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Convex optimization has become ubiquitous in most quantitative disciplines of science, including variational image processing. Proximal splitting algorithms are becoming popular to solve such structured convex optimization problems. Within this class of algorithms, Douglas-Rachford (DR) and ADMM are designed to minimize the sum of two proper lower semi-continuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of DR (resp. ADMM) when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when both of the two functions (resp. their conjugates) are partly smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that DR/ADMM is locally linearly convergent with a rate in terms of the cosine of the Friedrichs angle between the tangent spaces of the identified manifolds. This is illustrated by several concrete examples and supported by numerical experiments.

Introduction

Problem formulation

In this work, we consider the problem of solving

min x∈R n J(x) + G(x), (1) 
where both J and G are in Γ 0 (R n ), the class of proper, lower semi-continuous (lsc) and convex functions. We assume that ri dom(J) ∩ ri dom(G) = ∅, where ri(C) is the relative interior of the nonempty convex set C, and dom(F ) is the domain of the function F . We also assume that the set of minimizers is nonempty, and that these two functions are simple, meaning that their respective proximity operators, prox γJ and prox γG , γ > 0, are easy to compute, either exactly or to a very good approximation. Problem (1) covers a large number of problems including those appearing in variational image processing (see Section 6).

An efficient and provably convergent algorithm to solve this class of problems is the Douglas-Rachford splitting method [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF], which reads, in its relaxed form,

     v k+1 = prox γG (2x k -z k ), z k+1 = (1 -λ k )z k + λ k z k + v k+1 -x k , x k+1 = prox γJ z k+1 , (2) 
for γ > 0, λ k ∈]0, 2] with k∈N λ k (2 -λ k ) = +∞. The fixed-point operator B DR with respect to z k takes the form

B DR def. = 1 2 (rprox γG • rprox γJ + Id), rprox γJ def. = 2prox γJ -Id, rprox γG def. = 2prox γG -Id.
The proximity operator of a proper lsc convex function is defined, for γ > 0, as prox γJ (z) = argmin x∈R n 1 2

||x -z|| 2 + γJ(x).

Since the set of minimizers of (1) is assumed to be non-empty, so is the Fix(B DR ) since the former is nothing but prox γJ Fix(B DR ) . See [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] for a more detailed account on DR in real Hilbert spaces.

Remark 1 The DR algorithm is not symmetric w.r.t. the order of the functions J and G. Nevertheless, the convergence claims above hold true of course when this order is reversed in [START_REF] Bauschke | The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the friedrichs angle[END_REF]. In turn, all of our statements throughout also extend to this case with minor adaptations. Note also that the standard DR only accounts for the sum of 2 functions. But extension to more than 2 functions is straightforward through a product space trick, see Section 5 for details.

Contributions

Based on the assumption that both J and G are partly smooth relative to smooth manifolds, we show that DR identifies in finite time these manifolds. In plain words, this means that after a finite number of iterations, the iterates (x k , v k ) lie respectively in the partial smoothness manifolds associated to J and G respectively. When these manifolds are affine/linear, we establish local linear convergence of the fixed-point iterates z k of DR. We show that the optimal convergence radius is given in terms of the cosine of the Friedrichs angle between the tangent spaces of the manifolds. We generalize these claims to the minimization of the sum of more than two functions. We finally exemplify our results with several experiments from variational signal and image processing.

It is important to note that our results readily apply to the alternating direction method of multipliers (ADMM), since it is well-known that ADMM is the DR method applied to the Fenchel dual problem of (1). More precisely, we only need to assume that the conjugates J * and G * are partly smooth. Therefore, to avoid unnecessary lengthy repetitions , we only focus in detail on the primal DR splitting method.

Relation to prior work

There are problem instances in the literature where DR was proved to converge locally linearly. For instance, in [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF]Proposition 4], it was assumed that the "internal" function is strongly convex with a Lipschitz continuous gradient. This local linear convergence result was further investigated in [START_REF] Davis | Convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF][START_REF] Giselsson | Metric selection in Douglas-Rachford splitting and ADMM[END_REF] under smoothness and strong convexity assumptions. On the other hand, for the Basis Pursuit (BP) problem, i.e. 1 minimization with an affine constraint, is considered in [START_REF] Demanet | Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit[END_REF] and an eventual local linear convergence is shown in the absence of strong convexity. The author in [START_REF] Boley | Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs[END_REF] analyzes the local convergence behaviour of ADMM for quadratic or linear programs, and shows local linear convergence if the optimal solution is unique and the strict complementarity holds. This turns out to be a special case of our framework. For the case of two subspaces, linear convergence of DR with the optimal rate being the cosine of the Friedrichs angle between the subspaces is proved in [START_REF] Bauschke | The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the friedrichs angle[END_REF]. Our results generalize those of [START_REF] Demanet | Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit[END_REF][START_REF] Boley | Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs[END_REF][START_REF] Bauschke | The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the friedrichs angle[END_REF] to a much larger class of problems. For the non-convex case, [START_REF] Borwein | The Douglas-Rachford algorithm in the absence of convexity[END_REF] considered DR method for a feasibility problem of a sphere intersecting a line or more generally a proper affine subset. Such feasibility problems with an affine subspace and a super-regular set (in the sense of [START_REF] Lewis | Local linear convergence for alternating and averaged nonconvex projections[END_REF]) with strongly regular intersection was considered in [START_REF] Hesse | Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility[END_REF], and was generalized later to two (ε, δ)-regular sets with linearly regular intersection [START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF], see also [START_REF] Phan | Linear convergence of the Douglas-Rachford method for two closed sets[END_REF] for an even more general setting. However, even in the convex case, the rate provided in [START_REF] Phan | Linear convergence of the Douglas-Rachford method for two closed sets[END_REF] is nowhere near the optimal rate given by the Friedrichs angle.

Notations

For a nonempty convex set C ⊂ R n , aff(C) is its affine hull, par(C) is the subspace parallel to it. Denote P C the orthogonal projector onto C and N C its normal cone. For J ∈ Γ 0 (R n ), denote ∂J its subdifferential and prox J its proximity operator. Define the model subspace

T x def. = par ∂J(x) ⊥ .
It is obvious that P Tx ∂J(x) is a singleton, and therefore defined as

e x def. = P Tx ∂J(x) = P aff(∂J(x)) (0). Suppose M ⊂ R n is a C 2 -manifold around x, denote T M (x) the tangent space of M at x ∈ R n .
2 Partly Smooth Functions

Definition and main properties

Partial smoothness of functions was originally defined in [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF], our definition hereafter specializes it to the case of proper lsc convex functions.

Definition 1 (Partly smooth function)

Let J ∈ Γ 0 (R n ), and x ∈ R n such that ∂J(x) = ∅. J is partly smooth at x relative to a set M containing x if (1) (Smoothness) M is a C 2 -manifold around x, J| M is C 2 near x; (2) (Sharpness) The tangent space T M (x) is T x ; (3) (Continuity)
The set-valued mapping ∂J is continuous at x relative to M.

The class of partly smooth functions at x relative to M is denoted as PS x (M).

When M is an affine manifold, then M = x + T x , and we denote this subclass as PSA x (x + T x ). When M is a linear manifold, then M = T x , and we denote this subclass as PSL x (T x ).

Capitalizing on the results of [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF], it can be shown that, under mild transversality conditions, the set of lsc convex and partly smooth functions is closed under addition and pre-composition by a linear operator. Moreover, absolutely permutation-invariant convex and partly smooth functions of the singular values of a real matrix, i.e. spectral functions, are convex and partly smooth spectral functions of the matrix [START_REF] Daniilidis | Orthogonal invariance and identifiability[END_REF].

Examples of partly smooth functions that have become very popular recently in the signal processing, optimization, statistics and machine learning literature are 1 , 1,2 , ∞ , total variation (TV) and nuclear norm regularizations. In fact, the nuclear norm is partly smooth at a matrix x relative to the manifold M = {x : rank(x ) = rank(x)}. The first four regularizers are all part of the class PSL x (T x ).

We now define a subclass of partly smooth functions where the manifold is affine or linear and the vector e x is locally constant.

Definition 2 J belongs to the class PSS x (x + T x ) (resp. PSS x (T x )) if and only if J ∈ PSA x (x + T x ) (resp. J ∈ PSL x (T x )
) and e x is constant near x, i.e. there exists a neighbourhood U of x such that ∀x ∈ (

x + T x ) ∩ U (resp. x ∈ T x ∩ U ) e x = e x .
The class of functions that conform with this definition is that of locally polyhedral functions [21, Section 6.5], which includes for instance the 1 , ∞ norms and the anisotropic TV semi-norm that are widely used in signal and image processing, computer vision, machine learning and statistics. The indicator function of a polyhedral set is also in PSS x (x + T x ) at each x in the relative interior of one of its faces relative to the affine hull of that face, i.e. x+T x = aff(Face of x). Observe that for polyhedral functions, in fact, the subdifferential itself is constant along the partial smoothness subspace.

Proximity operator

This part shows that the proximity operator of a partly smooth function can be given in an implicit form.

Proposition 1 Let p def.
= prox γJ (x) ∈ M. Assume that J ∈ PS p (M). Then for any point x near p, we have

p = P M (x) -γe p + o ||x -p|| .
In particular, if J ∈ PSA p (p + T p ) (resp. J ∈ PSL p (T p )), then for any x ∈ R n , we have p = P p+Tp (x) -γe p (resp. p = P Tp (x) -γe p ).

Proof. We start with the following lemma whose proof can be found in [START_REF] Liang | Local linear convergence of Forward-Backward under partial smoothness[END_REF].

Lemma 1 Suppose that J ∈ PS p (M). Then any point x near p has a unique projection P M (x), P M is C 1 around p, and thus

P M (x) -p = P Tp (x -p) + o ||x -p|| .
Let's now turn to the proof of our proposition. We have the equivalent char-

acterization p = prox γJ (x) ⇐⇒ x -p ∈ γ∂J(p). (3) 
Projecting (3) on T p and using Lemma 1, we get

P Tp (x -p) = P M (x) -p + o ||x -p|| = γe p ,
which is the desired result. When J ∈ PSA p (p + T p ), observe that P p+Tp (x) = p + P Tp (x -p) for any x ∈ R n . Thus projecting again the monotone inclusion (3) on T p , we get P Tp (x -p) = P p+Tp (x) -p = γe p , whence the claim follows. The linear case is immediate.

Activity Identification with Douglas-Rachford

In this section, we present the finite time activity identification of the DR method.

Theorem 1 (Finite activity identification) Suppose that the DR scheme

(2) is used to create a sequence (z k , x k , v k ). Then (z k , x k , v k ) converges to (z , x , x ),
where z ∈ Fix(B DR ) and x is a global minimizer of (1). Assume that J ∈ PS x (M J ) and G ∈ PS x (M G ), and

z ∈ x + γ ri ∂J(x ) ∩ ri -∂G(x ) . (4) 
Then,

(1) The DR scheme has the finite activity identification property, i.e. for all k sufficiently large,

(x k , v k ) ∈ M J × M G . (2) If G ∈ PSA x (x + T G x ) (resp. G ∈ PSL x (T G x )), then v k ∈ x + T G x (resp. v k ∈ T G x ). In both cases T G v k = T G x for all k sufficiently large. (3) If J ∈ PSA x (x + T J x ) (resp. J ∈ PSL x (T J x )), then x k ∈ x + T J x (resp. x k ∈ T J x ).
In both cases T J x k = T J x for all k sufficiently large. Proof. Standard arguments using that B DR is firmly non-expansive allow to show that the iterates z k converge globally to a fixed point z ∈ Fix(B DR ), by interpreting DR as a relaxed Krasnosel'skiȋ-Mann iteration. Moreover, the shadow point x def.

= prox γJ (z ) is a solution of [START_REF] Bauschke | Optimal rates of convergence of matrices with applications[END_REF], see e.g. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. In turn, using non-expansiveness of prox γJ , and as we are in finite dimension, we conclude also that the sequence x k converges to x . This entails that v k converges to x (by non-expansiveness of prox γG ). Now ( 4) is equivalent to

z -x γ ∈ ri ∂J(x ) and x -z γ ∈ ri ∂G(x ) . (5) 
(1) The update of x k+1 and v k+1 in ( 2) is equivalent to the monotone inclusions

z k+1 -x k+1 γ ∈ ∂J(x k+1 ) and 2x k -z k -v k+1 γ ∈ ∂G(v k+1 ) .
It then follows that

dist z -x γ , ∂J(x k+1 ) 1 γ ||z k+1 -z || + ||x k+1 -x || → 0 and dist x -z γ , ∂G(v k+1 ) 1 γ ||z k -z || + 2||x k -x || + ||v k+1 -x || → 0.
By assumption, J ∈ Γ 0 (R n ) and G ∈ Γ 0 (R n ), and thus are sub-differentially continuous at every point in their respective domains [START_REF] Rockafellar | Variational analysis[END_REF]Example 13.30], and in particular at x . It then follows that J(x k ) → J(x ) and G(v k ) → G(x ). Altogether, this shows that the conditions of [10, Theorem 5.3] are fulfilled for J and G, and the finite identification claim follows.

(2) In this case, we have either

v k ∈ x + T G x (resp. v k ∈ T G x ). Since G(v) is partly smooth at x relative to x + T G
x (resp. T G x ), the sharpness property holds at all nearby points in x + T G x (resp. T G x ) [13, Proposition 2.10]. Thus for k large enough, i.e. v k sufficiently close to x , we have indeed

T x +T G x (v k ) = T G x = T G v k as claimed. (3) Similar to (2).
Remark 2 1. Condition (4) can be interpreted as a non-degeneracy assumption. It can be viewed as a geometric generalization of the strict complementarity of nonlinear programming. Such a condition is almost necessary for the finite identification of the partial smoothness active manifolds [START_REF] Hare | Identifying active manifolds[END_REF]. 2. When the minimizer is unique, using the fixed-point set characterization of DR, it can be shown that condition (4) is also equivalent to z ∈ ri Fix(B DR ) .

Local Linear Convergence of Douglas-Rachford

Let us first recall the principal angles and the Friedrichs angle between two subspaces A and B, which are crucial for our quantitative analysis of the convergence rates. Without loss of generality, let 1 p def.

= dim(A) q def.

= dim(B) n -1.

Definition 3 (Principal angles)

The principal angles θ k ∈ [0, π 2 ], k = 1, . . . , p between A and B are defined by, with

u 0 = v 0 def. = 0 cos θ k def. = u k , v k = max u, v s.t. u ∈ A, v ∈ B, ||u|| = 1, ||v|| = 1, u, v i = u i , v = 0, i = 0, . . . , k -1,
The principal angles θ k are unique with 0 θ 1 θ 2 . . . θ p π/2.

Definition 4 (Friedrichs angle) The Friedrichs angle θ

F ∈]0, π 2 ] between A and B is cos θ F (A, B) def. = max u, v s.t. u ∈ A∩(A∩B) ⊥ , ||u|| = 1, v ∈ B∩(A∩B) ⊥ , ||v|| = 1.
The following relation between the Friedrichs and principal angles is of paramount importance to our analysis, whose proof can be found in [ = dim(A ∩ B). Moreover, θ F (A, B) > 0.

Remark 3 One approach to obtain the principal angles is through the singular value decomposition (SVD). For instance, let X ∈ R n×p and Y ∈ R n×q form the orthonormal bases for the subspaces A and B respectively. Let U ΣV T be the SVD of X T Y ∈ R p×q , then cos θ k = σ k , k = 1, 2, ..., p and σ k corresponds to the k'th largest singular value in Σ.

We now turn to local linear convergence properties of DR. Let's denote S J x = T J x ⊥ and similarly for S G x .

Theorem 2 (Local linear convergence) Suppose that the DR scheme (2) is used with λ k ≡ λ ∈]0, 2[ to create a sequence (z k , x k , v k ) which converges to a pair (z , x , x ) such that J ∈ PSS x (T J x ) and G ∈ PSS x (T G x ), and (4) holds. Then, there exists K > 0 such that for all k K,

||z k -z || ρ k-K ||z K -z ||, (6) 
with the optimal rate ρ = (1

-λ) 2 + λ(2 -λ) cos 2 θ F T J x , T G x ∈ [0, 1[.
This result is only valid for the class PSS. Extending this to general partly smooth functions will be left to a future work.

Remark 4 It can be observed that the best rate is obtained for λ = 1. This has been also pointed out in [START_REF] Demanet | Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit[END_REF] for basis-pursuit. This assertion is however only on the local convergence behaviour and does not mean that the DR will globally converge faster for λ i ≡ 1. Note also that the above result can be straightforwardly generalized to the case of varying λ k .

Proof. We give the proof for the affine case, the linear one is similar. Combining Theorem 1( 2)-( 3), Proposition 1 and the definition of the class PSS x (T x ), we get

x k = P T J x z k -γe J x + P S J x x , v k+1 = 2P T G x x k -P T G x z k -γe G x + P S G x x = 2P T G x P J x z k -P T G x z k -γe G x -2γP T G x e J x + 2P T G x P S J x x + P S G x x .
Similarly, we have

x = P T J x z -γe J x + P S J x x , x = 2P T G x P T J x z -P T G x z -γe G x -2γP T G x e J x + 2P T G x P S J x x + P S G x x .
Cobining and rearranging the terms, we get

(z k + v k+1 -x k ) -z = (z k + v k+1 -x k ) -(z + x -x ) = Id -P T J x + 2P T G x P T J x -P T G x (z k -z ) = (P S J x -2P T G x P S J x + P T G x )(z k -z ) = (P S G x P S J x + P T G x P T J x )(z k -z ),
whence we obtain

z k+1 -z = M (z k -z ) = M k+1-K (z K -z ), where M = (1 -λ)Id + λ(P S G x P S J x + P T G x P T J x ).
It is immediate to check that M is normal and convergent for λ ∈ [0, 2[, and according to [1, Theorem 3.10] and Lemma 2, the optimal rate ρ is in terms of the Friedrichs angle as given by the theorem.

Sum of more than two functions

We now want to tackle the problem of solving min

x∈R n m i=1 J i (x), (7) 
where each J i ∈ Γ 0 (R n ). We assume that all the relative interiors of their domains have a non-empty intersection, that the set of minimizers is non-empty, and that these functions are simple.

In fact, problem (7) can be equivalently reformulated as (1) in a product space, see e.g. [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Raguet | Generalized Forward-Backward splitting[END_REF].

Let H = R n × • • • × R n m times
endowed with the scalar innerproduct and norm

∀x, y ∈ H, x, y = m i=1 x i , y i , ||x|| = m i=1 ||x i || 2 . Let S = {x = (x i ) i ∈ H : x 1 = • • • = x m } and its orthogonal complement S ⊥ = x = (x i ) i ∈ H : m i=1 x i = 0 . Now define the canonical isometry, C : R n → S, x → (x, • • • , x), then we have P S (z) = C 1 m m i=1 z i . Problem (7) is now equivalent to min x∈H J (x) + G(x), where J (x) = m i=1 J i (x i ) and G(x) = ι S (x). (8) 
Obviously, J is separable and therefore,

prox γJ (x) = prox γJi (x i ) i .
We have the following result.

Corollary 1 Suppose that the DR scheme is used to solve (8) and creates a sequence (z k , x k , v k ). Then (z k , x k , v k ) converges to (z , x , x ), where x = C(x ), and x is a minimizer of [START_REF] Daniilidis | Orthogonal invariance and identifiability[END_REF]. Suppose that J i ∈ PS x (M Ji ) and

z ∈ x + γri ∂J (x ) ∩ S ⊥ . (9) 
Then,

(1) the DR scheme has the finite activity identification property, i.e. for all k sufficiently large, x k ∈ × i M Ji .

(2) Assume that J i ∈ PSS x (x + T Ji x ) (or J i ∈ PSS x (T Ji x )) and DR is run with λ k ≡ λ ∈]0, 2[. Then, there exists K > 0 such that for all k K,

||z k -z || ρ k-K ||z K -z ||, with the optimal rate ρ = (1 -λ) 2 + λ(2 -λ) cos 2 θ F × i T Ji x , S ∈ [0, 1[. Proof.
(1) By the separability rule, J ∈ PS x (× i M Ji x ), see [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF]Proposition 4.5]. We also have ∂G(x ) = N S (x ) = S ⊥ . Thus G ∈ PS x (S), i.e. T G x = S. Then ( 9) is simply a specialization of condition (4) to problem [START_REF] Hare | Identifying active manifolds[END_REF]. The claim then follows from Theorem 1(i).

(2) This is a direct consequence of Theorem 2 and (i).

Numerical experiments

Here, we illustrate our theoretical results on several concrete examples. This section is by no means exhaustive, and we only focus on the problems that we consider as representative in variational signal/image processing.

Affinely-constrained Polyhedral Minimization Let us now consider the affineconstrained minimization problem min x∈R n J(x) subject to y = Ax, [START_REF] Hare | Identifying active constraints via partial smoothness and prox-regularity[END_REF] where A ∈ R m×n , and J is finite-valued polyhedral. We assume that the problem is feasible, i.e. the observation y ∈ Im(A). By identifying G with the indicator function of the affine constraint, it is immediate to see that G = ι Ker(A) (•), which is polyhedral, hence belongs to PSS, and is simple. Problem ( 10) is of important interest in various areas, including signal and image processing to find regularized solutions to linear equations. Typically, J is a regularization term intended to promote solutions conforming to some notion of simplicity/low-dimensional structure. One can think of instance of the active area of compressed sensing (CS) and sparse recovery.

We here solve [START_REF] Hare | Identifying active constraints via partial smoothness and prox-regularity[END_REF] with J being either 1 , ∞ , and anisotropic TV regularizers. For all these cases, J ∈ Γ 0 (R n ), is simple and J ∈ PSS x (T x ), where T x can be easily computed, see e.g. [START_REF] Vaiter | Model selection with low complexity priors[END_REF]. In these experiments, A is drawn randomly from the standard Gaussian ensemble, i.e. CS scenario, detailed settings are TV based Image Inpainting In this image processing example, we observe y = Ax 0 , where A is a binary mask operator. We aim at inpainting the missing regions from the observations y. This can be achieved by solving [START_REF] Hare | Identifying active constraints via partial smoothness and prox-regularity[END_REF] with J the 2D anisotropic TV. The corresponding convergence profile is depicted in Figure 1(d).

Uniform Noise Removal For this problem, we assume that we observe y = x 0 +ε, where x 0 is a piecewise-smooth vector, and ε is a realization of a random vector whose entries are iid ∼ U([-a, a]), a > 0. It is then natural to solve the problem

min x∈R n ||x|| TV subject to ||y -x|| ∞ a. (11) 
G is now identified with the indicator function of the ∞ -ball constraint, which is polyhedral and simple. The local convergence profile is shown in Figure 1(e) where we set a = 1 and n = 100. Again, the rate estimate is extremely tight. 

where λ > 0 is the tradeoff parameter. This problem has been proposed by [START_REF] Nikolova | A variational approach to remove outliers and impulse noise[END_REF] for outliers removal. We take J = λ|| • || TV and G = ||y -•|| 1 , which is again simple and polyhedral. For this example we have n = 100, and y -x is 10-sparse, the corresponding local convergence profile is depicted in Figure 1(f).

Conclusion

In this paper, we first showed that the DR splitting has the finite manifold identification under partial smoothness. When the involved manifolds are affine/linear and the generalized signs are locally constant, we proved local linear convergence of DR and provided a very tight rate estimate as illustrated by several numerical experiments. Our future work will focus on extending the linear convergence result to more general partly smooth functions.
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 1 Figure 1(a)-(c) displays the global profile of ||z k -z || as a function of k, and the starting point of the solid line is the iteration number at which the partial smooth manifolds (here subspaces) are identified. One can easily see the linear convergence behaviour and that our rate estimate is indeed optimal.
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 1 Fig. 1. Observed (dashed) and predicted (solid) convergence profiles of DR (2) in terms of ||z k -z ||. (a) CS with 1. (b) CS with ∞. (c) CS with TV. (d) TV image inpainting.(e) Uniform noise removal by solving[START_REF] Hesse | Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility[END_REF]. (f) Outliers removal by solving[START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF]. The starting point of the solid line is the iteration at which the manifolds are identified.
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