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Abstract Compaction of agricultural soils is a concern for
many agricultural soil scientists and farmers since soil com-
paction, due to heavy field traffic, has resulted in yield
reduction of most agronomic crops throughout the world.
Soil compaction is a physical form of soil degradation that
alters soil structure, limits water and air infiltration, and
reduces root penetration in the soil. Consequences of soil
compaction are still underestimated. A complete under-
standing of processes involved in soil compaction is necessary
tomeet the future global challenge of food security.We review
here the advances in understanding, quantification, and
prediction of the effects of soil compaction. We found the
following major points: (1) When a soil is exposed to a
vehicular traffic load, soil water contents, soil texture and
structure, and soil organic matter are the three main factors
which determine the degree of compactness in that soil. (2)
Soil compaction has direct effects on soil physical properties
such as bulk density, strength, and porosity; therefore, these
parameters can be used to quantify the soil compactness. (3)
Modified soil physical properties due to soil compaction can
alter elements mobility and change nitrogen and carbon cycles
in favour of more emissions of greenhouse gases under wet
conditions. (4) Severe soil compaction induces root deforma-
tion, stunted shoot growth, late germination, low germination
rate, and high mortality rate. (5) Soil compaction decreases
soil biodiversity by decreasing microbial biomass, enzymatic
activity, soil fauna, and ground flora. (6) Boussinesq equations
and finite element method models, that predict the effects of
the soil compaction, are restricted to elastic domain and do not

consider existence of preferential paths of stress propagation
and localization of deformation in compacted soils. (7) Recent
advances in physics of granular media and soil mechanics
relevant to soil compaction should be used to progress in
modelling soil compaction.
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1 Introduction

Performance of soil on a particular land plays a vital role in
the development and survival of civilizations as soil ensures
the provision of food and further essential goods for humans
(Hillel 2009). But the soil is a nonrenewable resource with
potentially rapid degradation rates and extremely slow forma-
tion and regeneration processes (Van-Camp et al. 2004). So,
the sustainable use of soils is the only solution to deal with the
global issues like food security, demands of energy and water,
climate change, and biodiversity (Lal 2009; Jones et al. 2009).

Soil degradation is as old as agriculture itself; its impact
on human food production and the environment is becoming
more serious than ever before because of its extent and
intensity (Durán Zuazo and Rodríguez Pleguezuelo 2008).
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Effects of soil degradation are not only on the livelihoods of
rural dwellers but it also poses a potential threat to global food
supplies over the long term (Scherr and Yadav 1996). Land
degradation will remain an important global issue for the
twenty first century because of its adverse impact on agronom-
ic productivity, the environment, and its effect on food security
and the quality of life (Eswaran et al. 2001). The soil compac-
tion is the physical form of soil degradation that changes the
soil structure and influences the soil productivity (Mueller et
al. 2010). Unlike salinity, water logging or the soil erosion that
can be remarked from the soil surface, the soil compaction
causes a hidden degradation of the soil structure that is diffi-
cult to locate and rationalize (McGarry and Sharp 2003).

Increased demands for the food and shelter have resulted in
mechanization of forests and farms in almost all the developed
countries as well as in many developing countries. Mecha-
nized operations involved in intensive cropping and in forest
silvi-culture can, directly or indirectly, lead to the soil com-
paction as shown in Fig. 1 (Ishaq et al. 2001; Silva et al. 2008).
About 68 million ha of the soils worldwide are estimated to be
affected by the soil compaction from the vehicular traffic. The
soil compaction is responsible for the soil degradation in
Europe (33 million ha), Africa (18 million ha), Asia (10
million ha), Australia (4 million ha), and some areas of North
America (Flowers and Lal 1998; Hamza and Anderson 2003).

The soil compaction can be defined as “the process by
which the soil grains are rearranged to decrease void space
and bring them into closer contact with one another, thereby,
increasing the bulk density” (SSSA 1996). So, the soil
compaction involves the changes in physical properties of
the soil (bulk density and soil porosity) and these modified
physical parameters of the soil are determinants of the
influence of the soil compaction on chemical properties of
the soil, soil fauna, and diversity and plant growth (Fig. 2).

The soil compaction in cultivated lands affects mostly the
upper layer of soil (top soil compaction) but it is also

observed at certain depth (subsoil compaction). Except a
few cases where a slight degree of top soil compaction can
be beneficial for some type of soils especially sandy soils
(Bouwman and Arts 2000), in most cases, it has negative
effects on the soil. The subsoil compaction is a serious
problem because it is expensive and difficult to alleviate
and it has been acknowledged as a serious form of the soil
degradation by the European Union (Jones et al. 2003).
About 38% reduction in grain yield of wheat crop is
reported when the subsoil compaction was carried out at
0.15 m depth to a bulk density of 1.93 Mg/m3 (Ishaq et al.
2001). The soil compaction in forests, due to mechanized
operations, can be severe but shows more spatial variability
than in agricultural lands due to less systemic mechanized
operations and presence of stumps and heavy roots in the soil.

A number of reviews already exist on the soil compaction,
but they have been written many years back and are focused
on specific aspects such as physical aspects of the soil com-
paction (Horn et al. 1995; Soane et al. 1982), the influence of
organic matter on the soil compaction (Soane 1990), model-
ling the soil compaction (Lipiec and Hatano 2003; O’Sullivan
and Simota 1995), and the soil compaction by grazing animals
(Drewry 2006).

Some reviewed articles have also discussed the soil com-
paction on the basis of a specific land use, mainly crop systems
(Hamza and Anderson 2005; Soane andVan Ouwerkerk 1995)
and rarely forest systems (Greacen and Sands 1980). The most
recent review by Batey (2009) focused only on practical soil
management issues. In addition to the previous aspects by
including the recent studies, this review also considers the
effects of the soil compaction on biogeochemical processes
and biodiversity, both at macro- and microscales. Furthermore,
existingmodels for the soil compaction are critically discussed
and new directions for modelling the effects of the soil com-
paction on the soil are being proposed

1.1 Description of the phenomenon

The soil compaction involves a microscopic rearrangement
and bringing of the solid particles closer to one another and
consequently an increase in the bulk density of the soil
(Panayiotopoulos et al. 1994). But the degree of compactness
is a quantitative parameter and defined as “the ratio of the
actual bulk density to the reference bulk density obtained by
uniaxial compression of wet soil (sufficiently for drainage) at
static pressure of 200 kPa” (Håkansson 1990; Lipiec and
Hatano 2003). The soil compaction is accompanied by the
removal of the soil air, changes in the soil structure, and
macroscopic increase in the soil strength (Taylor 1971). The
phenomenon of the soil compaction can be explained in the
classical elasto-plastic conception of stress–strain phenomena
by considering the soil as a material that reacts elastically up to
a certain limit of stress; beyond that limit, any incremental

Fig. 1 Ruts formation after the passage of vehicular traffic on soil; an
example of compacted soil
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stress results in the plastic deformation (Horn 1988). This
stress threshold for a given soil, under given climatic condi-
tions, depends on soil texture, degree of aggregation, and
matric potential (Horn et al. 1995). The soil compaction,
depending on the soil structure, influences soil physical,
chemical, and biological processes (Gupta et al. 1989; Fig. 2).

Susceptibility of the soils to compaction varies with the
soil texture. For example, the silt loam soils with low colloid
contents are more susceptible than medium or fine textured
loamy and clayey soils at low water contents while the
sandy soils are slightly susceptible to the soil compaction
(Horn et al. 1995). In an experiment, Smith et al. (1997)
selected 35 types of soils from timber growing areas covering
a wide range of the soil textures (clay contents from 8% to
66%) and organic carbon contents (from 0.26% to 5.77%). A
vertical stress was applied on the soils by applying pressure of
0, 100, 200, 400, 600, 1,000, and 1,400 kPa at different water
contents and then bulk density was measured. Thus, a rela-
tionship among pressure applied (P), water content (W), and

bulk density of the soil (D) was established. When a loam-
Typic Haplaquept soil was subjected to varied pressures and
moisture contents, it behaved totally differently from a loamy
sand–Aquic Ustipsamment soil (Fig. 3). The former one was
resistant to the compaction when dried and susceptible to
compaction when moist to wet while the latter showed only
small increases in compaction at incremental load and the
moisture contents. Different behaviour in both types of soil
is attributed to higher bulk densities of loamy sand soils when
they are very dry due to the particles rearrangement with
changing water contents (Smith et al. 1997).

Increases in the soil organic matter may reduce compatibil-
ity by increasing resistance to deformation and/or by increasing
elasticity (rebound effects; Soane 1990). High organic carbon
contents can even reduce the compactibility of soil at high
moisture levels in clay and silty clay soils (Smith et al. 1997).

The soil compaction process is highly influenced by the
soil water content (Hamza and Anderson 2005; Horn et al.
1995; Mosaddeghi et al. 2000). It affects the penetration

Fig. 2 Causes of soil
compaction and their effects on
soil physical properties with
ultimate direct effects on soil
chemistry, plant growth and soil
biodiversity while indirect
effects on exchanges of matter
with external compartments
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resistance and load support capacity or maximum permissi-
ble ground pressure on the soil (Medvedev and Cybulko
1995). Vulnerability of a soil to compaction at the given soil
moisture and energy level depends also on its clay content
andmineralogical characteristics (Smith et al. 1997;Wakindiki
and Ben-Hur 2002). Generally, a soil with very low moisture
content is less vulnerable to compaction than a soil with high
moisture content (Gysi et al. 1999). But when the moisture
content is so high that all the soil pores are filled with water, the
soil becomes less compressible (Smith et al. 1997). Using the
bulk density as the soil compaction indicator, Ishaq et al.
(2001) showed as to vulnerability of the soil to compaction
increases with increasing water contents up to a limit after
which it decreases with the increasing water contents
(Fig. 4). They carried out a laboratory experiment on the sandy
clay loam soil and found that the soil was compacted to its
maximum at a soil moisture content of 120 g/kg. Similar
results were reported in another experiment when a vertical

pressure was applied on 35 soils of different textures (Smith
et al. 1997).

Knowledge of water contents in relation to the soil com-
paction for a particular soil can be helpful in scheduling the
routine mechanical operations on that soil (Batey 2009; Ohu
et al. 1989). The soil compaction can also be influenced by
the state of energy of water, i.e., water potential, either
matric or osmotic potential (Charpentier and Bourrié
1997). In nonsaturated conditions, the suction can influence
compaction and the effect of the suction must be separated
from the effect of the applied pressure (Cui et al. 2010). So,
the soil water contents, soil texture and structure, and soil
organic matter are the three main factors among others
which determine the degree of compactness after the soil
is being exposed to vehicular traffic load.

2 Causes of the soil compaction

Compaction can be a natural phenomenon (Fabiola et al.
2003) caused by freezing and drying or an artificial phenom-
enon caused by the mechanical operations (Greene and Stuart
1985). Conventional agricultural practices can also degrade
the soil by the soil compaction (Quiroga et al. 1999).

In modern agriculture, most of the field operations from
sowing to harvesting are done mechanically by using heavy
wheeled machines which can compact the soil at every pas-
sage (Williamson and Neilsen 2000). The soil compaction by
amachine, in general, depends on the soil strength and loading
of machine (Alakukku et al. 2003). The soil strength is influ-
enced by the organic matter, water content, soil structure, and
texture while the loading is expressed by axle load, number of
tyres, tyre dimensions, tyre velocity, and soil tyre interaction
(Kirby et al. 1997; Sakai et al. 2008). Axle load should not be
confused with axle pressure as axle load is weight of machine

Fig. 3 Contradictory behaviour of two soils with different textures at
varied applied pressure and moisture contents. a Loam–Typic Haplaquept,
b loamy sand-Aquic Ustipsamment. From Smith et al. (1997)

Fig. 4 Relationship between soil water content and bulk density for
maximum soil compaction. The error bars represent the standard
deviation of mean values. From Ishaq et al. (2001)
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(kilogram) while pressure is the axle load per unit surface area
(kilopascal) and in the soil compaction; the term pressure is
used to express the disturbance on a soil. Increasing the
pressure on the soil increases the chances of the soil compac-
tion (Gysi et al. 1999). Increasing the frequency of passages of
machines over a soil increases its dry bulk density and cone
index resulting in the top soil compaction and unsuitable
physical soil conditions for seed emergence (Botta et al.
2006; Sakai et al. 2008). However, a major portion of the total
soil compaction is caused by the first passage (Bakker and
Davis 1995; Silva et al. 2008) or early passages (Sakai et al.
2008) of the machine and 10 passes can affect the soil up to
50 cm depth (Hamza and Anderson 2005).

Animal trampling can cause the soil compaction and can
degrade the soil structure (Silva et al. 2003). The soil com-
paction caused by grazing animals through hoof action is
likely to be more widespread within the paddocks as com-
pared to the soil compaction caused by mechanical imple-
ments which is limited under the tracks (Drewry 2006; Sigua
and Coleman 2009). Physical deterioration by grazing animals
depends on the trampling intensity, soil moisture, plant cover,
land slope, and land use type. Animal caused the soil com-
paction could range from 5 to 20 cm and might affect the soil
bulk density, hydraulic conductivity, macropore volume, and
penetration resistance of the soil (Hamza and Anderson 2005;
Sigua and Coleman 2009). Effects of the grazing animals on
the soil physical properties (Drewry et al. 2008), and soil
nitrogen and carbon have been discussed in detail in literature
(Bhandral et al. 2007; Piñeiro et al. 2010).

In contrast to the cultivated lands, harvesting operations in
forest cause more soil compaction because of: (1) the use of
heavy machinery for harvesting; (2) felling, pushing, pulling,
and lifting of logs; (3) during transport of logs that exert a
combined pressure on the soil; (4) no tillage operations in forests
to loosen the soil. In the forests, harvesting operation causes
different types of the soil disturbances and probability of the soil
compaction is directly related to harvesting system and harvest-
ing density (Sowa and Kulak 2008). Mostly severe soil com-
paction is caused when thinning and clear felling operations are
carried out with machines and these operations can compact the
soil up to the depth of 60 cm leaving the effects for more than
3 years (Greacen and Sands 1980). A simple logging operation
in the forests can damage 20–30% of the forest land up to the
depth of 30 cm (Herbauts et al. 1996). The use of light weight
multifunctioning machines can reduce the passages and ulti-
mately the degradation of the soil (Radford et al. 2000).

In the urban areas, urban parks and recreational sites receive
large number of visitors and with increasing urban population,
visitors’ pressure on these sites is increasing day by day (Frick
et al. 2007). Trampling effects of the visitors on the soil and
vegetation have been reported by many authors (Jim 1987;
Sarah and Zhevelev 2007) and these effects are long term in
some cases (Kissling et al. 2009). Increasing visitors’ pressure

results in the soil compaction, increased bulk densities,
decreased soil porosity and decreased organic matter contents
(Marion and Cole 1996; Sarah and Zhevelev 2007).

Military operations or military training exercises in the
past have also resulted in severe soil compactions in some
places (Silveira et al. 2010) and increased bulk density of
the soils up to 2.12 Mg/m3 has been reported due to military
operations (Webb 2002).

Natural causes (tree roots, precipitation, seasonal cycles,
etc.) of the soil compaction are not as harmful as anthropogenic
causes: the soil compaction associated with natural causes is
limited in top 5 cm of the soil and the soil compaction due to
the trampling and urban pressure on a site can compact the soil
up to 20 cm while mechanical operations can compact the soil
up to 60 cm. No matter of which origin it is, the soil compac-
tion influences the water dynamics (Schlotzhauer and Price
1999), pesticide diffusion (Alletto et al. 2010; Van den Berg et
al. 1999), soil erosion (Kosmas et al. 1997), carbon and nitro-
gen cycle (De Neve and Hofman 2000), plant growth (Lowery
and Schuler 1991), and mechanical operations cost (Soane and
Pidgeon 1975); as we shall discuss in the coming sections.

3 Quantifying the effects of the soil compaction

To characterize the soil compaction, physical parameters
such as the bulk density and porosity, soil strength, water
infiltration rate, and reduction of aeration have been used.
Indeed, under natural conditions, due to steady-state aggre-
gation processes, and biological processes, the soil contains
a large proportion of macropores. The soil compaction can
result in the destruction of inter-aggregate pores, in the
reduction of soil hydraulic conductivity and air permeability
(Horn et al. 1995). Macropores are relatively more affected
during the soil compaction than micropores.

3.1 Bulk density and porosity

Bulk density (dry soil mass per unit volume) is the most
frequently used parameter to characterize the soil compaction
(Panayiotopoulos et al. 1994), but in swelling/shrinking soil, it
is recommendable to determine the bulk density at the standard
moisture contents (Håkansson and Lipiec 2000). Typical resis-
tance indicators, used nowadays, are highly precise for the soil
density measurements up to the soil depth of 20 cm while for
deep stratum, the stress state transducers with six earth pressure
gauges that measure three dimensional stresses can be useful
(Eguchi and Muro 2007). The bulk density is difficult to
measure in gravelly soils (Webb 2002). For an accurate mea-
surement of the effects of the soil compaction on all types of the
soil, the soil bulk density alone is not adequate but other soil
properties such as the soil strength, soil aeration, and soil
moisture should also be measured (Lipiec and Hatano 2003).
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In an experiment on a clayey oxisol, Silva et al. (2008)
analyzed the effects of the intensity of traffic on the soil
compaction. They removed the 7-year-old Eucalyptus stand
manually with chainsaw and soil was compacted with forest
tractor, weighing 11,900 kg and loaded with 12 m3 wood, by
driving along same track zero, two, four, and eight times. They
found that the first two passes of forwarder caused maximum
increase in the bulk density and maximum decrease in infiltra-
tion rate. In other experiments, 30% increase in bulk density
was observed after mechanical clearing of the forests (Weert
1974) and 20% increase in the bulk density was found after tree
length skidding in pine hardwood stands (Dickerson 1976).

Decrease in the soil porosity has been widely reported in
the cultivated crops and forests after mechanical operations
(Dickerson 1976; Silva et al. 2008). Herbauts et al. (1996)
showed that a logging operation, in the loamy and acidic
soils with an illuvial and frequently mottled argillic B horizon,
has increased the bulk densities and decreased the total poros-
ity of the soils up to 30 cm depth at two different sites, Terrest
and Tumuli (Table 1). It is reported that an increase in contact
pressure of 100 kPa caused a decrease of 5.7% in the soil
porosity at 10–15 cm depth after 24 passes in the sandy humus
rich forest soil (Sakai et al. 2008).

3.2 Soil strength

The soil strength (resistance to penetration) is also widely used
for the soil compactionmeasurement (Bouwman andArts 2000;

Horn andRostek 2000; Taylor 1971). The soil strength increases
with increasing bulk density while it decreases with decreasing
soil moisture content. One should be careful when measuring
penetration resistance because it varies between the seasons due
to different moisture contents (Bouwman and Arts 2000).

The soil strength is measured by a penetrometer (Usowicz
and Lipiec 2009) and, furthermore, cone penetrometer is widely
employed (Yu andMitchell 1998) to measure the soil strength in
terms of cone resistance (megapascals). The cone resistance also
serves as an indicator of the root penetration and root growth
capabilities (Materechera and Mloza-Banda 1997). Sinnett et al.
(2008) reported that a soil having a cone resistance larger than
3 MPa caused a major hindrance for the root penetration of four
tree species (Japanese larch, Italian alder, birch, and Corsican
pine) in the sandy loam soils as shown in Fig. 5; nearly all roots
(90.7%) were present in the soil with a cone resistance class less
than 3 MPa.

3.3 Water infiltration rate

Soil water infiltration rate can also be used to monitor the soil
compaction status because the soil compaction reduces the
total porosity of the soil (Silva et al. 2008), and mainly the
number of macropores, water infiltrates faster in uncompacted
soil than in a massively compacted soil of the same type
(Hamza and Anderson 2003). These are not directly related
to the changes in porosity but rather to the changes in both the
number of macro-pores and in the connectivity between

Table 1 Bulk density and total
porosity of eluvial and illuvial
horizons in the beech stands
studied (undisturbed vs. rutted
soils)

Mean values at two different
sites (Terrest site, n010; Tumuli
site, n030) are given with stan-
dard deviations. From Herbauts
et al. (1996)

*P<0.05, **P<0.01,
***P<0.001

Horizon Depth (cm) Bulk density (kg dm−3)
Core method

Total porosity (%)

Terrest n010

Undisturbed soil

E 10–30 1.37±0.08 48.4±3.1

Bt 30–50 1.66±0.04 37.3±1.6

Rutted soil

Eg 10–30 1.54±0.10 41.8±3.6

Btg 30–50 1.58±0.08 40.2±3.2

Tumuli n030

Undisturbed soil

E 10–30 1.31±0.10 50.6±3.8

Bt 30–50 1.54±0.06 42.1±3.8

Rutted soil

Eg 10–30 1.62±0.07 38.9±2.8

Btg 30–50 1.54±0.05 41.8±1.8

Bulk density (core method)

Unpaired t test Terrest Tumuli

E vs. Eg −4.363*** −13.607***

Bt vs. Btg 2.584* NS
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macropores (see below). Such changes in tortuosity can influ-
ence the soil electrical conductivity (Seladji et al. 2010).

3.4 Reduction of aeration

Reduced soil aeration can be an indication of the soil compaction
and soil aeration can be quantified by different parameters such as
the air filled porosity, oxygen diffusion rate (ODR), redox poten-
tial, and air permeability (Cannell 1977). Air permeability varies
largely according to the soil physical properties for the same level
of compaction while the measurement of ODR by electrode
needs a lot of care. Redox potential measurements can be a good
tool to characterize the compacted soils as these measurements
can be carried out in situ for the long periods, but this method is
only applicable to the very wet soils (close to or at saturation;
Feder et al. 2005; Lipiec and Hatano 2003; Nawaz 2010).

Among different methods discussed, the soil bulk density and
the soil strength are more commonly employed to quantify the
soil compaction but the use of other indicators like water infil-
tration rate, ODR, redox potential, etc. in combination with them
can largely increase our understandings and results precisions.
Now sensors have also been developed to detect the location and
depth of the hard pans in the real time that are equippedwith four
horizontal operating penetrometers for on-the-go sensing and
mapping of the location and intensity of hard pan (Loghavi and
Khadem 2006). Sensor systems to measure the soil compaction
have already been reviewed (Hemmat and Adamchuk 2008).

4 Effects of compaction on the soil chemical properties
and biogeochemical cycles

4.1 Reductive conditions

Modified soil physical properties due to the soil compaction
such as the reduced water infiltration rate and reduced soil

air permeability also influence the soil chemical properties.
The soil compaction causes decrease in oxygen diffusion
(Renault and Stengel 1994) and can lead to anoxic conditions in
compacted soils if consumption of oxygen is faster than diffu-
sion (Schnurr-Putz et al. 2006). At the same time, due to the
reduced water infiltration rate, the soil compaction can result in
the surface water logging in the wheel ruts covered areas during
the wet seasons that can influence all the pedological processes,
especially iron geochemistry (Munch and Ottow 1983).

Surface water logging and absence of oxygen, in compacted
soils; result in the lowering of redox potentials of soil solution,
formation of reduced forms of iron (Fe2+; Ponnamperuma
1985), increased dissolution of iron hydroxides and increase
in organically complexed iron forms. Presence of iron minerals
such as lepidocrocite that indicates hydromorphy can be ob-
served in compacted soils by naked eye due to orange colours
of mottles but detection of these iron minerals by X-ray dif-
fraction (XRD) is not evident (Herbauts et al. 1996). In one
experiment, Herbauts et al. (1996) reported higher concentra-
tions of easily reducible iron Fe2+ in the above 30 cm of the
soils after a logging operation in a forest land (Fig. 6). Ex-
changeable Fe2+ was extracted from a freshly sampled soil with
a hydroxylamine/potassium chloride solution and determined
colorimetrically using orthophenanthroline. They directly cor-
related the presence of 15–30% of free iron in the form of easily
reducible form Fe2+ with the water logging as the result of the
soil compaction. Selective extraction techniques using citrate–
bicarbonate and citrate–bicarbonate–dithionite showed that the
soil compaction under forest resulted in an increase of readily
extractable Fe oxides after only 2 years, before mineralogical
transformations were detectable by XRD (Nawaz 2010).

4.2 Carbon and nitrogen cycles

The soil compaction affects concentration of carbon dioxide
(Conlin and Van den Driessche 2000) and mineralization of

Fig. 5 Mean percentage of
roots in each penetration
resistance class using the
penetrometer; 90.7% of roots
are present in penetration
resistance class less than 3 Mpa.
From Sinnett et al. (2008)
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the soil organic carbon and nitrogen in the soil (De Neve
and Hofman 2000). In a laboratory experiment, when silt
loam (acid forest soil) was compacted artificially to a bulk
density of 1.5 from 1.1 Mg/m3, a significant reduction in the
carbon mineralization and net nitrification rates was observed
after 9 months (Tan and Chang 2007). The soil compaction,
directly, results in the lower efflux of CO2 from compacted
soils (Silveira et al. 2010) but, indirectly, due to increase of
machinery use to plough the compacted soil, can lead to more
consumption of the fuel and ultimately more emission of CO2

(Voorhees and Hendrick 1977).
Denitrification increases with the soil compaction (Arah

and Smith 1989) that results in the increased emission of N2O
to the atmosphere (Douglas and Crawford 1993). These emis-
sions can be much larger in the cultivated fields if N fertilizer
is applied in wet conditions (Clayton et al. 1994). In fact, in
the soils, N2O is produced by both the nitrification (aerobic
soil conditions) and denitrification (anaerobic soil conditions)
and sometimes the nitrification and denitrification can
occur simultaneously in the same soil aggregate (Davidson
et al. 1986). As the soil compaction results in the increase
of water contents, so, it can increase strongly denitrification
processes in the soil (Maag and Vinther 1996). Soane and Van
Ouwerkerk (1995) have reported that the soil compaction can
cause an increase in the denitrification rate and emissions of
N2O about 400–500%. But, in compacted soils, there is a
possibility of decrease of N2O transport to atmosphere and
decreased reduction of N2O toN2 gas, a harmless gas, depend-
ing upon the residence time of N2O in the soil and soil
conditions (Soane and Van Ouwerkerk 1995).

It is reported that emission of N2O after fertilization is
highly dependent on the rainfall (Ball et al. 1999; Fig. 7). In

their experiment, the soil was compacted by increased tractor
weight up to a bulk density of 1.40 and 1.39 Mg/m3 at 0–100
and 100–250 mm depths, respectively, as compared to normal
bulk densities of 1.21 and 1.26 Mg/m3 at the same depth,
respectively. It is clear from Fig. 7 that heavy compaction
treatment gave greater response in term of N2O emission to
rainfall than the zero compaction treatment. Bessou et al.
(2010) tried to model the emission of N2O gas after the soil
compaction, but their model was not capable of capturing the
emission during the cropping cycle.

The soil compaction reduces the available N (Tan et al.
2008) and efficiency of N use by the crops decreases (Douglas
and Crawford 1991), which can increase the fertilizer require-
ments. It is reported that the soil compaction which ultimately
increases the water contents and denitrification processes in
the soil, likely reduces the emissions of NOx from the soil
(Skiba et al. 1994) but increases the volatilization of ammonia,
as compared to uncompacted soils (Soane and VanOuwerkerk
1995).

The soil compaction favours the anaerobic soil conditions
which can result in the increase in methanogenic (methane
producer) bacteria while decrease in the methanotrophic
(methane oxidising) bacteria (Yao et al. 1999). The soil com-
paction will result in the higher production rate of CH4 than its
oxidation or destruction rate and this destruction rate can be
reduced up to 58% when well drained soils are compacted
(Soane and Van Ouwerkerk 1995).

4.3 Environmental impacts of the soil compaction

Local soil compaction can influence not only the soil but
also the local environment (Soane and Van Ouwerkerk
1995). The emissions of greenhouse gases due to the soil
compaction (N2O, CH4, and CO2), as discussed in Section
4.2 can enhance the greenhouse effect. The soil compaction
results in increased energy costs in the cultivated lands due
to the increased fertilizer inputs and greater tillage require-
ments. However, it can also be responsible for energy savings,
in some soils, due to increase in machine efficiency in rolling
over compacted soils (O’Sullivan and Simota 1995). Anaerobic
conditions in the soil due to the soil compaction can result in
reduced decomposition of pesticide and ultimately increased
leaching of pesticide in groundwaters and aquifers (Alletto et
al. 2010). Similarly, decreased hydraulic conductivities can
result in slow downward movement of water and, ultimately,
more nitrate contents in ground waters.

If the soil compaction is carried out in steep slopes, this
can result in increased runoff and ultimately in increase soil
erosion and sediment transport which could be a serious
problem for the landscape. Furthermore, increased runoff,
in slurry applied fields, can result in the entrance of slurry in
surface waters and ultimate threat to the aquatic life as
degradation of slurry can reduce the oxygen levels in surface

Fig. 6 Profile distribution of easily reducible iron (KCl-NH2OH-
extractable Fe+2) in undisturbed (transparent rectangles) and rutted soil
(dark black rectangles). From Herbauts et al. (1996)

298 M.F. Nawaz et al.



waters. However, in some soils (sandy soils), the soil com-
paction increases the soil strength, erodibility, and conse-
quently the soil erosion for the same amount of runoff is
reduced. So, modified soil physical properties due to the soil
compaction can be beneficial or harmful for the environ-
ment depending upon the existing environmental conditions
and physical properties of the soil before modification.

5 Effect of the soil compaction on plants

Overall effect of the soil compaction on the plant yield is
negative (Ishaq et al. 2001; Saqib et al. 2004a) but it can also
result in no effect or yield increase as reviewed byGreacen and
Sands (1980). The soil compaction results in the restricted root
growth, decreased accessibility of nutrients, and increased loss
of the soil nutrients by leaching, runoff, and gaseous losses to
atmosphere which can affect plant growth. Effects of the soil
compaction on uptake and losses of nutrients have already
been reviewed (Lipiec and Stepniewski 1995). If a soil is
already suffering from other types of degradation such as the
salinity, drastic effects of the soil compaction on the plant
growth and crop yield are reported to be doubled (Saqib et
al. 2004a).

5.1 Roots

Roots play an important role in the nutrient uptake and plant
growth (Marschner 1986). Root penetration ability is ad-
versely affected by the soil compaction due to increased soil
strength and decreased number of macropores (Gerard et al.
1982). Soil strength–root relation is well documented and
reviewed in literature (Hamza and Anderson 2005; Kirby
and Bengough 2002; Masle and Passioura 1987; Taylor et al.
1966; Taylor and Ratliff 1969; Voorhees et al. 1975). Effects of

the soil compaction on roots generally vary with interspecies
and for different cultivars of the same species, due to difference
in root penetration ability depending on the root physiology
and morphology (Materechera et al. 1991; Tardieu 1994).

Generally, compaction results in a decrease in the root
length, root penetration, and rooting depth (Glinski and
Lipiec 1990; Kristoffersen and Riley 2005). It is reported
that the compaction of calcareous loamy soils, having 5%
organic matter, with a load of 14.5 Mg resulted in complete
failure of the root penetration in the deeper soils (>20 cm;
Bouwman and Arts 2000). The soil compaction can also
aggravate a root disease in some species of plants (Fritz et
al. 1995). Top soil compaction is a more limiting factor for
the root growth than the subsoil compaction (Botta et al.
2006). The effects of the soil compaction on the ion uptake
and root growth are more severe in saline soils than in
normal soils. Saqib et al. (2004b) found that the compaction
of a sandy clay loam soil to a bulk density of 1.65 from
1.21 Mg/m3 reduced root length density of wheat plants
while the presence of salinity (15 dS/m) was more drastic
than the soil compaction alone. In the same experiment,
they observed greater reductions in K+ concentrations and the
K+/Na+ ratio in leaves due to interaction of salinity and
compaction.

The roots of some cover crops have shown good penetra-
tion ability and less adverse effects of the soil compaction.
These crops can be used to alleviate the effects of the soil
compaction (Rosolem et al. 2002). Because of larger diame-
ters of roots than soil pores, roots can also increase the bulk
density of the soil near the roots during the root penetration
(Dexter 1987) and this phenomenon can change the physical,
biological, and chemical aspects of the soil near the roots
(Glinski and Lipiec 1990). Change inmicro- andmesoporosity
around roots can also be quantified by scanning electron
microscopy (Bruand et al. 1996).

Fig. 7 Temporal variability of
N2O fluxes and 3-hourly rain-
fall in heavily compacted soil
and uncompacted soil under
winter barley, shortly after the
main spring fertilisation of
110 kgN/ha/year, assessed
using the automatic chambers.
From Ball et al. (1999)
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5.2 Shoots

Although rooting system of the plants is badly affected by the
soil compaction, this does not always result in reduced shoot
growth because it depends on the availability of nutrients in
the soil. If a soil is so heavily compacted that it reduces the
mobility of the ions in soil and severely restricts the root
growth; it can limit the shoot growth. Ishaq et al. (2001) and
Silva et al. (2008) observed no effects of the soil compaction
on the plant height but reduction in the grain yield was
reported by Ishaq et al.(2001).

5.3 Seedling emergence

Seedling emergences are adversely affected by the soil com-
paction (Dürr andAubertot 2000). The soil compaction is more
detrimental to the seedling growth and survival as compared to
established plants and trees. Increase in the bulk density of a
dry soil from 1.3 to 1.8 Mg/m3 in a greenhouse experiment
resulted in the late emergence of oak seedlings and a mortality
rate of 70% (Jordan et al. 2003). In the same experiment, they
found that the soil compaction resulted in reduced height of the
young seedlings and reduced N recovery. Similar findings
were reported by different authors in the pot experiments and
field experiments (Corns 1988; Moehring and Rawls 1970;
Tworkorski et al. 1983). But the response of seedlings growth
to the soil compaction is also subjected to the soil types and
plant species because sometimes moderate compaction of
sandy soils can be useful to the seedlings growth of woody
plant species (Alameda and Villar 2009).

5.4 Nutrients uptake

Generally, the soil compaction reduces the uptake of nutrients
due to the damaged roots but it also increases the contact
between the roots and soil particles which may lead to the
rapid exchange of ions between the soil matrix and roots. The
uptake of nutrients transported by diffusion is more affected
by compaction than for nutrients transported by mass flow
(Arvidsson 1999). The soil compaction can decrease the up-
take of phosphorus and potassium in the maize (Dolan et al.
1992) or can increase the uptake of phosphorus in the ryegrass
and maize (Shierlaw and Alston 1984) depending on the type
of the soil and nature of the soil compaction. Kristoffersen and
Riley (2005) subjected three types of soils (loam, clay loam,
and silt) to relative degree of compactness (RDC) of 75%
(RDC75%) and 90% (RDC90%) of the standard degree of
compactness. They observed that heavy soil compaction
reduced the P uptake and yield of barley in all three types of
the soils (Table 2).

So, the soil compaction negatively affects the root portion
of the plants but ultimate effect on the shoot depends on the
nutrient availability and uptake by the plants. However,

severe soil compaction can result in the root deformation,
stunted shoot growth, late germination, low germination
rate, and high mortality rate. All these impacts of the soil
compaction contribute largely in reducing the yield of most
agronomic crops in compacted soils.

6 Effect of the soil compaction on soil biodiversity

Modified soil physical parameters determine the effect of the
soil compaction on physical and chemical properties of the
soils and ultimately on soil biota. The soil compaction can be
favourable to soil biodiversity and vice versa depending upon
the nature of the soil, climate, and extent of the soil compac-
tion. Beylich et al. (2010) reported the negative influence of the
soil compaction on microbial biomass and C mineralization
above an effective bulk density of 1.7 Mg/m3.

6.1 Bacterial population

Soil microbial biomass is adversely affected by the soil com-
paction (Frey et al. 2009; Pupin et al. 2009). The soil compac-
tion resulted in reduced soil aeration of the soil due to 13–36%
decrease of air filled porosity which led to the reduction in
microbial biomass carbon andmicrobial biomass nitrogen (Tan
and Chang 2007). Tan et al. (2008) also reported the reduction
of microbial biomass phosphorus after the soil compaction.
Shestak and Busse (2005) reported that the soil strength values
ranging 75–3,800 kPa changed the physical properties of the
soil but did not affect any biological indicator of the soil
(microbial biomass and enzymatic activity).

6.2 Enzymatic activity

Any disturbance or stress to the soil can influence enzymatic
activities in the soil (Buck et al. 2000). The soil compaction
changes physical and chemical properties of the soil which
leads to the reduction of phosphatase, urease, amidase, and

Table 2 Effects of the relative degree of soil compactness (RDC) on
barley shoot yield (gdrymatter/pot) and on P uptake (mgP/pot) in the
three soil groups

Loam Clay loam Silt

Shoot yield (g pot−1) RDC75% 8.6 5.6 4.8

RDC90% 7.4 4.8 3.4

p Value 0.03 0.001 0.006

P uptake (mg pot−1) RDC75% 28.9 11.9 8.9

RDC90% 24.2 10.2 7.0

p Value 0.005 0.003 0.02

From Kristoffersen and Riley (2005)
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dehydrogenase activities (Dick et al. 1988; Jordan et al.
2003; Pupin et al. 2009; Tan et al. 2008), but some-
times increase in the phosphatase activity is also
reported (Buck et al. 2000). Anoxic conditions in the
soil induce the changes in the microbial community and
favour organisms capable of tolerating these conditions,
thus, lower eukaryotic/prokaryotic ratios, more iron and
sulphate reducers, and higher methanogens were found in
compacted soils than in uncompacted soils (Schnurr-Putz et
al. 2006).

6.3 Larger soil fauna

Soil fauna plays an important role in the decomposition
and incorporation of organic matter in the soil (Petersen
and Luxton 1982). Habitat of the soil fauna is intersti-
tial spaces in the soil. The soil compaction changes the
pore size availability and distribution which generally
leads to the reduction of the proportion of large pores
and affects the movements of nematodes and larger soil
fauna. Nematodes, being diverse in food habit (bacter-
ivores, herbivores, and omnivores), play an important
role in the soil food web as well as in organic matter
decomposition, nutrient decomposition and herbivory
(Bouwman and Arts 2000). Heavy soil compaction
may not affect the quantity of nematodes in the soil
but can influence their distribution. Bouwman and Arts
(2000) reported reduction of bacterivore and omnivore
nematodes while increase of herbivore nematodes in
heavily compacted soils. Earthworms are also reported
to be influenced by the soil compaction (Kretzschmar 1991;
Radford et al. 2001) and their population decreases with
increase in the soil compaction (Chan and Barchia 2007),
but they are capable to penetrate a soil with penetration
resistance of 3,000 kPa by ingesting the soil particles (Dexter
1978).

6.4 Ground flora

Ground flora is very important in the forest ecosystem in
terms of revegetation, productivity, aesthetics, and water
and nutrient cycling (Gilliam 2007). Any disturbance to
the forest ecosystem and/or soil affects adversely the native
ground flora (Zenner et al. 2006; Demir et al. 2008), but
some plant species are capable to show healthy habitat and a
rapid recovery after extreme degradation of the soil (Demir
et al. 2008). Zenner and Berger (2008) reported that the soil
compaction resulted in shifting of ground flora from interior
forest species to noxious/invasive and disturbed forest spe-
cies and relative resistance of the initial ground flora to
change was found to be linearly related to relative resistance
to penetration. The soil compaction influences the soil bio-
diversity negatively and it results in decrease in the microbial

biomass, enzymatic activity, soil fauna, and ground flora in
compacted soils.

7 Modelling

Modelling not only provides a better way to quantify the
processes involved in the soil compaction but also helps us
to predict the vulnerability of a particular soil to compaction. It
(modelling) is useful in the organisation and integration of
existing knowledge and identification of gaps in knowledge. It
(modelling) is a simulation of all the processes involved in the
soil compaction but soil compaction depends on a lot of
parameters and considering each parameter is difficult for
heterogeneous structures of the soil. Modelling of the effects
of the soil compaction on the environment and plant growth
are reviewed and discussed in detail in literature (Clausnitzer
and Hopmans 1994; Grant 1993; O’Sullivan and Simota
1995). Several attempts have been made to model the effects
of mechanical operations on the soil (Blackwell and Soane
1981; Défossez and Richard 2002; Dickson and Ritchie 1993;
Raper and Erbach 1990), but most models have limited appli-
cations due to a large number of parameters as input or
heterogeneous field conditions. Models can also be classified
and discussed as mechanistic or empirical, depending on
the treatment of underlying mechanisms, and determin-
istic or stochastic, depending on the treatment of variability
(O’Sullivan and Simota 1995).

7.1 Stress–strain models based upon boussinesq equation

Most of the models are based on the stress–strain theory
where two problems are addressed:

& The propagation of stress in the soil
& The local relation between stress and strain i.e.; the

“constitutive equation”

The propagation of stress in the soil is classically described
by some form of the Boussinesq equation (Boussinesq 1885,
p. 104), and a constant linear relation between stress and strain
is assumed, that is, soil reacts elastically. The form of the
Boussinesq equation depends on the limiting condition. For
a point load (Fig. 8), it is:

σZ ¼ 3P=2p r2
� �

cos3θ ð1Þ

where, r is the radial distance from point A to the origin O
where the loadP is applied, and θ is the angle betweenOA and
the vertical, σZ is the vertical stress.

In this equation, time is absent, and, therefore, it describes
the situation at mechanical equilibrium in static conditions.
Moreover, as underlined by Smith et al. (2000), the stress
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distribution is “irrespective of differences in texture, bulk den-
sity or water content”. To better describe the stress distribution,
the “concentration factor”, vwas introduced by Fröhlich (1934;
quoted by Défossez and Richard 2002), so that the equation
becomes:

σZ ¼ nP=2 p r2
� �

cosvθ ð2Þ
which means that, when compared to Eq. 1, the geometric
coefficient 3 is treated as an adjustable parameter. When the
“concentration factor” increases, stress increases at a given
point. Söhne (1958; quoted by Défossez and Richard 2002)
suggested n values of 4, 5, and 6 for hard, firm and soft soil
respectively, and Défossez and Richard (2002) commented as:
“The firmness results from empirical combinations of both the
bulk density and water status of the soil.” According to Smith
et al. (2000), the concentration factor can even obtain values of
6–9, and is influenced by the soil structure: “in well-aggregated
soils, the concentration factor values are smaller than in the
same but homogenized soils.” They used even values smaller
than 3 (v01), in simulations, and calculated values from 1.5 to
2.8 for different decreasing laws of the tire load from just below
the tire centre to its external limit.

Analytical models based upon Boussinesq equation and on
its modifications are largely used as they demand less number
of inputs as compared to models based on the finite element
method (FEM). The comparison with experiments largely
gives variable results, acceptable for homogeneous soils and
unreliable for heterogeneous soils due to the presence of clods
or a firm soil at depth (Défossez and Richard 2002). In
homogeneous soils, they can predict efficiently not only soil
stress–strain behaviour but also the propagation of the loading
forces within the soil resulting from forces applied at the soil
surface from farm vehicles.

A recent analytical model is SoilFlex, easily usable, is
based upon a description of the upper boundary condition
(load of tyre) as an ellipse or a super ellipse, considering
both normal and shear stresses, an analytical solution to
compute the stress propagation and a calculation of the soil
deformation (Keller et al. 2007; Keller and Lamandé 2010).
According to Keller et al. (2007), “A weak point of the
analytical solution may be the concentration factor, as it is
not a directly measurable soil parameter.”

According to Smith et al. (2000), the concentration factor
fitted “can result in inaccurate results if they are used for
comparing strength among different soils [....], and it is a
machinery-soil dependent parameter, [influenced by] inflation
pressure, tires dimensions, lugs and carcass stiffness”.
These latter authors concluded that “Boussinesq’s equa-
tions, modified by concentration factors and elliptic
coordinates failed to predict experimental stress values
in a Hapludand.”

In addition, the Boussinesq equation and its classical mod-
ifications are restricted to a boundary condition of normal
stress while Boussinesq proposed other integrals applicable
to tangential forces which due to the linearity of the differential
operators can be combined to give general solutions for any
external stresses; the solutions are derived from potentials that
are: (1) ordinary, ʃ (dm/r), when displacements are known at
the boundary surface; (2) logarithmic ʃ ln(z+r)dm, when nor-
mal stresses are known; (3) logarithmic ʃ [−r+zln(z+r)]dm,
when stresses at the surface are purely tangential (Boussinesq
1885, p. 201).

The major problem with Boussinesq’s theory is that it is
restricted to elastic domain which implies that there is no
permanent deformation and no rupture and the solid is
supposed to be homogeneous and isotropic. Moreover, it
does not represent accurately hydraulic properties of the soil
and cannot describe the soil deformation. Furthermore, these
methods fail to predict changes at pore-scale level (Or and
Ghezzehei 2002).

7.2 Virtual work formulation

A different way of computing the propagation of stress is
based upon a local description of the virtual work:
Z

d"TσdV ¼
Z

duTpdV þ
I

duT tdA ð3Þ

where, V and A are the volume and the area of the surface of
the deformed body, σ and " the tensors of stress and strain,
du is the incremental displacement, p and t are respectively

the body forces and surface traction, and the superscript T
stands for transformed (Défossez and Richard 2002).

Time is equally absent from the equation and it describes
static deformation of a soil body. This equation is then
linearized which assumes low deformation and numerically

Fig. 8 Stress propagation to a layer parallel to the surface at depth z for
a homogeneous isotropic soil, under the assumption of elasticity, in a
soil submitted to a point load P exerting a normal stress at the surface.
From Défossez and Richard (2002)
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solved, using finite element methods. The corresponding
models are referred to as FEM. These models are adequate
for modelling the 3D distribution of stress within the soil
induced by wheeling and the complex stress–strain behaviour
of the soil but due to continuous changes of elastic parameters
of the soil, application of FEM models becomes limited
(Raper and Erbach 1990).

Whether the stress propagation is computed by a
pseudo-analytical procedure (Boussinesq and its var-
iants) or by FEM, it fails to account for two evidences:
the existence of preferential paths of stress propagation
and the localization of deformation (hard pans, plough
pans…). These items will be addressed in the following
paragraphs.

7.3 Preferential paths of stress propagation

Stresses do not often propagate homogeneously but through
preferential paths, isolating bulk volumes that are not under so
large stress as it is in the preferential path. This is due to the fact
that in soils, there coexist different assemblages due to small
differences between the size and shape of the particles. When
submitted to a compression, the soil particles or grainswill tend
to move at first elastically. Soon, some of these grains will be
blocked (“jammed”) against each other and normal stresses
will be transmitted along chains of preferential propagation.
When these chains constitute a continuous path, by a percola-
tion process (Bideau and Hansen 1993; Guyon and Troadec
1994; Roux et al. 1993), they will isolate bulk volumes sub-
mitted to smaller stress or even free to move (Fig. 9).

There have been advances in physics of granular media,
due to both fundamental interest for physicists as models of
much more complex systems and to practical and/or industrial
interest: “granular materials are ubiquitous in nature and are
the secondmost manipulated material in industry (the first one
is water)” (Richard et al. 2005). One of the main character-
istics of granular materials is that their behaviour is interme-
diate between solids and fluids. Compaction from a loose-
packed material can be efficiently obtained by tapping and
shearing, and this is more efficient than compression. Granu-
lar packings submitted to gentle mechanical taps can reach a
stationary configuration which does not depend on the initial
conditions (looser packing or denser packing; Ribière et al.
2007). As friction between solid particles oppose to mixing
and thermal agitation is entirely negligible with respect to
potential energy due to gravitation (>1×1012 kT), solid par-
ticles can segregate which is well-known in soils, though at
first sight, it could be considered as violating the natural
tendency for entropy to increase. Those materials are, thus,
considered as “a-thermal” and metastable assemblages can
persist as long as no perturbation occurs (Jaeger et al. 1996).
This metastability of different assemblages explains in a large
part soil heterogeneity. Forces in such materials at rest appear
to be very heterogeneous, forming chains along which stresses
are very intense (Majmudar and Behringer 2005). Those
chains isolate volumes which are not under stress forming
arches, as is well-known in silos. This behaviour is strongly
influenced by the shape and rugosity of particles. When
compression proceeds further, deformation can be localized
in specific locations.

Fig. 9 Preferential paths of
stress propagation. From
Majmudar and Behringer
(2005): comparison of
experimental images (a, c) and
computed images (b, d).Top
pair a low-force sheared state.
Bottom pair a high-stress
isotropically compressed state
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7.4 Strain localization

There exists a broad evidence that strain is not evenly distrib-
uted in soils, rocks, and geomaterials such as concrete. Indeed,
strain localization is rather a rule. It is generally associated
with plastic deformation and ruptures in solids and is observed
to concentrate in narrow zones, called shear bands (Desrues
and Chambon 2002). Such localized deformations have been
observed in many granular materials, from sand (Desrues and
Viggiani 2004) to clays, e.g., by X-ray tomography (Bésuelle
et al. 2007; Fig. 10).

The material undergoes a transition from a diffused strain
mode to a localized strain mode where strain is strongly
spatially concentrated while the material outside this zone
behaves approximately as rigid (Bésuelle et al. 2007). In soils,
this is the case for example in hard pans. And, at a much larger
scale, this is the basic paradigm of plate tectonics. This feature
seems, thus, very general. Looking back at Boussinesq Eq. 1,
equation structure precludes the existence of a maximum in
stress and strain at a specific location as second derivative of
this equation is always positive. It is interesting to note that the
presence of an inclusion, whether weaker or stronger than the
bulk material, dictates the location of the shear band (Desrues
and Viggiani 2004). Chambon et al. (1994, 2000) proposed a
constitutive model based upon a stress rate/strain rate relation-
ship instead of a stress/strain relationship. It is a continuous
model like the aforementioned models which means that the
distances considered are much larger than the grain size and is
called CLoE, formed on the words consistency and explicit
localization. Failure is accounted for by incorporating explic-
itly a limit surface in stress space separating admissible states
from inaccessible states. The constitutive equation is:

σ
: ¼ A : "

:
:

þb "
:k k ð4Þ

where, σ is the stress rate, "
:
the strain rate, A is a fourth-rank

tensor and “b” a second-order tensor; the incremental
no-linearity is due to the norm "

:k k; ": is not decomposed into
elastic and plastic parts. A and b depend on state variables and

are determined by an interpolation procedure between
the responses for axisymmetric triaxial states. The for-
mation of a shear band is treated in model CLoE as a
bifurcation problem. The appropriate 16 parameters for
a given material are derived from simple axisymmetric
triaxial compression and extension tests except out-of-
axes shear moduli which are derived from special ex-
perimental tests combined with inverse analysis (Desrues and
Chambon 2002).

Time is, thus, present in this model and this accounts for
the fact that the rate of stress is a parameter of a paramount
importance. The discrepancies between laboratory tests and
field wheeling experiments have been ascribed to the differ-
ences in loading time (Keller and Lamandé 2010). In the
soils, the localization of strain in shear bands separated by
volumes behaving as more rigid can explain the observation
of discrepancies when modelling the soils with clods or with
an underlying dense layer at depths less than 0.5 m (Défossez
and Richard 2002).

Boussinesq equations and FEM models are restricted to
elastic domain and fail to take account of existence of prefer-
ential paths of stress propagation and localization of deforma-
tion in compacted soils. Modified forms of a constitutive
model like CLoE that is based upon a stress rate/strain rate
relationship in granular media can be able to decrease discrep-
ancies in modelling the soil compaction when there is localised
soil deformation.

8 Remedies to the soil compaction

Natural phenomena involved in the recovery of compacted
soils are precipitations, wetting and drying cycles, subse-
quent soil cracking, freeze–thaw cycles, and bioturbation
which includes earthworm burrowing and root penetration
and decay (Drewry 2006; Webb 2002). Natural recovery of
compacted soil is a very complex and slow process that can
take at average from 5 to 18 years depending on the soil type,
degree of compaction, and climate (Froehlich et al. 1985).

Fig. 10 Strain localization in shear bands. From Bésuelle et al. (2007). Left initialization of the shear band. Right development of the shear band
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Among all the aforementioned factors, the degree of compac-
tion or bulk density is the most important factor to monitor the
recovery time of a soil (Heinonen 1977). If the soils are not
highly compacted, repetitions of alternative dry andwet periods
can reduce the soil compaction in the clay soils but the sandy
compacted soils are less affected by these natural restoration
cycles. Rapid natural amelioration of physically deteriorated
topsoil to about 5 cm is possible but below 15 cm natural
rejuvenated process is very slow (Drewry 2006). For example,
full recovery time for a heavy compacted soil can range from
100 to 190 years (Webb 2002).

Compaction can be reduced by the natural methods
through increase of vegetation and addition of organic matter
by preventive measures through controlling traffic and animal
load or by mechanical methods by deep ripping (Berg 1975)
and disking (Dickerson 1976). Aforementioned solutions
have been reviewed in farm systems (Hamza and Anderson
2005). In the forests, any mechanical work to reduce the soil
compaction is difficult due to presence of stumps and large
roots, so, natural methods are encouraged and employed.

9 Conclusion

Soil productivity is very important for human survival but any
form of soil degradation can reduce the soil fertility and
ultimately, it lowers the soil productivity. The soil compaction,
a physical form of soil degradation, is a worldwide problem
that has resulted in the yield reductions of agronomic crops
and reduced growth rate of forests. It has attracted scientists’
attention for more than a century, both on the practical and
theoretical aspects. Experimental studies have shown that the
soil compaction results in increase in the soil strength, bulk
density, volumetric water contents, and field capacity while
decrease in total porosity, soil aeration, water infiltration rate,
and saturated hydraulic conductivity. Causes of the soil com-
paction identified are natural (rainfall, plant roots, foot traffic
of man, or animal) or artificial (mechanical operations).

Several models, nowadays, are available to not only assess
the soil compaction due to traffic load but also to calculate the
negative effects of the soil compaction on different compart-
ments of the soil, plant, and environment. However, until now,
there is no unique model for all types of soils and climates.
Classical engineers’ approach derived from Boussinesq equa-
tion by introducing an empirical “concentration factor” fails to
account for the experimental results as soon as the soil is
heterogeneous; the stress applied exceeds the elasticity limit.
Moreover, the assumption of a normal stress is not valid as
soon as tangential stresses are present at the boundary limit
(soil surface) while more general solutions were given by
Boussinesq himself.

Virtual work equation, solved by FEM, is more satisfactory
but requires manymore parameters. Recent advances in physics

of granular materials are promising but until now restricted to
very simple systems. A link between those two approaches is,
in principle, possible and is indeed the need of the time. Many
recent reviews suggest that the future research should focus
more on dynamics of loading and the data acquired could be
treated with dynamic models, such as CLoE, relating stress rate
and strain rate.

The soil compaction is rapid and easy due to mechanisation,
but it takes years to restore a compacted soil. In spite of
hundreds of articles appearing during the last 10 years on the
soil compaction, there is an urgent need to apply multidisci-
plinary approach in the soil compaction studies, addressing
diverse effects in different soil compartments (Fig. 2). Progress
in sensors in both the soil physics and soil chemistry and in data
treatment should be of a great help to evaluate the effects of the
soil compaction on every compartment of the biogeosphere.
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