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Improved Bayesian Network Configurations for Probabilistic 
Identification of Degradation Mechanisms: Application to Chloride 
Ingress 

Probabilistic modelling of deterioration processes is an important task to plan and 
quantify maintenance operations of structures. Relevant material and 
environmental model parameters could be determined from inspection data; but 
in practice the number of measures required for uncertainty quantification is 
conditioned by time-consuming and expensive tests. The main objective of this 
paper is to propose a method based on Bayesian networks for improving the 
identification of uncertainties related to material and environmental parameters of 
deterioration models when there is limited available information. The outputs of 
the study are inspection configurations (in space and time) that could provide an 
optimal balance between accuracy and cost. The proposed methodology was 
applied to the identification of random variables for a chloride ingress model. It 
was found that there is an optimal discretisation for identifying each model 
parameter and that the combination of these configurations minimises 
identification errors. An illustration to the assessment of the probability of 
corrosion initiation showed that the approach is useful even if inspection data is 
limited.  

 

Keywords: Reliability & Risk Analysis; Identification; Bayesian network; 
Deterioration; Chlorides; Corrosion 

 

1. Introduction 

Chloride-induced corrosion is frequently considered as the main cause of deterioration 
of various types of reinforced concrete (RC) structures (bridges, wharves, off-shore 
platforms, marine structures, etc.) that are located close to the seashore or in contact 
with de-icing salts. Corrosion in reinforcing bar will affect load carrying capacity 
through: reduction of reinforcement cross-section, loss of bond between steel and 
concrete, concrete cracking and delamination (Lounis & Amleh, 2003). These 
consequences will lead to the reduction of serviceability and safety levels as well as the 
shortening of service life in RC structures. Most of RC structures are designed for a 
lifetime of 50-100 years. However, under chloride-attack, important damages are 
reported after 10-20 years (Kumar Mehta, 2004; Poupard, L’Hostis, Catinaud, & Petre-
Lazar, 2006). For these reasons, many owners of large-scale structures proposed a 
routine schedule for maintenance in which structures are inspected periodically (every 
∆t years) to ensure optimal levels of serviceability and safety during the structural life. 
In infrastructure management, maintenance costs have represented a significant portion 
of the corrosion management budgets. Virmani (2002) reports that the annual direct cost 
of corrosion for highway bridges in US was about $8.3 billion, where $4.5 billion was 
spent on maintenance and $3.8 billion was used to replace structurally deficient bridges 
over 10 years 

Maintenance strategies are divided into two stages: inspection and repair; in 
which inspection results are necessary for the diagnosis: detecting corrosion in early 
stages, evaluating the extent of damage as well as implementing repair measures. 
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Nowadays, a large number of effective condition assessment techniques consisting of 
destructive and non-destructive methods has been developed to facilitate the assessment 
of corrosion consequences in RC structures. Among non-destructive methods, visual 
inspection is a technique usually used for evaluating the condition of RC structures and 
for providing qualitative information about the condition state (Roelfstra, Hajdin, Adey, 
& Brühwiler, 2004); but it is currently combined with image to provide also quantitative 
assessment (Ghosh, Pakrashi, & Schoefs, 2011). However, its results are highly affected 
by environmental conditions and human errors reducing its accuracy. Semi-destructive 
inspection techniques (coring), on the other hand, could provide accurate inspection 
results, however, they are more expensive and time-consuming. Non-destructive 
techniques are less expensive but require still technical developments (Torres-Luque, 
Bastidas-Arteaga, Schoefs, Sánchez-Silva, & Osma, 2014) and specific post-treatment 
methods for assessing the chloride content from multi-technique measurements 
(Lecieux, Schoefs, Bonnet, Lecieux, & Lopes, 2015; Ploix, Garnier, Breysse, & 
Moysan, 2011). The paper will focus on quantitative methods, semi and non-destructive 
ones, whose common objective it to assess the chloride content profile in depth or at 
least near the rebar. The outputs after such inspection campaigns are discrete chloride 
content measurements in depth and time; the continuous monitoring is beyond the scope 
of this paper. Note that the information in depth gives a significant information about 
the chloride concentration level inside the concrete and thus on the history and it is also 
useful for prediction from updating of time-variant models. 

In order to obtain an accurate and reliable assessment of the extent of corrosion 
damage, engineers and inspectors combine information from different corrosion 
evaluation techniques. Data collected after inspection campaigns is often used to 
determine parameters for chloride ingress or corrosion propagation models. This 
information can be after used for lifetime assessment and optimisation of maintenance 
strategies. This study will focus on the corrosion initiation stage that is estimated from 
chloride penetration models. Under natural exposure conditions, chloride ingress 
involves important uncertainties related mainly to material properties and exposure 
conditions (Bastidas-Arteaga, Chateauneuf, Sánchez-Silva, Bressolette, & Schoefs, 
2011; Bastidas-Arteaga, Schoefs, Stewart, & Wang, 2013; Deby, Carcasses, & Sellier, 
2008; Lounis & Amleh, 2003; Saassouh & Lounis, 2012). These uncertainties are also 
affected by temporal and spatial variability of associated deterioration processes and 
their characterisation requires larger amount of inspection data (O’Connor & Kenshel, 
2013; Peng & Stewart, 2014; T. V. Tran, Schoefs, & Bastidas-Arteaga, 2013). 
Nevertheless, in real practice, the number of inspections is limited by the difficulties to 
implement tests that increase inspection times and costs. Therefore, it is necessary to 
use the available information in the best way for uncertainty quantification by using 
statistic and/or probabilistic methods. Within this context, the Bayesian method is a 
reasonable choice to deal with this problem.  

The Bayesian approach has been applied to problems related to chloride ingress 
into RC in some previous studies (De-León-Escobedo, Delgado-Hernández, Martinez-
Martinez, Rangel-Ramírez, & Arteaga-Arcos, 2013; Engelund & Sorensen, 1998; 
Enright & Frangopol, 1999; Keßler, Fischer, Straub, & Gehlen, 2013; Ma, Zhang, 
Wang, & Liu, 2013; Suo & Stewart, 2009; Wang & Liu, 2010). This approach provides 
a comprehensive and rational framework to update the estimations based on 
incorporating new information from inspection data for service-life prediction of 
deteriorating RC structures (Keßler et al., 2013; Ma et al., 2013; Wang & Liu, 2010) or 
parameter estimations (Engelund & Sorensen, 1998; Enright & Frangopol, 1999; Suo & 
Stewart, 2009). The application of Bayesian methods for probabilistic modelling of 
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chloride-induced corrosion is becoming popular and it has also been applied to multiple 
events in the form of Bayesian Network (BN). Deby et al. (2008) and Deby, Carcasses, 
& Sellier (2012) have used BN as a probabilistic approach for the assessment of 
probabilistic distribution of random variables in the chloride diffusion problem. The 
approach seems to be robust when allowing the possibility to update the statistical 
distributions with new information from experimental results. Bastidas-Arteaga, 
Schoefs, & Bonnet (2012) proposed a procedure to identify random parameters in 
chloride ingress models from experimental data. In this approach, the a priori 
information about statistical parameters such as type of distribution, mean and standard 
deviation are assumed unknown. This assumption provided a generalised approach that 
could be applied for real structures. Hackl (2013) proposed a framework that combines 
structural analysis and BN for reliability assessment. This combination allows Bayesian 
updating of the model with measurements, monitoring and inspection results. Recently, 
Ma, Wang, Zhang, Xiang, & Liu (2014) developed a BN combining in situ load testing 
to predict the strength degradation of bridge structures subjected to chloride attack. 
Nevertheless, the abovementioned studies have not optimised the utilisation of 
inspection data, especially when the information is limited.  

The main objective of the present paper is to propose a methodology for 
defining appropriate BN configurations for parameter identification. Data from 
numerical simulations, representing different measurement sets, will be used to propose 
an appropriate configuration for the identification of each model parameter. A brief 
description of the BN and its application for chloride ingress are presented in section 2. 
Section 3 introduces the problem definition and the BN implementation. Section 4 
analyses the influences of different BN configurations on the identification of 
parameters. For each BN configuration, we also discuss about numerical issues to 
minimise the error in the updating process. Next, the identified parameters are 
employed in Monte Carlo simulation for the assessment of the probability of corrosion 
initiation (section 5). An improved procedure is also suggested in this paper to optimise 
the evaluation when available data for updating is limited.  

2. Bayesian Identification and its Application to Chloride Ingress 

2.1. Introduction to Bayesian Network 

Generally, a BN is a specific type of graphical model that is represented as a Directed 
Acyclic Graph (DAG). Nodes in DAG are graphical representation of objects and 
events that exist in real world, and they are used to represent variables or deterministic 
states. Causal relations between nodes are represented by drawing an arc (edge) 
between them. If there is a causal relationship between the variables (nodes), there will 
be a directional edge, leading from the cause variable to the effect variable. Each 
variable in the DAG has a Probability Density Function (PDF), which dimension and 
definition depend on the edges leading into the variables. For a set of m random 
variables X = [X1, X2, … , Xm], a BN represents the joint Probability Mass Function 
(PMF). The BN allows an efficient probabilistic modelling of complex problems by 
factoring the joint probability distribution into conditional probability distribution for 
each variable. Figure 1 describes a simple BN that consists of three nodes 
corresponding to three random variables X1, X2 and X3 in which X2 and X3 are children 
of the parent node X1. The children nodes have conditional probability distributions that 
depend on their parent node. The parent node has a marginal probability distribution. 
The Bayes’ rule allows for computing the a posteriori probability p(X1| X2), given the a 
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priori and the conditional probabilities p(X1) and p(X2| X1): 

( ) ( ) ( )
( )

2 1 1
1 2

2

|
|

p X X p X
p X X

p X
=  (1) 

This a posteriori probability is the key of model identification from inspection data. 
[Figure 1 near here] 

2.2. Application to Chloride Ingress 

2.2.1. Chloride Ingress and Modelling 

In saturated concrete, the Fick’s diffusion equation (Tuutti, 1982) is usually used to 
predict the unidirectional diffusion (in x-direction): 

  

∂C fc

∂t
= D

∂2C fc

∂x2  (2) 

where Cfc (kg/m3) is the concentration of chloride dissolved in pore solution, t (year) is 
the time and D (m/s2) is the effective chloride diffusion coefficient. Assuming that 
concrete is a homogeneous and isotropic material with the following initial conditions 
(i) the chloride concentration is zero at time t = 0 and (ii) the chloride surface 
concentration is constant during the exposure time, the free chloride ion concentration 
C(x,t) at depth x after time t for a semi-infinite medium is: 

  
C x,t( ) = Cs 1− erf
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where Cs (kg/m3) is the chloride surface concentration and erf(.) is the error function. 
Equation (3) remains valid when RC structures are saturated and subjected to 

constant concentration of chlorides on the exposure surfaces. In real structures, these 
conditions are rarely present because concrete is a heterogeneous material and the 
chloride concentration in the exposed surfaces could be time-variant. Besides, this 
solution does not consider chloride binding capacity, concrete aging and other 
environmental factors such as the influence of surrounding temperature and humidity in 
chloride ingress process (Bastidas-Arteaga & Stewart, 2015a, 2015b). Although this 
solution neglects some important physical phenomena, this model will be used herein to 
illustrate the proposed methodology for the identification of random variables using BN 
because its complexity is sufficient to account for non-linear effects in x-direction and 
in time and to perform sensitivity analysis: two variables are involved. The 
methodology can be after extended to more realistic chloride ingress models. The 
computational effort for building the BN will increase for chloride ingress models 
involving a large number of variables. 

2.2.2. Bayesian Network Modelling of Chloride Ingress 

Chloride ingress could be modelled by the BN described in Figure 2 where Cs and D are 
the two parent nodes (random variables to identify). There are n child nodes C(xi, tj) 
representing the discrete chloride concentration measurement in time and space i.e. at 
depth xi and at inspection time tj. The number of child nodes is computed as: 

x tn n n=  (4) 
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where nx is the total number of points in depth and nt is the total number of inspection 
times. Assuming that Cs and D are two independent random variables, the values of 
C(xi, tj) could be easily estimated from Eq. (3). Most of parameters in chloride ingress 
models are defined in the continuous space. However, in order to avoid using 
approximate inference algorithms which will be a disadvantage when working with 
continuous variables, continuous variables must be replaced by discrete random 
variables (Straub, 2009). Each node is defined over a specific range (upper and lower 
bounds) and its probability distribution is discretised into a given number of states per 
node, Ns. Figure 2 also illustrates the discretisation considered for each node. For this 
example the node C(x1,tj) was divided into Ns = 6 states over a predefined range. 

In this BN, if all nodes are discrete, the probability of chloride concentration 
p(C(xi, tj)) can be calculated as follows (Bastidas-Arteaga et al., 2012): 

( )( ) ( )( ) ( )
,

, , | , ,
s

i j i j s s
D C

p C x t p C x t D C p D C= ∑
  
with  ( ) ( ) ( ), s sp D C p D p C=  (5) 

 
[Figure 2 near here] 

To estimate p(C(xi,tj)), the conditional probability p(C(xi,tj)|D,Cs) must be 
already known in Eq. (5). This conditional probability accounts for the dependence 
between the chloride content C(xi,tj) with the two model parameters (D and Cs) and it is 
computed based on the Conditional Probability Table (CPT) of the BN; Monte-Carlo 
simulations of the model (from Eq. (3)) are required for the estimation of CPT. The BN 
allows entering evidences and then updating the probabilities in the network. In this 
study, the evidences correspond to measures of chloride concentration at given points 
and times (chloride profiles). Then, the term p(C(xi,tj)|o) represents the probability 
distribution of C(xi,tj) given evidence o and a posteriori distributions of D and Cs can be 
computed by applying the Bayes’ theorem: 

( ) ( )( ) ( )( )| | , , |i j i jp D o p D C x t p C x t o=  with ( )( ) ( )( ) ( )
( )( )
, |

| ,
,

i j

i j

i j

p C x t D p D
p D C x t

p C x t
=  (6) 

and: 

( ) ( )( ) ( )( )| | , , |s s i j i jp C o p C C x t p C x t o=  with ( )( ) ( )( ) ( )
( )( )

, |
| ,

,
i j s s

s i j

i j

p C x t C p C
p C C x t

p C x t
=  (7) 

 
The determination of these conditional probabilities is carried out by a BN Tool 

Box which is built on the Matlab® Software. Note that it is assumed that the 
measurements are not affected by errors. Measurement errors can be modelled by 
adding additional nodes to represent its PDF and its dependence on the magnitude of the 
measured values (Schoefs, Boéro, Clément, & Capra, 2012). 

3. Problem Definition and BN Implementation  

3.1. Generation of Numerical Evidences 

This study aims at determining improved BN configurations for the identification of 
parameters of chloride ingress models. It this case, the BN will be used to update 
probabilistic models for the parameters to identify. The evaluation of the effectiveness 
of a given configuration should be based on a given criterion. Preferably, it should 
include a larger amount of experimental data (chloride profiles) that can be used to 
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estimate ‘real’ probabilistic models of model parameters and consequently to test and 
compare various BN configurations. However, such a database is in practice very hard 
to obtain because chloride profiles are computed from semi-destructive tests that are 
expensive and time-consuming. Therefore, in order assess the error associated to each 
BN configuration and to provide general recommendations that minimise the 
identification errors, we consider a large number of numerical evidences (chloride 
profiles) generated from Monte Carlo simulations. The numerical chloride profiles are 
generated from theoretical probabilistic models of the random variables to identify. 
Table 1 presents the considered probabilistic models for Cs and D. The mean values for 
each parameter were taken from (Bastidas-Arteaga, Bressolette, Chateauneuf, & 
Sánchez-Silva, 2009). Cs corresponds to a structure placed in an atmospheric zone, 
close to the seashore but without direct contact with seawater. D is a typical diffusion 
coefficient for ordinary Portland concrete. The COV for each parameter were reduced to 
20% and 15% for Cs and D, respectively. This is due to the fact that within one type of 
concrete, the variation is narrowed (Duracrete, 2000; Tang & Nilsson, 1993; Vu & 
Stewart, 2000). The assumption that Cs and D follow lognormal distributions is also in 
agreement with other studies (Duracrete, 2000; Vu & Stewart, 2000). 

[Table 1 near here] 
The theoretical probabilistic models presented in Table 1 were used to generate 

9,000 random values for Cs and D. Afterwards, each set of values of Cs and D was used 
to compute the 9,000 independent chloride profiles from Eq. (3). The evidences to be 
introduced into the BN are then computed from these chloride profiles. The same 
simulated values will be used for all configurations to ensure that we update the BN 
with the same information. 

 
Different configurations of the BN corresponding to different inspection 

schemes will be analysed for selecting inspection schemes that provide the best 
identification of parameters. Each configuration will be evaluated in terms of the error 
of the identified parameter Zidentified with respect to the theoretical value Ztheory as: 

( ) | |
100%identified theory

theory

Z Z
Error Z

Z
−

=  (8) 

where Z represents the mean or the standard deviation of the parameter to identify – e.g. 
mean or standard deviation of Cs and D, Zidentified is determined from the a posteriori 
histograms of parent nodes (Cs and D), and Ztheory is the value of the mean or standard 
deviation used to generate numerical evidences (Table 1).  

In practice it is unrealistic (almost impossible) to collect 9,000 chloride profiles. 
However, this larger database is necessary for obtaining a convergence on the error 
assessment. Error assessment results are after used for studying how the configuration 
of the BN can be improved for identification processes. The final part of the paper 
(section 5.2.3) will consider the improved BN configurations to study the case in which 
the information (number of profiles) is limited. 

 

3.2. BN Definition and Identification Procedure 

We aim at identifying the parameters Cs and D by using chloride profiles as evidences. 
Section 4 details the configuration of BNs considered in this study that are basically 
based on the general case described by Figure 2. Table 2 describes the discretisation of 
each node as well as the considered a priori distributions. As detailed in Figure 2, each 
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node is divided into Ns states over a given range. Ns will vary to determine a value that 
diminishes identification errors. The range (upper and lower bounds) for each parameter 
should in theory contain all the possible values of each parameter. These ranges can be 
defined on the basis of existing databases, similar study cases, or expert knowledge. 
Here, the ranges for Cs and D were defined enough large to contain values 
representative of the variability of environmental exposure and material properties when 
the a priori information about these parameters is very poor. The theoretical 
distributions presented in Table 2 can be used in this case to estimate upper and lower 
bounds for a given confidence interval. The adopted values cover a confidence interval 
larger than 99% by ensuring that the parameters to identify belong to this wide a priori 
range. A priori characteristics (type of distribution, mean, standard deviation, etc.) are 
commonly considered to define the configuration of the parent nodes Cs and D. To 
avoid hypothesis about a priori information, we suppose that Cs and D follow uniform 
distributions defined over given upper and lower bounds. However, if more rich a priori 
information is available, the consideration of this information will decrease the 
identification errors. The assumption of uniform distribution for unknown parameter 
could avoid making any assumption about the distribution shape (Bastidas-Arteaga et 
al., 2012; Cao & Wang, 2014; Robinson & Hartemink, 2010). A priori distributions of 
parent nodes Cs and D are used to generate a sufficient random number of chloride 
concentrations at depth x and time t by using Eq. (3) for each child node. This a priori 
data is used to compute the CPT for each child node in the BN. 

[Table 2 near here] 
Data from numerical simulations will be introduced to the BN as evidences 

(section 3.1). The probability that C(xi,tj) belongs to a given state for different depths is 
then computed for the identification of the term p(C(xi,tj)|o). These probabilities are 
then added to the BN as soft evidences for inference. We considered an exact inference 
algorithm for static BN. In this process, the BN will calculate the a posteriori 
distributions: p(Cs|o) and p(D|o) by using equations (6) and (7). The a posteriori 
distributions are after used to identify the parameter Zidentified and therefore to evaluate 
the error of the configuration by using Eq. (8).  

The BN configurations were implemented in the Bayesian Network Toolbox 
(BNT) that is an open-source Matlab package for directed graphical models. This can be 
seen as a robust characteristic of BNT as compared with other tools because users can 
add, modify or make complements of functions in order to fit with the different using 
purposes. BNT supports many types of conditional probability distributions (nodes), 
many inference algorithms (exact and approximate) for both static BNs and dynamic 
BNs parameters and structure learning (Murphy, 2001). 

4. Strategies for Improvement of BN Configurations for Parameter 
Identification 

This section investigates the influence of the BN configuration on the identification 
error with respect to the theoretical parameters. We cover the following configurations: 

(1) only one child node corresponding to one inspection point in depth and one 
inspection time (section 4.1), 

(2) various child nodes corresponding to several inspection points in depth and one 
inspection time (section 4.2), 

(3) many child nodes corresponding to several inspection points in depth and 
varying the inspection time (section 4.3), and 
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(4) various child nodes corresponding to several inspection points in depth and the 
combination of various inspection times (section 4.4).  

Each section includes a discussion about numerical aspects that can be 
considered to minimise identification errors and/or decrease computational effort. 

4.1. Identification Using One Inspection Point in Depth  

4.1.1. Problem Statement 

In this part, the estimation of the chloride surface concentration (Cs) and chloride 
diffusion coefficient (D) will be analysed from evidences obtained at one depth point 
(Figure 3). This study case could be also applied to the identification from data coming 
from other inspection techniques that focus on one-point measurements: resistivity 
based probe (Wenner probe) or resistivity basic sensors with only two points of 
injection (Du Plooy, Palma Lopes, Villain, & Derobert, 2013). The BN now consists of 
three nodes (Figure 3): two parent nodes are Cs and D, and one child node C(xi, tj) 
representing the chloride concentration at depth xi. The inspection time is tins = t1 =10 
years (which is compatible with actual practices) and the total inspection depth is 12cm. 
Consequently, we have 13 different BNs corresponding to 13 points in depth varying 
from 0cm to 12cm. 

[Figure 3 near here] 

4.1.2. Numerical Issue: Discretisation of Child Nodes 

As previously mentioned in section 3.2, continuous variables need to be discretised into 
several states. The number of states per node could be adjusted to obtain a balance 
between accuracy of results and computational time. When an accurate result is 
expected, a high number of states is often chosen. Figure 4 describes the estimations of 
the error of the mean value of Cs with different discretisations and inspection positions 
in depth. It is clear that fluctuations are less important when each node C(xi,t1) in the 
BN is divided into Ns = 200 states. This means that a high number of states could reduce 
the fluctuations of the values identified by the BN. Consequently, we will use a 
discretisation of Ns = 200 states per node C(xi,t1) for all BNs in this subsection.  

[Figure 4 near here] 

4.1.3. Influence of Measure Depth on the Identification Error 

Figure 5 shows the errors in the identification of the mean and standard deviation of Cs 
and D. For Cs, the evolution of the error of both mean and standard deviation increase 
with the depth. These estimations are related to the evolution of the chloride profiles in 
depth. Figure 6 presents the mean chloride profile and 5% and 95% percentiles 
estimated by Monte Carlo simulations from the theoretical values given in Table 1 at tins 
= 10 years. It is noted that chloride content is lower when depth increases. This means 
that, data from chloride profiles near to the surface provides more useful information for 
the identification of Cs, whereas less information in the deeper parts increases the error. 
When the chloride content is close to zero, these errors increase and they can even reach 
40% for the mean. On the contrary, with the evidences near to the surface (x ≈ 0), we 
can obtain the best estimation for the mean and standard deviation of Cs, with errors of 
1% and 3%, respectively. This is due to the fact that in eq. (3), when we set x ≈ 0, 
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C(xi,tj) ≈ Cs. Consequently, the chloride concentration at the surface is most valuable in 
the identification of Cs.  

[Figure 5 near here] 
[Figure 6 near here] 

It is also observed in Figure 5a that the error in the identification of D decreases 
until a depth x < 9 cm and it increases after this point. This behaviour corresponds to the 
fact that chloride content at deeper parts is more useful for predicting the diffusion 
coefficient. However, the error increases at deeper points where the chloride contents 
are close to zero for tins =10 years (x > 9 cm). The errors in the identification of the 
standard deviation of D follow a similar trend, however their values are very far from 
the theoretical values with important errors (more than 200%). Therefore, it can be 
concluded that it is very difficult to perform a good identification of D using evidences 
obtained from only one point in depth.  

4.2. Identification Using Full Inspection Depth 

4.2.1. Problem Statement 

In this section, we keep the same inspection time (tins =10 years); but the BN 
configuration will use data from a total inspection depth Li. The total inspection depth 
(Li = 12cm) is divided into several inspection points of the same discretisation size Δx. 
The total inspection depth is selected to cover all the potential chloride presence (see 
Figure 6). Figure 7 illustrates the discretisation of the total inspection length on 
elements of size Δx. In the experimental procedure to determine chloride profiles 
concrete cores are grinded over predefined discretisation sizes (equivalent to the 
parameter Δx) at various depths. Afterwards, an average chloride content is determined 
for the powder extracted at each depth. This average concentration is frequently 
represented at the middle of each interval. The discretisation size Δx should not be 
smaller than 0.3 cm due to the accuracy of the semi-destructive equipment for 
determining chloride profiles. The BNs will now have a number of child nodes 
depending on the total inspection depth (Li) and the adopted discretisation size (Δx). For 
example, if Li= 12 cm and ∆x = 2cm, the BN configuration consists of 2 parent nodes 
and 7 child nodes as described in Figure 7. Table 3 presents the 5 cases considered in 
this section where Δx varies between 0.3 cm and 3 cm.  

[Table 3 near here] 
[Figure 7 near here] 

4.2.2. Influence of the Discretisation Size ∆x on the Identification Error 

Figure 8 presents the error in the identification using full inspection depth and the same 
ranges (boundaries) for the child nodes. These results were obtained by discretising the 
child nodes into 15 states. For all Δx values (BN configurations), it is noted that there is 
no remarkable change in the identification of the mean of Cs (Figure 8a) because the 
errors in 5 surveyed cases are close to 5%. Meanwhile, it seems that increasing the 
number inspection points might produce more errors for the standard deviation of Cs 
(Figure 8b). Interestingly, the gap between identified values and theoretical values for D 
are reduced significantly when the size of the discretisation size ∆x is smaller. The 
errors in the estimation of the mean of D are less than 5% when the ∆x is smaller than 
0.5 cm. The standard deviation of D also reveals a better evolution when the error 
decreases from more than 200% with Δx=3 cm to about 20% with Δx=0.3 cm. This 
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behaviour is expected because when the inspection depth is divided into small ∆x, we 
could obtain more rich spatial information describing the level of chloride ingress that is 
more useful for characterising the diffusion coefficient. Hence, we can conclude that 
data from full inspection depth is more valuable in the identification of D.  

[Figure 8 near here] 

4.2.3. Numerical Issue: Ranges for Discretising Child Nodes 

As discussed in section 4.1.2, when the nodes are discretised by considering a small 
number of states, the errors in the estimation of chloride diffusion coefficient increase 
significantly. In such a case, the information used to update the BN becomes poor, 
particularly for deeper points where chloride content is low. For example, Figure 9a 
shows the evidence at depth x = 6 cm, tins = 10 years and a discretisation within Ns = 15 
states. It is noted that in such a case that all the information coming from the evidences 
is concentrated in one state, and then, this evidence cannot provide good information for 
updating the BN. Increasing the number of states could solve this problem. Figure 9b 
indicates that Ns = 200 states are more convenient to represent the variability of the 
chloride concentration at this depth. Nevertheless, this solution increases the size of the 
CPTs and, therefore, the computational time.  

[Figure 9 near here] 
In this section, we propose a procedure to improve the discretisation of child 

nodes. The number of states in the discretisation remains constant but we use different 
ranges (upper and lower boundaries) for the discretisation of all child nodes C(xi,tj). 
Figure 10a shows the boundaries for each node which represent for chloride content at 
depth x for tins = 10 yr. From a priori information of Cs and D (Table 2), Monte Carlo 
simulation were employed to generate a sufficient number of chloride concentration at 
depth x and time t from Eq. (3). From these simulations, it is possible to determine 
maximum and minimum values of chloride content at depth x and time t which are used 
as the boundaries of each child node. By considering these boundaries, we take 
advantage of the information of deeper points in the updating process. Figure 10b shows 
the evidence at depth x = 6 cm with Ns =15 states. It is clear that the evidence at depth x 
= 6 cm could provide now more valuable information for updating the BN in this case.  

[Figure 10 near here] 

4.2.4. Analysis of Results for Improved Discretisation of Child Nodes 

Figure 11 compares the error in the identification of the mean and standard deviation of 
D before and after improvement (rebuild case) of the discretisation of child nodes. It is 
clear that the consideration of large number of states and/or different ranges per node 
reduces drastically the errors even when the total inspection depth was divided into 
large Δx (Δx ∈ [2 cm, 3 cm]). This proposed approach could be very useful in practice 
when the number of measured points is limited or when the level of chloride content 
inside concrete is low.  

[Figure 11 near here] 
Moreover, it is worth noticing that there are optimal discretisation sizes Δxopt: 

for the standard deviation (Figure 11b): Δxopt�2 cm (for Ns = 200 states) and Δxopt�1 cm 
(for Ns = 15 states rebuild). This means that the common idea that increasing the 
number of inspection points over the total inspection depth is better is not always true 
for Bayesian updating. In fact, by doing so, the large error obtained by considering 
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some inspection depths can affect the updating: that is the case for depths with low 
chloride content (around x=10cm). Moreover, the difference between chloride content 
in adjacent inspection points is too small when the discretisation size is smaller (∆x=0.3 
cm for instance). Therefore, the probability densities of the evidences used for updating 
the BN are very similar for two neighbouring inspection points. Figure 12a illustrates 
this point by showing the almost identical probabilities at x=0 cm and x=0.3 cm. This 
increases the errors in estimating the mean and standard deviation when using close 
points. In contrast, when ∆x increases (∆x = 2cm), the probability densities of the 
evidences differ by reducing the identification errors (Figure 12b). That is why, even for 
the mean value (Figure 11a), the protocol with Δx = 3 cm is better. On the opposite, 
when ∆x is larger than the optimal value, the errors for both mean and standard 
deviation increase because the information becomes poor for describing the chloride 
ingress process. 

[Figure 12 near here] 

4.3. Using Evidences From Different Inspection Times 

4.3.1. Problem Statement 

In this section, evidences obtained from various inspection times and depths will be 
introduced in the BN for the identification process. According to previous section, 
different ranges were used for each child node in the BN with a sufficient number of 
states per node (Ns> 15 states) to minimise the fluctuation effects/errors in the results. 
This analysis considers then that Ns=15 states. Since the BN configuration considers 
evidences coming from several inspection depths, the results of the following 
subsections will be illustrated in terms of the discretisation size (Δx) in order to study 
the effects of considering more or less information in depth. For example, for a total 
inspection depth of 12 cm, the smallest value of Δx (Δx = 0.3 cm) implies that there are 
nx=41 inspection points in depth. On the opposite case Δx = 12 cm considers that there 
are nx=2 inspection points in depth located at x=0 and x=12cm. 

4.3.2. Influence of the Inspection Time on the Identification Error 

Figure 13 shows the identification error for D by considering evidences taken and 
different inspection times tins for various discretisation sizes Δx. It can be seen that the 
inspection time tins influences the estimation of both the mean and standard deviation of 
D. The identification is improved when tins increases until arriving at an optimal 
inspection value tins,opt that varies between 40 and 50 years for the identification of the 
mean and standard deviation. This phenomenon can be explained by the fact that when 
tins ≈ 45 years the chloride concentration in the total inspection length is sufficient for 
describing the chloride ingress process – i.e. there is sufficient chloride content at each 
point in the space to improve the identification. When tins > 50 years, the chloride 
content at x = 12 cm is larger than zero and therefore the identification errors increase 
because the inspection length is not large enough to describe the problem.  

[Figure 13 near here] 
It is also worth noticing to complete the analysis at the end of previous section, 

that there is an optimal value of Δx for each inspection time that minimises the error. 
The optimum value decreases when tins increases. This is related to the fact that for 
larger tins the chloride content inside the total inspection depth is larger. Consequently, it 
is necessary to add more information to improve the representation of the chloride 
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profile. It is also noted that the error is larger for smaller values of Δx in comparison 
with the Δxopt. There is no remarkable change in the estimation the mean value of D 
when ∆x vary from 0.3 cm to the optimal value. However, the variation is more 
important for the identification of the standard deviation of D. This is mainly related to 
the discretisation effect described in the previous section. 

For Cs, the results presented in Figure 14 reveal that it is better to use the 
evidences at early inspection times to obtain a better estimation of Cs. At the beginning 
of the exposure (e.g. tins = 1year), the chloride concentration at x ≈ 0 cm is close to Cs 
and it decreases drastically until zero for the neighbouring points. In such a case, the 
larger differences between neighbouring points (chloride concentration gradient) reduce 
the identification errors as indicated in Figure 12. However, when inspection times 
increase chlorides penetrate into concrete and the chloride concentration gradient 
decreases for neighbouring points by introducing inaccuracies in the assessment. The 
results also show that the consideration of fewer points in depth (larger Δx) diminishes 
significantly the errors in the assessment of the standard deviation as previously 
discussed in section 4.2.2. 

[Figure 14 near here] 

4.4. Combining Simultaneously Evidences from Different Inspection Times 

4.4.1. Problem Statement 

Inspection campaigns on RC structures can be carried out at different times. In this 
section, the BN will be used to evaluate the efficiency of combining simultaneously 
evidences obtained after different inspection times. For comparative purposes, we 
consider the same number of chloride profiles (9,000 chloride profiles) for different 
schemes of inspection, thus the same quantity of information for all configurations 
(Table 4). Thus, the evidences from each scheme may come from one inspection time or 
from the combination of several inspection times. 

[Table 4 near here] 

4.4.2. Identification Errors for Various Inspection Schemes 

Figure 15 depicts the identification error for Cs with evidences from different schemes of 
inspection. As concluded in section 4.3, since the deterioration model considers that the 
chloride surface concentration does not depend on time, it will be better to use the 
evidences obtained at early inspection times. Indeed, the identification of Cs from 
inspection data at 10 years will be more accurate than those at 20 years or 30 years. The 
results in Figure 15 have pointed out that combining data from different tins could not 
improve the identification. For example, in the inspection scheme 4 (10+20 years), the 
identification errors are larger than inspection scheme 1 which uses data from tins=10 
years. This is because, for the inspection scheme 4, the 4,500 chloride profiles obtained 
at 20 years induce errors in the identification process.  

[Figure 15 near here] 
Figure 16 presents the identification errors for D with evidences for different 

schemes of inspection. As previously mentioned in section 4.3, evidences at tins = 30 
years provide smaller identification errors than those at 10 years or 20 years. Results in 
Figure 16 show that from inspection scheme 3 with 9,000 chloride profiles at tins = 30 
years, the estimation of D is more close to the theoretical values than others inspection 
schemes that use data from early inspection times or combine the evidences from 
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different tins. It can be also concluded that there are optimal inspection years for 
minimising the errors for the identification of each parameter. In this case, the 
consideration of several inspection times introduced errors in the identification process. 
However, inspection schemes that consider several inspection times could be more 
appropriated to identify time-dependent parameters. For example, information of 
several inspection times could be useful in the identification of an ageing factor for the 
chloride diffusion coefficient that is considered for other models (Tran, Bastidas-
Arteaga, Bonnet, & Schoefs, 2015). Although this point is important for chloride 
ingress modelling, the consideration of other models is beyond the scope of this paper. 

[Figure 16 near here] 

4.5. Summary 

Parameter identification using BN is a complex problem that requires an improved 
configuration to reduce identification errors. Due to physical and model characteristics, 
it was found that there is a best BN configuration for the identification of each 
parameter. For Cs, it was the BN configuration with one child node close to the concrete 
surface. For D, it is necessary to use the information from total inspection length to 
provide a better characterisation of the kinetics of the chloride ingress process. For a 
certain inspection depth, an optimal inspection time exists and could describe 
adequately the chloride ingress process and minimise the errors in the identification of 
D. Especially, there is an optimal discretisation size for each inspection time. This 
improved configuration could be considered for recommending inspection strategies. 
The results also revealed that it is better to use the information at early inspection times 
for estimating the parameter Cs; for D, the data at later and specific inspection times is 
more useful.  

5. Assessment of the Probability of Corrosion Initiation 

5.1. Probability of Corrosion Initiation 

This section examines the influence of the data identified from BN on the evaluation of 
the probability of corrosion initiation. In fact, previous sections have shown that there 
are different improved configurations for the identification of Cs and D: a multi-criteria 
analysis will not be efficient because the sensitivity of the response to these variables 
vary with time (Bastidas-Arteaga et al., 2011). Thus the quantity of interest ‘probability 
of corrosion initiation’, useful for decision makers, is considered now. The time to 
corrosion initiation, tini, is defined as the time at which the chloride concentration at the 
steel reinforcement surface reaches a threshold value, Cth. This threshold concentration 
represents the chloride concentration for which the rust passive layer of steel is 
destroyed and the corrosion reaction begins. Cth depends on many parameters (Bastidas-
Arteaga & Schoefs, 2012): type and content of cement, exposure conditions, time and 
type of exposure, distance to the sea, oxygen availability at the bar depth, type of steel, 
electrical potential of the bar surface, presence of air voids, definition of corrosion 
initiation, methods and techniques for measuring Cth, etc. Then, the determination of an 
appropriate Cth becomes a major challenge for the owner/operator and it will be 
therefore assumed herein that Cth is a random variable. The time to corrosion initiation 
is calculated by evaluating the time-dependent variation of the chloride concentration at 
the reinforcing steel depth that is computed from Eq. (3). The cumulative distribution 
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function of the time to corrosion initiation, ( )
init
F t , is defined as: 

( ) ( ) ( )
ini

ini

t ini
t t

F t p t t f x dx
≤

= ≤ = ∫  (9) 

where f(x) is the joint PDF of the vector of random variables X. The limit state function 
that defines corrosion initiation can be written as: 

( ) ( ) ( ), ,th tcg t C C t= −X X X  (10) 

where Ctc(X, t) is the total concentration of chlorides at the concrete cover depth, ct, at 
time t. The probability of corrosion initiation, pini, is obtained by integrating the joint 
probability function over the failure domain – i.e., Eq. (10). pini is estimated herein by 
using Monte Carlo simulations. 

5.2. Numerical Example 

5.2.1. Problem Description 

Lets consider a RC component placed in a chloride-contaminated environment. The 
parameters describing the exposure (Cs) and material properties (D) are described in 
Table 1. The probability of corrosion initiation is computed by considering that the 
threshold of chloride concentration for initiation of corrosion follows an uniform 
distribution with following parameters: ( )3 30.9 / ; 0.2 /thC U kg m kg mµ σ= = =  (Vu & 
Stewart, 2000) and a concrete cover depth of 6 cm.  

We will consider various inspection schemes considering one point or various 
points in depth for a single inspection time tins = 10 years. The study considers different 
ranges for the discretisation of each child node. We will also study the case in which the 
number of chloride profiles is limited and we will propose a strategy to improve the 
assessment in such a case.  

The histograms obtained after updating the BN for each parameter will be used 
directly in Monte Carlo simulations to estimate the probability of corrosion initiation to 
avoid any assumption about analytical distribution laws. 

5.2.2. Assessment of pini for Larger Inspection Data 

Figure 17a presents the probability of corrosion initiation with data obtained from a 
single point inspection depth (section 4.1). These results were obtained by identifying 
each parameter from 9,000 numerical chloride profiles. The results indicate that, data 
identified from one depth point does not provide an acceptable prediction of the 
probability of corrosion initiation in comparison with the theoretical assessment (section 
4.1). Although the errors in the identification of Cs are low for this inspection strategy, 
the errors of the identification of D introduce larger differences in the assessment of pini. 
However, from Figure 17b, it is noted that the prediction of the probability of corrosion 
initiation is more close to the theoretical values when the parameters are identified from 
several inspection points (section 4.2). In this case, the consideration of more inspection 
points reduces identification errors by improving the assessment of pini. The error 
depends on the ‘time of interest’ or ‘target probability of corrosion initiation’. This 
latter is more suitable because it is in link with actual recommendations schemes. By 
considering a target probability of corrosion lower than 0.5, larger values of Δx provide 
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a better assessment. If a higher probability of corrosion is acceptable (between 0.6 and 
0.9), the opposite trend is observed.  

[Figure 17 near here] 

5.2.3. Assessment of pini for Limited Inspection Data 

The results presented above considered a large number of simulations for the generation 
of numerical evidences. However, in real practice, the number of profiles collected after 
an inspection campaign is very limited. Figure 18a presents the probability of corrosion 
initiation estimated with limited data obtained by considering the full inspection length. 
In this case, the numerical evidences were generated from 15 profiles of chloride 
content obtained from Monte Carlo simulations. It is noted that the assessment of the 
probability of corrosion initiation is far from the theoretical values. Consequently, it is 
necessary to improve the use of the information utilised for updating the BN. To 
improve the identification, it is proposed to combine results of BN configurations with 
one and several inspection points (Figure 19). We use therefore the results of the 
identification of Cs obtained with one depth point configuration (Step 1) as a priori data 
for the estimation of D by considering the full depth configuration (Step 2).  

[Figure 18 near here] 
[Figure 19 near here] 

The assessments of probability of corrosion initiation that compare these two 
cases (before and after improvement) are shown in Figure 18. It is clear that this 
strategy improves the identification when data is limited. It could be concluded that this 
approach would be very useful for limited data. The assessment could be improved if 
we consider data of other inspection times as mentioned in section 4.3.  

6. Conclusions 

Chloride ingress is one of the main causes inducing corrosion of RC structures. The 
identification of parameters in chloride ingress modelling is crucial in predicting 
chloride ingress into concrete that will help to reduce maintenance costs of structures 
exposed to chloride-contaminated environments. Inspection data used for the 
identification is very limited due to time-consuming and expensive tests. Therefore, it is 
necessary to use these data in an optimal scheme. Within this framework, the BN could 
provide a possibility to identify model parameters with different information. In this 
study, results based on numerical evidences revealed that there are optimal 
configurations of BN for the identification of each parameter (Cs or D). For Cs, an early 
inspection with one point close to the surface could provide a good identification. For 
D, the identification should use the evidences from full inspection depth. At a specific 
inspection time, there is an optimal discretisation size that could provide the best 
estimation for D. These configurations could be combined to improve the identification 
of the model parameters. An application to the assessment of the probability of 
corrosion initiation showed that the approach is useful even if information is limited. 
When the number of chloride profiles is limited it is required to improve: (i) the BN 
configuration, and (ii) the updating strategy (a two-step procedure is proposed). 

This study focused on identification of model parameters for a simple analytical 
chloride ingress model. Tran et al., 2015 found that the main findings of this study for 
improving the identification of Cs and D are also valid for more complex models that 
account for instance for the time-dependency of D as the proposed in (Nilsson & 
Carcasses, 2004). However, the identification of parameters for more complex models 
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requires developing other BN configurations, larger computational efforts and 
additional inspection data. In addition, further work in this area will focus on: 

• the use of real data (real chloride profiles and/or study cases), 
• the consideration of other deterioration models numerical or analytical that 

account for more realistic conditions: unsaturated zones, binding, time-
dependency of model parameters, etc, 

• the consideration of measurement errors and model uncertainty, 
• the extension of the identification of random variables to the identification of 

random fields parameters, and 
• the consideration of costs for recommending inspection procedures (inspection 

times, number of cores, number and positions of measures in each core, etc) that 
provide a balance between error and cost. 
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Table 1: Theoretical values of parameters to identify 

Parameters Distribution Mean  COV 

Cs Lognormal 2.95 kg/m3 0.20 

D Lognormal 1.33×10-12 m2/s 0.15 

 

Table 2: Discretisation of nodes and a priori distributions 

Parameters Number of states per node 

(Ns) 

A priori 

distribution 

Range 

Cs (kg/m3) variablea Uniform [0.5; 8] 

D (m2/s) variablea Uniform [6×10-13; 3×10-12] 

C(xi,tj) (kg/m3) variablea  b [0; 8] 
a Ns varies to determine a value that diminishes the identification error 
b Computed from a priori information of parent nodes 

 

 

Table 3: Discretisation cases and number of points in depth 

Case Δx (cm) 
Discretisation 

(cm)  

Number of points in 

depth, nx 

1 0.3 0:0.3:12 41 

2 0.5 0:0.5:12 25 

3 1 0:1:12 13 

4 2 0:2:12 7 

5 3 0:3:12 5 

 

  



 

Table 4: Schemes for combining evidences for different inspection times 

Inspection 

scheme 
Inspection times (tins) 

Number of 

chloride profiles 

1 10 years 9000 

2 20 years 9000 

3 30 years 9000 

4 10 years + 20 years 4500 + 4500 

5 
10 years + 20 years + 30 

years 

3000+ 3000 + 

3000 

 

 



 

 
Figure 1: A Simple Bayesian Network 

 
 
 

 
 

Figure 2: General BN configuration for modelling chloride ingress 
 
 
  

X2 X3

X1

Cs D

C(x , t )1 C(x , t )21 1 C(x , t )i 1 C(x , t )n 1

C(x , t )1 j C(x , t )2 j C(x , t )i j C(x , t )n j

C(x , t )1 m C(x , t )2 m C(x , t )i m C(x , t )n m

.  .  . .  .  .

.  .  . .  .  .

.  .  . .  .  .

1   2   3   4   5   6 

Pr
ob

. d
en

si
ty

 

Ns 

Range 



 
 
 

 
Figure 3: BN configuration using one inspection point in depth 

 
 

 
Figure 4: Identification error of the mean value of Cs for child nodes discretised into different 

number of states 
 

 
Figure 5: Identification error using one depth point: (a) Mean � (b) Standard deviation 
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Figure 6: Mean chloride profile and 5% and 95% percentiles at tins=10 years 

 
 

 
Figure 7: BN configuration with ∆x=2cm 
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Figure 8: Identification error using full inspection depth: (a) Mean � (b) Standard deviation 

 
 

 
Figure 9: Evidence at x=6cm with different discretisation of child nodes: (a) 15 states – (b) 200 

states 
 
 

 
Figure 10: (a) Ranges for each child node at depth x –(b) Evidence at x=6cm with 15 states for 

each child node and different ranges. 
 
  

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3

Er
ro

r (
%

)

∆x (cm)

Mean Cs

Mean D

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

Er
ro

r (
%

)

∆x (cm)

Std Cs

Std D

(a) (b)

(a) (b)

States per node States per node

Pr
ob

ab
ili

ty
 d

en
si

ty
 (%

)

Pr
ob

ab
ili

ty
 d

en
si

ty
 (%

)

0

1

2

3

4

5

6

7

8

9

0 5 10 15

C
hl

or
id

e 
co

nt
en

t (
kg

/m
3 )

Depth x (cm)

Min values

Max values

(a) (b)

States per node

Pr
ob

ab
ili

ty
 d

en
si

ty
 (%

)



 
 

 
Figure 11: Identification error of D for three discretisations of child nodes: (a) Mean � (b) 

Standard deviation 
 
 

 
Figure 12: Effect of discretisation size ∆x on the distribution of chloride content: (a) ∆x=0.3 cm 

– (b) ∆x=2 cm 
 
 

 
Figure 13: Identification error for D with evidences from different inspection times: (a) Mean - 

(b) standard deviation 
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Figure 14: Identification error for Cs with evidences from different inspection times: (a) Mean - 

(b) standard deviation 
 
 

 
Figure 15: Identification error for Cs with evidences from different schemes of inspection: (a) 

mean - (b) standard deviation 
 
 

 
Figure 16: Identification error for D with evidences from different schemes of inspection: (a) 

mean - (b) standard deviation 
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Figure 17: Probability of corrosion initiation with data obtained: (a) from a single point 

inspection depth - (b) from full inspection depth 
 
 

 
Figure 18: Probability of corrosion initiation with limited data: (a) before improvement - (b) 

after improvement 
 
 

 
Figure 19: Two-step procedure for improving identification with limited data 
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