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Abstract—Growing trend of using spatial information in vari-
ous domains has increased the need for spatial data analysis. As
spatial data analysis involves the study of interaction between
spatial objects, Probabilistic Relational Models (PRMs) can be
a good choice for modeling probabilistic dependencies between
such objects. However, standard PRMs do not support spatial
objects. Here, we present a general solution for incorporating
spatial information into PRMs. We also explain how our model
can be learned from data and discuss on the possibility of its
extension to support spatial autocorrelation.

I. INTRODUCTION

Availability of GPS to civilian users, advances in mobile
communication and wireless technology have opened the door
to many spatial technologies. The development of consumer
GPS tools, Volunteered Graphical Information (VGI) tools and
location-aware mobile devices have revolutionized the way
of collecting and using location information. The growing
trend of using spatial information/databases in a wide range
of application domain has increased the need for analysis of
spatial data.

Spatial data analysis is certainly not a new field [1].
Several methods have been devised to extract patterns from
spatial data and understand underlying phenomena [2], [3].
A Bayesian network is one of such methods that have been
used with spatial information in various domains [4], [5], [6],
[7], [8], [9], [10] for dependency analysis. Recently, object-
oriented Bayesian networks have also been used for modeling
spatial interactions [5]. However, these approaches are mostly
dedicated for specific problems, and many of them do not
capture spatial dependencies well. [4]’s approach to modeling
spatial dependencies sounds appealing as they present some
promising results with their intuitive approach. They auto-
matically learn Bayesian networks from data, limiting spatial
dependencies within the vicinity of nodes.

Most of the techniques of spatial data analysis work with
flat representation of data. However, real-world applications
are generally conceptualized in terms of objects and relations
between them, and, hence, data need to be transformed into the
required flat format before applying those methods. Besides,
analysis of spatial information usually involves the study of
interaction between spatial objects. In such relational domains,
Probabilistic Relational Models (PRMs) [11] can be employed

to learn probabilistic models. A PRM is a relational extension
of Bayesian Networks and models the uncertainty over the
attributes of objects in the domain and the uncertainty over
the relations between the objects. However, standard PRMs do
not support spatial objects. Therefore, we aim at integrating
spatial information into PRMs to enable them to handle spatial
objects too. Our motivation is also driven by [12]’s perspective
on spatial data mining in relational domain. In their paper
[12], the authors argue that multi-relational setting is the most
suitable for spatial data mining problems and also mention the
possibility of using PRMs with spatial relational databases.
This view has also been supported by several works [13], [14]
not related to PRMs.

We propose to extend standard PRMs to support spatial
objects. Our model provides a general way to incorporate spa-
tial information into a PRM and model spatial dependencies.
In this paper, we are mainly concerned with geographically
referenced objects and deal with vector representation of
spatial data, where a spatial object is described by its attributes
and its geometry. Though the attributes of spatial objects can
be modeled by descriptive attributes in standard PRMs, their
geometry cannot be modeled in PRMs in a straightforward
manner because the geometry can be as simple as points,
which can be described by a pair of coordinates, and also
as complex as lines and polygons, which are represented by
a sequence of pairs of coordinates. Thus, spatial geometry
attributes cannot be treated as simple continuous variables.

One approach to support spatial objects in PRMs is to parti-
tion spatial geometry attributes and learn a regular PRM from
data using the partitions. However, with this approach, we may
miss some useful probabilistic dependencies because the same
partitioning level may not be appropriate to detect dependen-
cies of the partitioned attribute with any attributes. Thus, we
propose a different approach where the partitioning of spatial
geometry attributes is interleaved with the learning process.
We first adapt the relational schema for spatial attributes
and then define a model over the adapted relational schema.
While learning the model from data, adaptative partitioning is
performed on spatial geometry attributes to find the partitions
that best describe dependencies. We present two different
approaches to adapt the partitioning process. We should note
here that the partitioning of spatial geometry attributes is



different from discretization of continuous variables in that
the former results into spatial objects again. For instance,
the partitioning of a set of spatial point objects might result
into a set of spatial polygon objects. Because the spatial
attributes are not disregarded after partitioning, the model can
be further enhanced by adding a support for spatial functions
to explore more useful attributes from spatial attributes. We
also point to the possibility of modeling spatial autocorrelation
[15] with our model. Though spatial autocorrelation cannot
be modeled directly in PRMs because of acyclicity constraint
[16], we present our idea of modeling spatial autocorrelation
by introducing (or deriving) aggregated attributes and adding
a special constraint on the orientation of edges between the
aggregated attribute and the original attribute to avoid cycles.

This paper is organized as follows. In section 2, we present
a brief overview of spatial data and PRMs. In section 3, we
present our model in detail and illustrate the model with an
example. We discuss about the model in section 4 and finally
conclude the paper with our future perspective on the model.

II. BACKGROUND

A. Spatial data

Tessellations and vectors are two basic data types used to
represent spatial information though network data type has
also been reported in some literature [3]. In the tessellation
representation of spatial data, the space is partitioned into
mutually exclusive cells that together make up the complete
coverage. Each cell is associated with thematic/attribute values
that represent the conditions for the area covered by that cell.
In the vector data representation, spatial objects are modeled
using geometry and their attributes. The geometry is made up
of one or more interconnected vertices. A vertex describes a
position in space using an x, y and optionally z axis. Spatial
objects can be zero-dimensional (point), 1-dimensional (line)
or 2-dimensional (surface).

B. Probabilistic Relational Model (PRM)

A probabilistic relational model (PRM) [17], [11] is a
formal approach to relational learning. It defines a template for
probability distributions over relational domains. PRMs can be
later instantiated with a particular set of objects and relations
between them to obtain a Bayesian Network which defines
probability distributions over the attributes of the objects. A
PRM is comprised of two components: a relational schema of
the domain and a probabilistic model.

a) Relational schema: A relational schema describes a
set of classes and the relationships between them. Each class
X ∈ X is described by a set of descriptive attributes A(X)
and a set of reference slots R(X). The attributes X.Ai are
random variables with states from a discrete domain V(X.Ai).
A reference slot X.ρ that relates an object of class X to an
object of class Y has Domain[ρ] = X and Range[ρ] = Y .
The inverse of a reference slot ρ is called inverse slot and
is denoted by ρ−1. In the context of relational databases, a
class refers to a single database table, descriptive attributes
refer to the standard attributes of tables, and reference slots

are equivalent to foreign keys. While a reference slot gives a
direct reference of an object with another, objects of one class
can be related to objects of another class indirectly through
other objects. Such relations are represented with the help
of a slot chain – a sequence of slots (reference slots and
inverse slots) ρ1, ρ2, . . . ρn such that for all i, Range[ρi] =
Domain[ρi+1]. Slot chains may lead to one-to-many or many-
to-many relations, in which case we need an aggregator, i.e.
a function, denoted γ, which takes a multi-set of values and
produces a single value (e.g., average, mode, cardinality etc.)
as a summary of the set of related objects.

To illustrate these concepts, we use a relational schema
of a system where users order foods in restaurants
and rate the service of the restaurants. The schema is
shown in figure 1a. We will refer to the same sys-
tem throughout the paper to give examples. Here, Restau-
rant, User and Cuisine are also called entity classes.
User satisfaction and Food order are called relationship
classes because they represent the relationships Restaurant–
User and User–Cuisine respectively. The attributes User.age,
User.gender , User satisfaction.service rating etc. are descrip-
tive attributes whereas User satisfaction.user id , which refers
to User.user id , is a reference slot whose domain and range
are User satisfaction and User respectively. Here, Restaurant
and User satisfaction objects are directly linked through the
reference slot User satisfaction.resto id . Note that Restau-
rant.resto id−1 is the inverse of User satisfaction.resto id
and gives all User satisfaction objects corresponding to
Restaurant objects. Restaurant objects can also be in-
directly related to User objects through the slot chain
User satisfaction.resto id−1.user id , which gives all the users
whose satisfaction level and/or service rating about the restau-
rants are available. As there is a many-to-many relationship
between the classes Restaurant and User, this slot chain may
result into more than one user for a single restaurant. In
such case, we need an aggregator (such as average) to sum-
marize (or aggregate) the resulting set. For instance, AVER-
AGE(User satisfaction.resto id−1.user id .age) gives the aver-
age age of the users who have rated the restaurants.

b) Probabilistic model: A PRM specifies a probabilistic
model for classes of objects. It represents generic probabilistic
dependencies between the attributes of classes in the relational
schema. The dependencies can be between the attributes of the
same class or between the attributes of different classes. Like
in Bayesian networks, the dependency structure is associated
with the conditional probability distribution of each node
(attribute) given its parents.

Figure 1b depicts a PRM that corresponds to the relational
schema in 1a. Here, the dashed lines indicate that the classes
are linked through reference slots in the relational schema, and
the edge with ’Agg’ denotes that the child node depends on
the aggregated value of the parent node.

Formally, a regular PRM Π for a relational schema R is
defined as follows [11]. For each class X ∈ X and each
descriptive attribute A ∈ A(X), we have:
• a set of parents Pa(X.A) = {U1, . . . Ul}, where each Ui



(a)
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Fig. 1. (a) An example of a relational schema of a system where users
orders foods in restaurants and rate the services of the restaurants. The
relationships between classes are denoted by the lines connecting them,
and the type of their relationships is given by the line ends, e.g. the class
Restaurant has a one-to-many relationship with the class User satisfaction.
(b) A PRM that corresponds to the relational schema in 1a. Each descriptive
attribute is denoted by a node. The directed edges between the nodes represent
probabilistic dependencies between the nodes. The dashed lines between the
classes indicate that the classes are related to each other through reference
slots in the relational schema. An aggregator is indicated by ‘Agg’ in an edge.
An aggregated dependency is present in the edge from Food order.rating to
User satisfaction.satisfaction level , which means that the users’ satisfaction
level depends probabilistically on the aggregated value of their rating on foods
ordered by them.

has the form X.B or γ(X.τ.B), where B is an attribute
of any class, τ is a slot chain and γ is an aggregator of
X.τ.B.

• a conditional probability distribution (CPD),
P (X.A|Pa(X.A)).

Probabilistic inference is performed on a Ground Bayesian
Network (GBN) obtained by instantiating a PRM for a partic-
ular instance I of the associated relational schema (i.e. a set
of objects and relations between them). It specifies probability
distributions over the attributes of the objects. A GBN has a
node for every attribute of every object in I, and probabilistic
dependencies and CPDs as in the PRM. As GBNs tend to be
very big, standard inference algorithms for Bayesian networks

need to be adapted to infer the value of unobserved attributes
[11].

Learning a PRM involves two tasks – parameter estimation
and structure learning. The aim of parameter estimation is
to find parameters θs that define CPDs for a dependency
structure S given a complete instantiation I. While learning
the structure of a PRM, we need to make sure that the structure
is not only legal (i.e. acyclic) but also the best one among
the candidate structures. [11] propose to apply greedy hill-
climbing algorithm over relational attributes (limiting the max-
imum length of slot chain) to explore structure search space
and use a Bayesian scoring function to evaluate legal candidate
structures. While exploring and evaluating structures, one
needs to compare score of structures with only small local
differences (e.g., comparing a structure with another structure
obtained from it by adding only one edge between two nodes).
In such case, a decomposable Bayesian scoring function can
simplify the computation because it allows computing the
separate contribution of each variable to the quality of the
network so that it will be sufficient to compute the score
of only those terms that involve the variables being modified
instead of computing score of the complete structure again. A
scoring function is decomposable if the global score assigned
to a Bayesian network B with N nodes for the given data D
can be represented as a sum of local score that depends only
on each node Xi and its parents Pa(Xi), i.e.,

(Global)Score(B,D) =

N∑
i=1

(local)Score(Xi|Pa(Xi)) (1)

III. PRM WITH SPATIAL ATTRIBUTES (PRM-SA)

We begin by defining some basic concepts related to our
model. We, then, define our model and illustrate the model
with examples. Then we explain how to learn our model.

A. Definitions

We propose to incorporate the vector representation of
spatial objects, where a spatial object is described by its
location in space in terms of geometry and its attributes, in
PRMs. The attributes of a spatial object can form descriptive
attributes in the relational schema whereas its geometry cannot
be incorporated as descriptive attributes because the geometry
of spatial objects is represented by a set of points (vertices or
coordinates). Thus, we coin a term spatial geometry attribute
or simply spatial attribute to describe such attributes to use
them in a PRM.

Definition 1: Spatial geometry attribute
An attribute is a spatial geometry attribute if its value s is

a sequence of pairs of coordinates in geographic coordinate
reference systems and defines the geometry of its class. i.e.
s = ((x, y)n : n ∈ N) where x is called longitude, y is called
latitude and n is the cardinality of s. Here, s represents
• a point geometry if n = 1,
• a line geometry if n ≥ 2 and s1 6= sn ,
• a polygon geometry if n ≥ 2 and s1 = sn. z



Definition 2: Spatial class
Let SA(X) be the set of spatial geometry attributes in a

class X . A class X is a spatial class if SA(X) is not empty.
z

To illustrate these concepts, we refer to the system in figure
1 and extend the relational schema in figure 1a with a spatial
geometry attribute in the class Restaurant as shown in figure
2a. Here, the spatial attribute Restaurant.location represents the
location of the objects of the spatial class Restaurant.

As the set of possible values of a spatial attribute is
infinite, conditional probability distributions associated with
spatial attributes would be very big. It demands an extensive
computation for learning as well as inference and this is
practically too difficult to achieve. Therefore, we propose to
partition this set into a finite number of disjoint subsets with
the help of a spatial partition function. Each partition is then
represented by a class, which we call a spatial partition class,
and a reference slot (we call it a spatial reference slot or
spatial ref. slot) that refers to the objects of the partition class
is added in the corresponding spatial class. Partition functions
are responsible for creating the objects of partition classes and
mapping the values of a spatial attribute to their corresponding
partitions.

Definition 3: Spatial partition function, Spatial partition
class

Let X.SA be a spatial geometry attribute of a spatial class
X . We define a spatial partition function fsa : X.SA →
Range[fsa] where Range[fsa] is a finite set of spatial parti-
tions represented by a spatial partition class PXSA. Thus, fsa
associates each sa ∈ Domain[X.SA] to an object of PXSA
determined by the function itself. z

Partition functions essentially map a spatial object to a
region such that spatial objects meeting some partitioning
criteria are grouped together. Such mapping can be achieved
in many ways. One way is to use regular square or hexagonal
(honeycomb) grids to partition the spatial region. Partitions
can also be created by using standard, publicly available
knowledge such as administrative boundaries. In the absence
of such knowledge, spatial clustering algorithms can be used.
[18] have presented a survey on several spatial clustering
methods. Some clustering algorithms, such as K-means, re-
quire users to provide the number of clusters/regions and
some others, such as DBSCAN, can determine the number
of clusters themselves. It should be noted that granularity of
partitioning methods depends on the context of the problem.
Also note that when using knowledge to create partitions, we
may have access to some extra information. Such information
can be considered as descriptive attributes of partition classes.
The introduction of partition classes enables us to implement
hierarchical clustering as well because partition classes can
contain spatial attributes, which can be further partitioned
thereby creating a hierarchy of spatial partition classes.

We refer to figure 2a for examples. As the spatial attribute
Restaurant.location can take infinitely many values, we define
a partition function to partition its possible values into a
finite set of spatial partitions. Thus, we add a spatial par-

(a)

(b)

(c)

Fig. 2. (a) An example of a relational schema with a spatial attribute
Restaurant.location, which cannot be handled by standard PRMs. (b) The
relational schema adapted for the spatial attribute Restaurant.location as
proposed in definition 4.1. Here, spatial attributes are shown in italicized
font and the added spatial reference slot and the spatial partition class are
shown in boldface. (c) A PRM-SA as proposed in definition 4. The gray
nodes are spatial attributes and the one with thick border is the spatial
reference slot associated with the spatial attribute Restaurant.location. The
dotted line between Restaurant.location and Restaurant.C location indicates
that the spatial attribute and the spatial ref. slot are associated through a
spatial partition function.



tition class P Restaurant location that represents the spatial
partitions of Restaurant.location. The objects of this spatial
partition class will then be referenced in the spatial class
Restaurant by the spatial reference slot Restaurant.C location.
Figure 2b shows the relational schema adapted for the spatial
attribute. Here, we have assumed that the spatial partition
class will have an additional attribute called boundary , which
is again a spatial attribute. In this example, we can assume
that this attribute represents the convex hull formed by all
the locations mapped to the particular partition object. How-
ever, the attributes present in the partition classes depend on
the context. If we use the information about administrative
boundaries of cities or regions, P restaurant location.boundary
might represent the boundary of the specified location, and we
might even have extra information about the partitions such as
population, average income, demographic structure etc. of the
location. If hierarchical administrative division is available, we
can incorporate hierarchical partitions by further partitioning
P restaurant location.boundary and adding another partition
class, say P restaurant location boundary (not shown in the
figure).

We now define our model, which is based on standard PRMs
and supports spatial data.

Definition 4: PRM with spatial attributes (PRM-SA)
Let A(X) and SA(X) denote the set of descriptive at-

tributes and geometry attributes respectively in class X .
For each spatial class X ∈ X such that SA(X) 6= ∅ and

for each geometry attribute SA ∈ SA(X), we define the
following:
• a new partition class PXSA,
• a partition function fsa : SA → PXSA that creates

instances of PXSA associating each sa ∈ Domain[SA]
to one of the instances of PXSA, and

• a new spatial reference slot X.CSA associated with fsa.
Then, we adapt the relational schema for spatial attributes

and define the probabilistic model in the following way.
Definition 4.1: Adapted relational schema
The relational schema is adapted for spatial attributes by

adding PXSA and X.CSA associated with fsa for each spatial
class X ∈ X and for each geometry attribute SA ∈ SA(X).

Definition 4.2: Probabilistic model of a PRM-SA
Let PSA and CSA be the set of partition classes and the set

of added spatial reference slots respectively. Then, for each
class X ∈ {X ∪ PSA} and each attribute A ∈ {A(X) ∪
CSA(X)}, we have
• a set of parents Pa(X.A) = {U1, ..., Ul}, where each Ui

has the form X.B or γ(X.K.B), where B is an attribute
of any class, K is a slot chain and γ is an aggregate of
X.K.B,

• a legal conditional probability distribution CPD,
P (X.A|Pa(X.A)). z

A PRM-SA that corresponds to the schema in figure 2a is
shown in figure 2c. Here, the gray nodes are spatial attributes
and the nodes/classes with thick border are the ones that are
not present in the original relational schema. The probabilistic
dependencies shown in the examples are hypothetical.

Probabilistic inference is performed on a ground Bayesian
network (GBN) obtained by instantiating a PRM-SA for a
given relational skeleton. Here, the skeleton must also include
the objects of spatial classes. Given such a relational skeleton,
a PRM-SA induces a GBN that specifies probability distribu-
tions over the attributes of the objects. Here, we need to ensure
that the probability distributions are coherent, i.e. the sum of
probability of all instances is 1. In Bayesian networks, this
requirement is satisfied if the dependency graph is acyclic [19].
Following [11]’s approach, we consider instance dependency
graph to check whether the dependency structure S of a PRM-
SA is acyclic relative to a given relational skeleton. Due to the
presence of spatial attributes, standard instance dependency
graphs need to be redefined with some adaptations for PRM-
SA but we can still follow [11]’s proof to show that the
dependency structure S for a PRM-SA is guaranteed to be
acyclic for the given relational skeleton if the corresponding
instance dependency graph is acyclic.

Definition 5: Instance dependency graph (IDG)
The instance dependency graph Gσr

for a PRM-SA Π with
partition classes PSA and a relational skeleton σr is defined
as follows. For each object x ∈ σr(X) in each class X ∈
{X ∪ PSA}, we have the following nodes: a node x.A for
each descriptive attribute X.A, and a node x.CSA for each
spatial reference slot X.CSA. The graph has the following
edges:

1) Type I edges: For each formal parent of x.A, X.B, we
introduce an edge from x.B to x.A.

2) Type II edges: For each formal parent X.K.B, and for
each y ∈ x.K, we define an edge from y.B to x.A.

3) Type III edges: For any spatial attribute x.SA in each
spatial class X ∈ X , we define an edge x.SA→ x.CSA.

4) Type IV edges: For any attribute p.A in each spatial
partition class P ∈ PSA and p ∈ σr(P ), we add an
edge p.A← x.A if P.A is derived from X.A. z

Following [11] again, we can demonstrate that the prob-
abilistic model of a PRM-SA is coherent for any relational
skeleton if the corresponding class dependency graph is
acyclic. Here again, because of the presence of spatial at-
tributes, we redefine class dependency graph for PRM-SA.

Definition 6: Class dependency graph (CDG)
The class dependency graph GΠ for a PRM-SA Π is defined

as follows. The dependency graph has the following nodes: a
node for each descriptive attribute X.A, and a node for each
spatial reference slot X.CSA. The graph has the following
edges:

1) Type I edges: For any attribute X.A and its parent X.B,
we introduce an edge from X.B to X.A.

2) Type II edges: For any attribute X.A and its parent
X.K.B, we introduce an edge from Y.B to X.A, where
Y = Range[X.K].

3) Type III edges: For any spatial attribute X.SA in each
spatial class X ∈ X , we define an edge X.SA →
X.CSA.



Fig. 3. The class dependency graph for the PRM-SA in figure 2c. Because
there is no cycle in this graph, we can conclude that the dependency structure
in figure 2c is acyclic for any relational skeleton.

Fig. 4. An example of a class dependency graph with a cycle. Because of the
presence of a cycle, we can conclude that the dependency structure cannot be
guaranteed to be acyclic for any relational skeleton.

4) Type IV edges: For any attribute P.A in each spatial
partition class P ∈ PSA, we add an edge P.A ← X.A
if P.A is derived from X.A. z

Figure 3 shows the class dependency graph for the PRM-
SA in figure 2c. Because this graph is acyclic, the dependency
structure in figure 2c is guaranteed to be acyclic regardless of
relational skeleton.

Let us consider another hypothetical example where there is
an attribute User.location and a partition class P User location
that represents the partitions of users’ location. Suppose there
exists a dependency that says the income of a user depends on
the average income of the users in his community, i.e. users
with similar income tend to live in the same community. In this
case, the dependency structure of a PRM-SA will have an edge
from P User location.avg income to User.income. Although
there is no cycle in the structure, it is incoherent because
the class dependency graph of this structure contains a cycle
as shown in figure 4. This is due to the type IV edge that
is added because P User location.avg income is derived from

User.income.

B. Learning PRM-SA

As with standard PRMs, learning a PRM-SA involves the
tasks of parameter estimation and structure learning. Parame-
ters of a PRM-SA can be learned in the same way as for a
regular PRM. However, the instances of all partition classes
must be included in the instantiation of the relational schema.

As for structure learning, following [17]’s approach, we
apply relational greedy search algorithm to explore the
search space of candidate structures and evaluate legal can-
didate structures using score-based methods. However, due
to the introduction of partition classes along with partition
functions, we need to adapt the search algorithm to deal
with partitions. Here, we come across two situations – 1)
when the number of partitions of the spatial attribute (i.e.
Cardinality(Range[fsa]), let’s denote it by ksa) is known,
and 2) when it is unknown. In the former case, standard
relational greedy search algorithm can be applied to explore
the search space. However, the situation is complicated in
the latter case where the number of partitions needs to be
determined by the algorithm.

We present two approaches to learn a PRM-SA when ksa
is unknown. A naive way is to add new operators increase k
and decrease k, which increases or decreases the number of
partitions respectively, and use these operators along with
add, delete and revert edge operators of standard greedy
search algorithm to find neighborhood of a structure. In our
second approach, we separate the tasks of greedy search
over candidate structures and finding the optimal number of
partitions of spatial attributes. The basic idea is to pick the best
scoring structure among candidate structures, and then find the
optimal number of partitions of the spatial attributes in this
structure if this structure is obtained by changing (i.e. adding,
deleting or reverting) an edge that involves a spatial reference
slot. To simplify the computation, we use a decomposable
Bayesian scoring function. So, it is sufficient to compute the
score of only those terms that involve the variables being
modified.

An important point to note here is that if a spatial reference
slot appears with other spatial reference slots in the local
score terms of the scoring function (while finding the optimal
number of partitions), we need to vary the cardinality of the set
of all spatial reference slots that appear together with the target
spatial reference slot. To visualize this concept, we propose to
moralize1 the structure and find 2-vertex cliques of spatial ref-
erence slots. Those connected through the cliques form a set of
variables whose cardinality should be varied altogether when
optimizing the number of partitions. This concept is illustrated
in figure 5. Note that spatial partition classes associated with
each spatial attributes exist here but they are not shown in the
diagram to save some space. Suppose the PRM-SA in figure 5a
is obtained at some point during structure learning by adding

1A moral graph is the equivalent undirected graph of a directed acyclic
graph and is obtained by adding an edge between the nodes that have a
common child and changing directed edges to undirected ones.



(a)

(b)

Fig. 5. (a) A PRM-SA with multiple spatial attributes. (b) The correspond-
ing moralized graph used to identify the set of partition functions to be
optimized. Here, the pairs of spatial reference slots {Class A.C location a,
Class B.C location b} and {Class B.C location b, Class C.C location c}
form 2-vertex cliques. Because these two cliques are connected, we need to
find the optimal number of partitions for these three spatial ref. slots together.

an edge from Class A.C location a to Class A.a1. Because
the added edge contains a spatial reference slot, we need to
find the best number of partitions for this node. The score S
of this structure is

S = S(Class A.a1|Class A.C location a)

+ S(Class A.C location a) + S(Class B.b1|Class C.c1)

+ S(Class B.b2|Class A.C location a,Class B.C location b)

+ S(Class C.c2|Class B.C location b,Class C.C location c)

+ S(Class C.c1) + S(Class D.d1|Class D.C location d)

+ S(Class D.C location d |Class C.c2) (2)

From equation 2, it is clear that changing the number of par-
titions of Class A.C location a affects the score of the nodes
Class A.a1 and Class B.b2. However, to find the best score
for the node Class B.b2, we need to find the optimal number
of partitions for Class B.C location b too because it appears
with the spatial reference slot Class A.C location a in local
score terms of the scoring function. Class B.C location b also
appears with Class C.C location c in the scoring function. As
a result, partition functions of all of the three spatial ref. slots
need to be optimized together. To identify this set, we can
moralize the dependency structure of the PRM-SA as shown in
figure 5b and find out all 2-vertex cliques of spatial reference
slots. The three spatial reference slots Class A.C location a,
Class B.C location b and Class C.C location c in figure 5b
are connected through cliques. Therefore, we find the best

Fig. 6. An example of a dependency structure that models the dependency of
an attribute with the aggregated value of the same attribute of spatial objects
in the same cluster. This concept can be used to model spatial autocorrelation.

number of partitions for these three spatial reference slots
altogether.

An interesting property of this approach of learning PRM-
SA is that because of the separation of greedy search and
partition size optimization, we can come up with different
heuristics that involve different combinations of these two
tasks. For example, we can perform one operation (add, delete
or revert) of greedy search and then find the cardinality of
spatial reference slots, or we can find the optimal cardinality
of all spatial reference slots after a complete greedy search
and so on. However, the best approach among these is yet to
be discovered.

IV. DISCUSSION

Our model sounds somewhat similar to PRM with reference
uncertainty (PRM-RU) [11] because the notion of partition
and partition function has already been coined there. However,
there is no reference uncertainty in our model. We partition
spatial objects because the set of possible values of a geometry
attribute is so big (or infinite) that specifying a probability
distribution over the set of all values of a geometry attribute
is too much of work. Unlike in PRM-RU, where more than
one attribute (called partition attributes) can define a partition,
there is only one partition attribute, i.e. the corresponding
spatial attribute, for each partition class in our model. On the
other hand, type III edges in IDG and CDG of our model
correspond to type IV edges in those of PRM-RU.

Learning structure of our model when the number of
partitions of spatial reference slots is unknown is inspired
by standard methods of latent variable discovery in Bayesian
networks [20]. We deal with the problem of finding the right
dimensionality of special variables but these variables, in
fact, are not latent. Thus, unlike in latent variable discovery
techniques, we do not need to apply Expectation Maximization
(EM) algorithm to score those special variables because our
partition functions take care of providing complete data for
those variables.



Researchers advocate the consideration of autocorrelation in
spatial data analysis. However, autocorrelation cannot be mod-
eled directly in PRMs because of acyclicity constraint [16].
An attribute of an instance depending on the same attribute of
neighboring instances would create a cycle because of the fact
that neighborhood is a mutual concept. Due to this reason, we
do not model spatial autocorrelation directly. Nevertheless, it
is still possible to extend our model to enforce the modeling
of spatial autocorrelation by adding aggregated descriptive
attributes in partition classes with a special constraint that
the aggregated attribute must always be a child to ensure
acyclicity. For example, let us consider the relational schema
in figure 2a. Suppose there is an attribute User.location and
a partition class P User location that represents the partitions
of users’ location. Modeling spatial autocorrelation of users’
income (i.e. users’ income depending on the income of neigh-
boring users) would create a cycle in the dependency structure.
To avoid this, we could add an attribute avg income in the
P User location, which is, in fact, the average (aggregation)
of User.income. P User location.avg income would, then, be
enforced to be a child of User.income as shown in figure 6,
otherwise we may come across the situation as in figure 4. This
models the dependency of an attribute with the aggregated
value of the same attribute of spatial objects in the same
cluster. Relational Markov Networks (RMNs) could be another
solution to model this spatial autocorrelation because depen-
dencies are represented by an undirected graph in this type
of probabilistic graphical models. However, learning RMNs is
much more complex than learning PRMs.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a generic framework to
incorporate spatial information into PRMs. Our model extends
standard PRMs and provides a general solution to model
spatial dependencies in PRMs. We have also presented our
approaches to learning the model. Our model opens a possi-
bility to model spatial autocorrelation with the introduction
of aggregated attributes on partition classes and a special
constraint on the orientation of edges to avoid cycles. Be-
cause the spatial attributes are preserved in a PRM-SA, our
model can be extended to support spatial functions that work
directly with the spatial attributes. We are currently working
to implement this model in PILGRIM, a software platform
to work with probabilistic graphical models, being developed
at our research lab, and to perform experiments to prove our
concept. In future, we are planning to enhance this model with

[2] H. J. Miller and J. Han, Geographic data mining and knowledge
discovery. CRC Press, 2009.

spatial functions to explore more meaningful attributes in the
domain. We aim at applying this model in a recommender
system for a real-world application.
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