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Abstract

+ Context The rising demand of energy wood for heating
purposes in Germany leads to concerns regarding the over-
exploitation of forests. A major aspect is the impact of
whole-tree harvesting on long-term productivity of forest
soils.

+ Aims This study aimed to analyze the effects of nutrient
removal on productivity using the historically prevalent
practice of litter raking. Since there is a lack of controlled
whole-tree harvesting experiments in Germany, we used
litter raking as a surrogate management practice entailing
the removal of nutrients from forest stands.

+ Methods We used three sites with documented litter raking
to analyze the effects of nutrient removal on productivity
using dendroecological methods: two recent litter removal
experiments in two Scots pine stands (Siegenburg and
Burglengenfeld) and one oak stand (Eichhall) with docu-
mented historic litter raking. Basal area increment (BAI) and
tree-ring characteristics were compared between periods with
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litter raking and the preceding periods for both treatment and
control plots.

* Results For the two Scots pine sites with a relatively short
litter raking period, no effects of litter raking on BAI could
be ascribed to nutrient removal. On the oak site with a
longer history of litter utilization, the loss in BAI due to
litter raking amounts to 22 % during the period with active
raking and to still 17 % in the recovery period.

« Conclusions These results contribute to the still very
limited understanding about the impact of whole-tree har-
vesting on forest productivity in Germany by laying down
an upper limit of possible effects due to nutrient removal, as
nutrient loss by litter raking tends to be higher than nutrient
loss by whole-tree harvesting.

Keywords Nutrient removal - Productivity - Pine - Oak -
Tree-rings

1 Introduction

Political stimuli for renewable energies and rising prices of
fossil fuels entailed an increase in wood demand in Central
Europe. For the last 10 years, felling rates in Germany have
been increasing, from 39.5 Mm® in 2001 to 54.4 Mm® in 2010
with rising wood energy consumption being a substantial
driver (German Federal Ministry of Food, Agriculture and
Consumer Protection 2010). Besides the prevalent firewood
use in private household, wood energy is increasingly used in
municipal or private biomass heating plants, wood chip, or
pellet heating systems. According to the German wood energy
and pellet association, currently 15 M household in Germany
use wood for generating heat (Deutsches Pelletinstitut DEPI
2010). A further increase of wood demand is predicted in order
to achieve the targets set in the national renewable energy
action plan; further pressure on forests may also arise from
the German decision to phase out nuclear power by 2022.
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As a consequence, public is more and more concerned
about an overexploitation of forests. One of the major
aspects is the impact of whole-tree harvesting on long-
term productivity of forest soils due to nutrient removal. In
Central European forests, long-term historical experiences
exist concerning the anthropogenic influence on the forest
nutrient cycle. Litter raking—the removal of fresh litter and
of the organic horizon for animal husbandry—which was a
widespread practice especially on poor soils until World
War 1II led to a strong degradation of forest soils. Since
nutrient concentrations are much higher in leaves, twigs,
and branches compared to the bole, the export of nutrients
like N, P, Ca, Mg, and K may be up to three times higher for
full tree harvest compared to removal of the bole only
(Jacobsen et al. 2003). Already in the 1970s, forest ecolo-
gists indicated that whole-tree harvest may have serious and
long-term adverse effects on nutrient cycling, especially on
poor sites (Kreutzer 1979).

Most of the present concerns are based on nutrient budg-
ets showing that nutrient removal by whole-tree harvesting
can exceed nutrient input by precipitation and weathering,
but direction and intensity of the effects strongly depend on
the nutrient status of the site (Englisch and Reiter 2009;
Meiwes et al. 2008). Since comprehensive data for nutrient
removal, weathering rates, precipitation input, and seepage
water output are rarely available, also simplified approaches
based on nutrient storage in biomass and in the exchange-
able fraction of the soil have been used. In most cases, only
“base cations” Ca, Mg, and K have been assessed while
other elements, especially P, have not been considered due
to large uncertainties concerning their availability in forest
soils. Thus, considerations based on nutrient budgets can
only indicate a possible threat of soil fertility due to nutrient
removal, but do not allow a quantification of production
loss. However, such information would be pivotal for man-
agement decisions with regard to sustainable use of forest
biomass.

Unfortunately, our knowledge in this context is limited.
While many fertilization studies investigated the relation-
ship between nutrient additions on productivity (e.g., Bergh
et al. 1999; Nohrstedt 2001), only few studies have mea-
sured possible production losses of forest crops due to
nutrient removal. Intensive long-term experiments investi-
gating the impact of whole-tree harvesting on tree growth
have only been performed in Scandinavia (Helmisaari et al.
2011). For intensive litter raking, strong reductions in
growth rates (height and volume) have been documented
on poor soils (Fiedler et al. 1962) and the strong increase of
productivity of pine in Southern Germany (Kiisters 2002) in
the second half or the twentieth century has been explained
with recovery of soils after the termination of litter raking.
For nutrient removal by whole-tree harvesting, several stud-
ies mostly originating from Northern Europe indicate a loss
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of productivity between 0 and 15 % (Helmisaari et al. 2011;
Jacobson et al. 2000; Proe et al. 1996; Sterba 1988).
However, effects vary widely depending on soil type, tree
species, and intensity and timing of nutrient removal.
Particularly in Central Europe with highly variable forest
conditions, available data are insufficient for a quantitative
assessment of productivity losses due to nutrient removal.
Additionally, anthropogenic nitrogen deposition has strong-
ly altered nutrient status of forest soils in Central Europe and
effects of nutrient removal on nitrogen limited sites presum-
ably differ from sites with a moderate to high N deposition.

While a comprehensive set of field experiments has been
established in Scandinavia (Helmisaari et al. 2011), no sci-
entific experiments are available for analyzing the influence
of nutrient removal on productivity in Germany. Practical
harvesting operations usually are not documented well
enough for scientific analysis. Furthermore, intensive
whole-tree harvesting in Germany only started some years
ago and time may have been too short for generating sig-
nificant effects. Therefore, we used three sites with docu-
mented litter raking in order to analyze the effects of nutrient
removal on productivity using dendroecological methods.
We hypothesized that nutrient removal affected soil produc-
tivity reflected by a threefold response in radial growth
patterns:

1. A reduction in basal area increment (BAI) as a response
to decreased nutrient availability

2. An increase in mean sensitivity (i.e., an increase in year-
to-year variability) of tree growth reflecting an increas-
ing influence of external factors on tree growth

3. A decrease in serial autocorrelation of tree ring growth
reflecting a decrease in the trees' buffer capacity.

2 Material and methods
2.1 Sampling sites

Two litter removal experiments in Scots pine stands and one
sessile oak stand with documented historic litter removal
were selected for data acquisition. All stands are located in
Southern Germany on acid soils: the sessile oak stand in the
Eichhall Nature Reserve in the Spessart Mountains and the
Scots pine stands in Siegenburg and Burglengenfeld (see
Table 1). The two pine stands are relatively young and
single-layered monocultures, while the nearly 400-year-old
oak stand is two-layered with beech understorey (Table 2).

In Eichhall, historic litter removal has been documented
seven times in the period 1900-1946 (1900, 1907, 1918,
1924, 1932, 1943, and 1946). In Siegenburg, the historic
litter removal ended in 1950 and was started again as a
measure of landscape conservation in 1996 with yearly
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Table 1 Site characteristics

Site Latitude [N]  Longitude [E]  Elevation [m asl] = Tean [°C]  Pmean [mm]  Soil type/geology
Siegenburg 48.75 11.83 400 8.2 640 Dystric Cambisol/Holocene aeolian
sand deposit
Burglengenfeld  49.17 12.02 390 7.4 620 Dystric Cambisol/Cretaceous sand deposit
Eichhall 49.90 9.40 350 8.8 780 Dystric Cambisol/Triassic sandstone

Mean temperature 7., and mean precipitation sum Pp,.,, are given for the period 1950-2007

recurrence. In Burglengenfeld, historic litter removal ended
around 1950 as well and was started again in 1999 for conser-
vation purposes. For each of the sites, adjacent stands without
litter removal were used as control plots. Soil types were iden-
tical on the litter-raked sites and on the control plots. Litter
raking had no visible effects on soil morphology in the mineral
soil but was clearly reflected in a reduced thickness of the forest
floor. Although the quantity of nutrients removed has not been
documented at any site, it can be assumed that large quantities of
nutrients have been lost. Assuming yearly litter removals of 3 t
ha ! for pine and 7 tha ' for oak per event (Ebermayer 1876), at
minimum 300 kg N ha ' and a similar quantity of base cations
(K + Ca+ Mg) have been removed at the two pine sites within
10 years. At the oak site, nutrient loss was in a magnitude of
1,000 kgha ™' for both N and base cations within 50 years.

2.2 Tree sampling and tree-ring measurement

On each site, 10 to 14 vital and undamaged dominant trees
were selected for treatment and control plots. Each tree was
cored two times at breast height, from northwestern and
southeastern direction. That way, the trees were cored 45°
displaced from the main wind direction to prevent bias in
diameter estimation due to reaction wood. For coring, a
drilling machine (BDF 452 RFE, Makita, Anjo, Aichi,
Japan) was used in conjunction with hardwood corers
(Suunto, Finland) or softwood corers (Haglofs, Sweden).
For transport, drying, and storage purposes, cores were put
into specially constructed groove boards.

The increment cores of each tree were mounted and
smoothed with a chisel. Ring widths were measured to the
nearest 0.01 mm on each core using a measuring table
(LINTAB 5; Rinntech, Heidelberg, Germany) with a stereo-
scope (MZ 6; Leica, Wetzlar; Germany) and the TSAP-Win
software package (Rinn 2003). Crossdating accuracy was

checked both visually by on-screen curve comparison in
TSAP-Win and statistically using program COFECHA
(Holmes 1983).

2.3 Statistical analysis

To compare radial growth between treatment and control
plots, the series of corresponding tree-ring widths were
transformed into series of BAI, based on the assumption
that constant radial growth is expressed by constant ring
area increment rather than constant diameter increment
(Biondi and Qeadan 2008). This rationale has been affirmed
by several studies on tree mortality (Bigler and Bugmann
2004; Bigler et al. 2006) and drought impact on tree growth
(Piovesan et al. 2008; Kohler et al. 2010).

To identify differences in tree growth, mean BAI was
compared between treatment and control plots for a pretreat-
ment period and the treatment period. As pretreatment period,
a time frame preceding the experimental (Siegenburg and
Burglengenfeld) or historic (Eichhall) litter removal with iden-
tical length to the treatment period was chosen for each case
(Table 3). BAI was averaged for the period prior to litter
raking for each tree on both control plots and plots with
posterior litter raking to obtain a reference average growth
rate (BAlg). The same was done for the period of litter raking
to obtain an average growth rate during the treatment (BAlr).
The ratio BAIT/BAIg* 100 then gives the relative change in
BALI after litter raking has started. Differences in this relative
change among the sites with litter raking and the respective
control plots have been assessed using two-sided 7 tests. As in
Eichhall the litter raking stopped in 1946, a considerable time
span is available for studying the recovery of the raked plot in
comparison to the plot without litter raking. Here, an addition-
al time span of equal length (1956-2000) was chosen for the
recovery period.

Table 2 Stand characteristics

(from 2009 for Burglengenfeld Site Tree species Standing volume Mean diameter Mean height Mean age
and Eichhall and from 2005 for [m*ha '] [em] [m] [a]
Siegenburg)
Siegenburg Scots pine 337 30 21 60
Burglengenfeld Scots pine 298 34 24 94
Eichhall Sessile oak 750 63 32 375
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Fig. 1 Comparison of basal area increment for stands with and without
litter raking at the different sites. Basal area increment is shown as 5-
year moving average

raking on basal area growth during the investigated time span
can be excluded for these two sites. At the Eichhall oak site,
median BAI at the raked site was about 22 % less compared to
the control plot indicating a negative growth effect by nutrient
removal. The assumption is confirmed by a reduced difference

between both plots during the recovery period. During the
recovery period, median BAI was still 17 % less on the
litter-raked sites which can be interpreted as a long-
lasting effect of nutrient removal. However, variability
between individual trees was high and the effects were
not significant at the p=0.05 level. Thus, the negative
growth effect can only be interpreted as a tendency
albeit a 22 % reduction is a strong production loss from
a forest management point of view.

4 Discussion
4.1 Raking effect on tree-ring statistics

An effect of anthropogenic nitrogen and pollutant input on
the variance of tree-ring width has been described for Pinus
sylvestris in Lithuania (Juknys et al. 2002), rendering trees
more susceptible to natural external factors. In our study on
all three sites, increases in MS from the pretreatment to the
treatment period could be observed, on both control and
raked plots (significant only for Siegenburg). This indicates
an increase in MS that is associated with tree aging rather
than nutrient shortage. An increase of MS with increasing
tree age has also been found for Pinus cembra and Larix
decidua (Carrer and Urbinati 2004).

Siegenburg

—— without litter raking
—— with litter raking

Burglengenfeld
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BAI changes relative to the S
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4.2 Raking effect on basal area increment

For both pine stands, no effect of litter raking on BAI was
obvious. One explanation could be that the time span of
litter raking at Siegenburg and Burglengenfeld was too short
to yield significant effects of nutrient removal on tree
growth. At both sites, nutrient removal has been performed
for about 10 years only. In Scandinavian investigations,
growth reaction in pine stands after whole-tree harvest was
small in the first 10-year period and significantly increased
later on (Helmisaari et al. 2011). Sayer (2006) showed in a
meta-analysis of litter removal experiments that—across
species—a reduction in growth rates generally becomes
apparent after about 15 years. Furthermore, pine is a tree
species well adapted to poor soils and has the capacity of
efficient retranslocation of nutrients (Helmisaari 1992).
Therefore, growth effects concerning nutrients tend to be
smaller compared to spruce. Another reason for the missing
growth effect could be that nitrogen deposition has compen-
sated nutrient removal of litter raking. In fertilization trials,
N usually was the limiting nutrient (Nohrstedt 2001), and in
the above-mentioned whole-tree harvesting study, also ni-
trogen has been identified as the main limiting factor
(Helmisaari et al. 2011). In Central European forests, nitro-
gen deposition—which is usually between 10 and 20 kgha ™'
in Central European forests (Emmett 2007)—may have
compensated nitrogen removal by litter raking. We assume
that in this case, other nutrients will become a limiting factor
in the long run. At the Siegenburg site, foliar nutrient con-
centrations were measured in 2002, i.e., 7 years after litter
raking had started (Beer 2004, unpublished). Nitrogen con-
centrations of pine needles at the raked plot tended to be
higher than on the control plot (15.7 vs. 15.0 mgg ') and in
a range of sufficient supply. Mg and K foliar concentrations
were also in a sufficient range, but concentrations tended to
be lower at the raked plot than on the control plot (5.0 vs.
56 m K g ' and 0.9 vs. 1.0 mg Mg g ') indicating a
potential future threat. These findings are in line with
Hofmeister et al. (2008) who found no decrease in foliar N
for Picea abies, but in foliar Mg and K due to litter removal.

At the oak site with at least 50 years of litter raking, we
observed a decrease in BAI of about 22 % in comparison to
the control plot. The median BAI change from the pretreat-
ment to the treatment period suggests a stronger increase in
BAI on the non-raked site, and this effect is still visible to a
smaller extent in the recovery interval after raking had
eventually stopped. Consequentially, litter removal appears
to result in a delayed, but long-lasting impact on tree
growth. Although average productivity loss was about
22 %, the effect was not significant due to the high variabil-
ity of individual tree reaction. Unfortunately, the experimen-
tal plots were too small (between 0.07 and 0.11 ha™" for the
raked plots) to sample more trees. Tree-ring width is a
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complex signal integrating different effects on tree growth,
and distinct tree reactions are influenced by the individual
genotype. A strong variability of individual tree-ring width
was also observed when analyzing the influence of drought
effects on commercial tree species (Zang et al. 2011).

4.3 Implications for whole-tree harvesting

While whole-tree harvesting is increasingly popular for
biomass use, our knowledge about possible negative
impacts on productivity is still limited. Unfortunately, only
very few studies investigated the impact of whole-tree har-
vesting on forest productivity in Central Europe (Sterba
1988). It is clear that the effects depend on tree species
and site factors. Even under relatively homogeneous con-
ditions in Scandinavia, there was a strong variability be-
tween individual sites (Helmisaari et al. 2011). Since there is
lack of controlled whole-tree harvesting experiments, we
used litter raking experiments in order to assess the impact
of nutrient removal on productivity. However, the compar-
ison of litter raking to whole-tree harvesting is not straight-
forward. In whole-tree harvesting, leaves and twigs are
typically removed together with the timber. So, in this case,
fresh plant material with original nutrient stock is removed
from the stands. On the opposite, litter consists of plant
material whose nutrients have been retranslocated and there-
fore has a considerably lower concentration in nutrients
(Helmisaari et al. 2011). However, biomass loss is high for
litter raking since at least parts of the forest floor are re-
moved and return period is frequent. As a net effect, nutrient
exports tend to be lower for whole-tree harvesting compared
to litter raking (Kreutzer 1979; Kreutzer 1972). Therefore,
litter raking experiments can be considered as an upper limit
of possible effects caused by whole-tree harvesting. As our
quantitative knowledge in this context is still limited for
Central Europe and large-scale experiments are lacking,
we would like to invite other researchers to publish also
smaller and sometimes only partial studies in order to con-
tribute to a larger picture.

5 Conclusions

Nutrient removal may have serious negative impacts on
forest productivity. However, effects strongly depend on
tree species, site conditions, and duration and frequency of
nutrient removal. Due to the increasing use of forest bio-
mass as a fuel, whole-tree harvesting is becoming a standard
management procedure. In order to maintain the long-term
productivity of forest ecosystems, scientifically based rec-
ommendations for forest management are indispensable.
According to our results, short or infrequent episodes of
litter removal may not be strong enough to reduce pine
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growth significantly, especially in a situation characterized
by high anthropogenic nitrogen deposition. On the other
hand, our findings corroborate the wide experience that
intensive and long-lasting nutrient removal affects forest
productivity strongly and persistently. From our results, we
infer that frequent and intensive whole-tree harvesting is
likely to decrease forest productivity. However, current
knowledge in Central Europe is insufficient for a quantita-
tive assessment.
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