elements (see appendix for the summary table of EMR 
elements) and their inputs and outputs are defined according to the causality principle (i.e. integral 
causality). Moreover, connection between elements has to respect the interaction principle. The global 
EMR is depicted in the upper part (green or orange symbols) of Fig. 5. For the sake of clarity, all 
quantities are expressed in terms of vectors. The numbers in purple remind, in the EMR, the 
dimensions of the vectors. The numbers in parenthesis remind the corresponding equations. 
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Fig.5: EMR and Inversion Based Control of the MMC 

 
One can see that there are 11 accumulation elements (6 for the six equivalent capacitors, 2 for the two 
equivalent line inductances, 3 for the 3 equivalent arm inductances) which leads to 11 state variables 
of the system. 
 

Inversion Based Control of MMC 
To develop the control algorithm, the inversion-based control rules of the EMR are used [17]. The 
control scheme is deduced from a step-by-step inversion of the model. First of all, the tuning paths 
have to be defined. These causal paths link the tuning inputs to the variables to be controlled. The 
tuning paths are represented on Fig. 5 by the big blue arrows. 
To obtain the control structure all the elements along the tuning path are inverted. The inversion is 
direct when the elements contain no time dependent relationship (conversion elements or coupling 
elements). When elements contain integral relationships (accumulation elements), it cannot be 
possible to invert directly them to avoid derivative relationships. Their inversions are thus indirectly 
made using a controller and measurements.  
The lower part of Fig. 5 (blue symbols) shows the deduced control structure (blue elements). The dark 
blue element is a strategy element which defines phase current references from P and Q references and 
from measured grid voltages. Note that the control part framed in dark blue is not the simple inversion 
of the corresponding system part (Eq. 5 and 6). Indeed the conservation of instantaneous power 
through the 6 equivalent converters constrains us to control equivalent capacitor voltages only in 
average value. So the inversion of equations (5) and (6) must be based on the conservation of power 
which can be written as follow: 
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Integration, on a grid period T, of equations (7) leads to: 
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where PAC is the active power on AC side. These relations shows that the differential currents 
influence ucu i AND ucl i. So we have, by arm, only one variable (idiff i) to control two voltages (ucu i and 
ucl i). One solution consists to merge the differential current idiff i into a DC component and an AC 
component as illustrated on fig.6 and by relation (9).  

ACidiffDCidiffidiff iii −− +=  (9)
idiff i_DC are supposed constant on a whole grid period T 
idiff i_AC will be three phase sinusoidal components in phase with the ev i voltages 
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Fig.6: Decomposition of the differential current 

 
Equations (8) can then be rewritten as follow: 
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where PACph i is the active power of the phase i. We can see that, by arm, idiff-DC will control the 
capacitor voltage sum ucu+ucl while idiff-AC will control the capacitor voltage difference ucl-ucu: 
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Because the equivalent capacitor voltages uculi will be constant in steady state, controlling stored 
energy (Wcli, Wcui) or controlling equivalent capacitor voltages is almost the same. Then the figure 7 
gives the inversion of equation (11) which corresponds to the dark blue framed part of fig.3. On this 
figure, Pref is the reference for AC side active power used in place of PAC measurement. 

ev

idiff-DC

P_ref

E

X

2ˆ/ ve

idiff-AC
6

3

3 3

3

33

2*Uc-ref

ucul

ucu+ucl

ucu-ucl

0

idiff-ref iul-ref

iv

 
Fig.7: Inversion Based Control of equivalent converters and capacitors 

 
It can be seen than the control structure (the bottom part of fig.3) contain 11 controllers (the same 
number than the independent state variables). So it is possible to tune the controllers (PI controllers are 
chosen for this work) to have a stable behavior whatever the operating point. 

Simulation results 
This control strategy has been implemented in Matlab-Simulink® software. The simulation results are 
given for a 1000MVA MMC converter. The chosen MMC components and the controllers’ time 
constant are presented in table. 1.  
 

L 60 mH  C/N 25 µF 
R 60 mΩ  E 640 kV 
L’ 50 mH  ω 314 rad.s-1 

R’ 50 mΩ  Vr 192 kV 
Tiv 10ms  Tucu+ucl 50ms 
Tidiff 20ms  Tucu-ucl 100ms 

Table.1: Parameters of the studied MMC topology 
 
Tiv is the time constant of the AC current, Tidiff for the differential current, Tucu+ucl for the capacitor 
voltage sum and Tucu-ucl for the capacitor voltage difference. 
Figure 8 shows the active power PDC for the DC side, PAC for the AC side and its reference Pref (=0 
until 0.1s, then =1GW until 0.3s, then =-1GW until 0.5s and finally =0). Figure 9 shows the reactive 
power Q and its reference Qref (=0 until 0.2s then =500MVAR until 0.6s and finally =0). 
Figure 10 shows the three phase currents (iv1,iv2,iv3) which are sinusoidal as expected.  
Figure 11 shows the equivalent capacitor voltages (ucl1, ucu1) in one converter arm. These voltages are 
controlled in average value (here we have chosen uc-ref=E). Figure 12 shows arm currents (iu, il). The iu 
and il currents are composed of a DC component and a sinusoidal component as expected (without 
second harmonics).  
Note that this results can’t be obtain in the same conditions (parameters of the system and dynamics of 
the control) with classical control structure described in the introduction without reducing power 
references to avoid instability or divergence of equivalent voltage capacitors. 
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Fig.8 : Simulation results - active power 
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Fig. 9 : Simulation results - reactive power 
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Fig. 10 : Simulation results – line currents 
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Fig. 11 : Simulation results – upper and lower equivalent capacitor voltages of one arm 
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Fig. 12 : Simulation results – upper and lower arm currents of one arm 



To illustrate the powerful of the proposed control the figure 13 gives the 6 equivalent capacitor 
voltages with different reference values (than E=640kV) imposed at 0.2s: 
 

ucu1-ref=500kV ,  ucu2-ref=600kV ,  ucu3-ref=700kV ,  ucl1-ref=800kV ,  ucl2-ref=900kV ,  ucl3-ref=1000kV 
 

After a short transient, capacitor voltages are controlled in average value to its reference values 
without effects on the arm currents (Fig.14) and on the AC currents (Fig.15). The interest to control 
capacitor voltages at different values will be exploited in future works. 
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Fig. 13: Simulation results – equivalent capacitor voltages 
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Fig. 14: Simulation results – arm currents 
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Fig. 15: Simulation results – line currents 

Conclusion 

The use of Energetic Macroscopic Representation (EMR) permits the modeling of the MMC and 
highlights the important couplings which exist between the different parts of the system.  
The inversion of the model leads to a general architecture of the control which cope with all these 
couplings. The control architecture leads to have as many controllers as state variables in the system 
which thus increases the robustness of the system. All the state variables are under control, which 
ensures all the dynamic of the system.  
With this solution it is possible to control individually each equivalent capacitor voltage without 
influences on line currents and power exchanges between the DC side and the AC side. This 
possibility will be used in the future to optimize the global behavior of the converter in some particular 
cases such as unbalanced grid voltages. 



The general dynamic of this complex system may be correctly defined. This is very important for a 
future massive integration of these kind of converter in an AC system, which is it self a very large and 
complex dynamic system. The knowledge and control of the overall dynamic may also be important 
for the development of future multiterminal DC grids.  
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Synoptic of Energetic Macroscopic Representation (EMR)  Source of energy 

 

Electrical 
converter 

(without energy 
accumulation)  

Element with  
energy 

accumulation 

 Example of coupling device 
(energy distribution) 

 

Control block 
without 

controller 

Control block 
with 

controller 

Inversion of coupling device 
(with distribution input) 

 


