
HAL Id: hal-01200898
https://hal.science/hal-01200898

Submitted on 17 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization of GLRT-Based Magnetic Anomaly
Detection

Pascal Pepe, Steeve Zozor, Laure-Line Rouve, Jean-Louis Coulomb, Christine
Serviere, Jean Muley

To cite this version:
Pascal Pepe, Steeve Zozor, Laure-Line Rouve, Jean-Louis Coulomb, Christine Serviere, et al.. Gen-
eralization of GLRT-Based Magnetic Anomaly Detection. EUSIPCO 2015 - 23th European Signal
Processing Conference, Aug 2015, Nice, France. �hal-01200898�

https://hal.science/hal-01200898
https://hal.archives-ouvertes.fr


GENERALIZATION OF GLRT-BASED MAGNETIC ANOMALY DETECTION

P. Pepe1,2,3, S. Zozor1, L.-L. Rouve2, J.-L. Coulomb2, C. Servière1, J. Muley3

1 GIPSA-lab
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ABSTRACT
Magnetic anomaly detection (MAD) refers to a passive
method used to reveal hidden magnetic masses and is most
commonly based on a dipolar target model. This paper
proposes a generalization of the MAD through a multipolar
model that provides a more precise description of the anomaly
and serves a twofold objective: to improve the detection per-
formance, and to widen the variety of detectable targets. The
dipole detection strategy – namely an orthonormal decompo-
sition of the anomaly followed by a generalized likelihood
ratio test – is hence revisited in the multipolar case. The
performance are assessed analytically and the relevance of
this generalization is demonstrated on multipolar scenarios.

Index Terms— Magnetic anomaly detection, spherical
harmonic expansion, orthonormal basis functions

1. INTRODUCTION

Magnetic anomaly detection (MAD) refers to a passive
method used for anti-submarine warfare, and is typically
fulfilled by an aircraft carrying a magnetometer and flying
over a maritime area, searching for hidden ferromagnetic
targets. This approach is based on the well known fact that
the presence of a ferromagnetic mass in the Earth’s magnetic
field causes a modification of the field in its surrounding area,
termed magnetic anomaly. This spatial deformation of the
field, if significant enough to be detected from an airborne
system, will most likely be due to a submarine.

The studies on MAD found in the literature can be split
into two categories. The first one finds its roots in the sev-
enties with noticeable contributions established by regarding
the target as a magnetic dipole, thus providing a mathematical
modeling of the anomaly that paved the way for a statistical
detection strategy [1, 2]. This approach is still drawing sig-
nificant interest today [3–6]. The second category appeared
more recently and consists in methods focused on the mag-
netic background nature instead of target-based models [7,8].

The study presented in this paper focuses on contributing
to the first category. The aim is to propose a generalization
of the target-based approach that overcomes the limits im-
posed by the convenient, but nonetheless restrictive dipolar

approximation. For this purpose, we present a multipolar tar-
get model in section 2 in comparison with the dipolar model.
The detection strategy is revisited in section 3 and the per-
formance are analytically assessed in section 4. Finally, the
impact of our generalization and the gain of performance are
illustrated through multipolar scenarios in section 5.

2. EXPRESSION OF THE MAGNETIC ANOMALY

2.1. Definition of a multipolar target model

In a typical scenario, the sensor is assumed to be moving
along a straight line at a constant speed V and at a constant
altitude while the target is assumed stationary (the opposite
configuration is however completely analogous). The classi-
cal approach consists in considering the target as a magnetic
dipole defined by its static moment m (represented as a 3× 1
column vector). Its presence in the Earth’s magnetic field in-
duces an anomaly H that can be expressed at any point by [9]:

H(r) =
3(mtr)r− r2m

4πr5
, (1)

where r is the Cartesian coordinate vector of the point con-
sidered (the origin of the system is at the center of the target),
r = ‖r‖, and ·t denotes the transpose of vectors and matri-
ces. Equation (1) is only valid at a long distance between the
source and the sensor and is therefore limited to specific con-
texts. Instead, we suggest a representation of the target based
on a spherical harmonic expansion of the magnetic field, as
commonly used in electromagnetic problems that require to
model an unknown source [10–13] and also similarly in many
other research fields [14, 15]. This expansion is obtained by
solving the Laplace equation in spherical coordinates, which
gives the following expression of the anomaly [9, 10]:

H(r) = −grad

( ∞∑
n=1

1

rn+1

n∑
m=0

(an,m cosmφ

+ bn,m sinmφ)Pmn (cos θ)

)
,

(2)

where r is here alternatively represented by its spherical co-
ordinates (r, θ, φ) defined so that r is the radial distance (as



previously), θ ∈ [0, π] is the polar angle, and φ ∈] − π, π]
is the azimuthal angle. The integers n and m respectively
denote a decomposition order and its associated degree. The
scalars an,m and bn,m are called the spherical harmonic co-
efficients, and are characteristic of the magnetic properties of
the target. The terms Pmn are the associated Legendre poly-
nomials. Equation (2) gives a more precise description of the
target anomaly than (1) by taking into account the dipole mo-
ment (first-order term) as well as the higher-order moments
(quadrupole, octupole, etc.). As implied within (2), the in-
fluence of each decomposition order n decreases as 1/rn+2,
which means that far from the sources the higher orders be-
come negligible and eventually non-measurable. In practice,
the infinite sum is therefore truncated to an arbitrary decom-
position order L that should match the target at best.

A particular position, called the closest point of approach
(CPA), is reached by the sensor at the instant t0 when it is at
the closest to the target, with D being the corresponding dis-
tance. At any instant t, the position of the sensor can be speci-
fied by the dimensionless variable u = (t−t0)V

D . Through sev-
eral mathematical considerations involving the gradient oper-
ation and the associated Legendre polynomials (see [16, 17]),
we have rewritten (2) for any point along the sensor track as:

H(u) =

L∑
n=1

n+1∑
i=0

cn,i
ui

(1 + u2)n+
3
2

, (3)

where the functions fn,i(u) = ui/(1 + u2)n+
3
2 are only

parametrized by the parameters of the CPA (namely D and
t0), and the 3× 1 vector coefficients cn,i depend on the mag-
netic parameters of the target (given by an,m and bn,m) and
do not depend on time. The dipolar assumption is a first-order
approximation that consists in choosing L = 1, which leads
to the expression established in [1, 2] and widely discussed
since then [3–6]. From this perspective, we can see that our
result (3) encompasses and generalizes the dipolar approach.

2.2. Orthonormal basis function decomposition

In (3), the L(L + 5)/2 functions fn,i are linearly dependent
if L > 1. Indeed, for any i ∈ N and any n ∈ N∗, we have
fn,i + fn,i+2 = fn−1,i. However, by recursively using this
relation we have reduced the set of L(L + 5)/2 functions to
a linearly independent set of only 2L + 1 functions, which
consists of f0,0, to which two more functions fn,0 and fn,1
are added for each successive decomposition order consid-
ered n = (1, 2, . . . , L). From there, we can perform an or-
thonormalization in order to build a set of orthonormal basis
functions (OBF) denoted (ei)i∈[[0,2L]]. In this way, (3) can be
rewritten as:

H(u) =

2L∑
i=0

aiei(u), (4)

where the vector coefficients ai are characteristic of the mul-
tipole in this basis.

3. GLRT-BASED DETECTION STRATEGY

3.1. Detection problem

We consider the acquisition of N samples of the anomaly (4),
which are concatenated in order to build the 3 ×N matrix S
defined by:

S = ALEL, (5)

where AL is the 3 × (2L + 1) matrix of coefficients so that
AL = [a0, . . . ,a2L], and EL is the (2L + 1) × N matrix
consisting of N samples from every OBF. Depending on its
technology, the sensor used may provide a 3D or a 1D infor-
mation. In order to describe both contexts within one single
formalism, as done in [5], the target signal is thereafter rep-
resented by the d × N matrix s, where d = 3 or 1, either
defined directly from (5) or by Ht

0S/‖H0‖, which is the pro-
jection of the anomaly on the Earth’s magnetic field H0, as
approximately obtained with a scalar (1D) magnetometer.

The MAD problem consists in deciding from N measure-
ments whether a signal is present or if only noise is observed.
Assuming that the Earth’s magnetic field has been previously
removed from the measurements, MAD leads to a classical
binary hypothesis testing problem [18]:{

H0 (absence of target) : x = w

H1 (presence of target) : x = s + w
(6)

where x is the observation and w is noise. From there, we
define PD = Pr (H1|H1) the probability of detection and
PFA = Pr (H1|H0) the probability of false alarm. In the se-
quel, the target signal is always assumed deterministic, and
the noise is assumed Gaussian, isotropic and white. The ran-
dom matrix w has therefore a matrix variate normal distribu-
tion with zero mean and covariance matrix σ2Id⊗ IN , where
σ2 denotes the spatio-temporal variance of each noise sample,
and ⊗ is the Kronecker product. This is alternatively denoted
w ∼ Nd,N (0, σ2Id ⊗ IN ). The probability density function
(PDF) of w is then given by [19]:

p(w) =
(
2πσ2

)− dN2 exp

(
− tr (wtw)

2σ2

)
. (7)

Following the Neyman-Pearson approach, we aim at maxi-
mizing PD under a PFA constraint.

3.2. Known or assumed known signal basis

In practice, even in a cooperative context, the signal of the
target can scarcely ever be known because the inherent mag-
netic parameters of the target are completely unknown. In this
subsection, we will assume that the parameters of the signal
basis (D and t0) are known, as well as L, the order of the mul-
tipole. This means that EL is known while AL is unknown.



The approach consists here in a generalized likelihood ratio
test (GLRT) [18]:

p(x; ÂL,H1)

p(x;H0)

H1

≷
H0

γ(PFA), (8)

where ÂL is the maximum likelihood estimator (MLE) of
AL, and p(x; ÂL,H1) and p(x;H0) denote the PDF of x un-
der each hypothesis. The problem of estimating AL from (5)
in the particular case of white Gaussian noise is well known
and, similarily to [2,3] we have shown that the coefficient ma-
trix that maximizes the likelihood p(x; ÂL,H1) is the projec-
tion of x onto the basis EL [20]:

ÂL = xEtL. (9)

By using (9) and (7) in (8) and taking the logarithm of both
sides, the receiver writes:

ΛOBF-L(x) = tr (Ât
LÂL) = ‖ÂL‖2, (10)

which will thereafter be referred to as the OBF-based receiver
of order L, or in a more compact way as the OBF-L receiver.
It is worth mentionning that (10) is also the energy of the
projection. While the dipolar approach already led to OBF-1,
we have now access to a wider range of receivers that can be
applied to targets more complex than a dipole.

3.3. Unknown signal basis

We can go a step further by considering that even the signal
basis is unknown. The knowledge of the signal basis is related
to the three following parameters: D, t0 and L.

The case of D was addressed in [2] by considering a bank
of receivers built for different possible values of the parame-
ter, and later in [5] by using a genetic algorithm instead.

The parameter t0 is not a concern in a real-time scenario,
because in practice windows of the observation are projected
on centered OBF with a fixed length (see section 5).

Estimating L can be seen as a model selection problem.
Among the available methods, the Akaike information crite-
rion (AIC) [21] is quite convenient in our approach. Indeed,
AIC depends on the number of parameters to adjust (the el-
ements of AL) but also on the maximized value of the like-
lihood of the model, and ÂL has been specifically chosen as
the MLE. AIC is therefore straightforwardly expressed as:

AICL = 2d(2L+ 1) + 2dN log(2πσ2)

+
1

σ2
(‖x‖2 − ‖ÂL‖2).

(11)

The value of L that minimizes AICL also corresponds to the
model that minimizes the information loss, and thus in the
same way to the maximal order of the multipole that should
match the target at best. The application of this criterion is
illustrated in section 5.

4. PERFORMANCE OF THE DETECTORS

This section aims at analytically assessing the theoretical per-
formance of the OBF-L detectors. In the context of this pa-
per, we will assume that the parameter of the signal basis D
is known and rather focus on the influence of L, as it is the
parameter of main interest in this multipolar approach.

4.1. OBF-L detector when L is known

First of all, we consider the case of the OBF-L detector where
L is the correct multipolar order. In other words, we pick the
OBF-L detector for a target that is indeed best described by a
multipole of order L. The coefficient matrix AL is estimated
by projection of the observation onto the appropriate basis EL
according to (9). Then, underHk (k = 0 or 1):

ÂL = ksEtL + wEtL, (12)

which means that ÂL ∼ Nd,2L+1(ksEtL, σ
2Id ⊗ I2L+1) (see

[19]). The OBF-L receiver (10) over σ2 is thus basically the
sum of the squares of (2L+1)d independent standard normal
random variables. Therefore,

tr (Ât
LÂL)

σ2
∼


χ2
(2L+1)d underH0

χ2
(2L+1)d

(‖AL‖2
σ2

)
underH1

where χ2
ν and χ2

ν(λ) denote the chi-squared distribution with
ν degrees of freedom and, for the latter, a noncentrality pa-
rameter λ. The term ENR = ‖AL‖2/σ2 defines the energy-
to-noise ratio. By noting Fχ2

ν
and Fχ2

ν(λ)
respectively the cu-

mulative distribution functions of χ2
ν and χ2

ν(λ), the theoreti-
cal performance of the OBF-L detector are given by:

PD = 1− Fχ2
(2L+1)d

(ENR)

(
F−1
χ2
(2L+1)d

(1− PFA)

)
. (13)

4.2. Consequence of picking an erroneous order

The target is still best defined by a multipole of order L,
but now, instead of using the appropriate detector, we use
the OBF-L′ detector, where L′ 6= L. In this case, the co-
efficient matrix AL is estimated by projection of the obser-
vation onto the erroneous basis EL′ , and thus, under Hk,
ÂL′ ∼ Nd,2L′+1(ksEtL′ , σ2Id ⊗ I2L′+1). As a consequence,
following the same reasoning as in the previous subsection,
the performance of the detector become:

PD
′ = 1−Fχ2

(2L′+1)d
(ENR′)

(
F−1
χ2
(2L′+1)d

(1− PFA)

)
, (14)

where ENR′ = ‖sEtL′‖2/σ2 = ‖ALELE
t
L′‖2/σ2, which

can be seen as an “erroneous ENR”. With L′ < L, we
have ENR′ < ENR. On the other hand, if L′ > L, then
ENR′ = ENR, but too many degrees of freedom are al-
lowed. Both cases lead to a loss of performance, as illustrated
in the next section.



5. SIMULATION RESULTS

5.1. Influence of the multipolar order

We will successively consider different multipolar scenarios
by adjusting the values of the coefficients in AL. A dipole is
represented by the first three coefficients (see section 2), and
can also be seen as a multipole of pure order 1. More realisti-
cally, several coefficients will be involved in the description of
the target as we will most likely face multipoles of non-pure
orders. This is summed up in figure 1.

Most of the signal energy is spread within a time span of
10D/V around t0. The signal-to-noise ratio (SNR) can be
set by adjusting the noise level in this window. In each of
the following scenarios, we generate an observation of 10000
samples in a time span of 50D/V with t0 at the center. Win-
dows of the observation are then projected on centered OBF
with a fixed length corresponding to a time span of 10D/V .

1. The first scenario is chosen as a “didactic case” consisting
in a target represented by a multipole of pure order 2.

2. The second one consists in a more realistic target repre-
sented by a multipole of non-pure order 3. We adjust the
coefficients in AL so that 70% of the signal energy is con-
tained in the first three coefficients, 20% in the next two,
and 10% in the other two. The first component of the sig-
nal of this target and its noisy observation are shown in
figure 2 in arbitrary units with a SNR of −15 dB, along-
side the output of the OBF-3 receiver.

Figure 3 shows the performance of OBF-L detectors when ap-
plied to those two targets. In both cases, PFA is constrained
to 10−4 and the performance are assessed either from the the-
oretical results (13) and (14) or from Monte-Carlo (MC) sim-
ulations. First of all, the didactic scenario with a multipole of
pure order 2 (figure 3.a) shows that the best performance are
obtained with the OBF-2 detector, which matches the target at
best. As expected, the target is non-detectable by the OBF-1
detector. The OBF-3 detector is also able to detect the target
with however a loss of performance as compared to the OBF-
2 detector, allowing too many degrees of freedom. Then for
the more realistic scenario with a multipole of non-pure order
3, figure 3.b shows the performance of the OBF-1 and OBF-
3 detectors. In this case, the performance are also evaluated
by Monte-Carlo simulations, which perfectly match the the-
oretical expectations. Even though most of the signal energy
(70%) is contained in the first-order coefficients, the OBF-3
detector is still the one that leads to the best performance.

Figure 4 shows the AIC values for different model orders
in both scenarios, with a SNR of −15 dB. The minimal value
of the AIC is reached for the order that matches the target at
best, which is also the detector order that leads to the best
performance.

AL = [a0,a1,a2︸ ︷︷ ︸
PO 1

,a3,a4︸ ︷︷ ︸
PO 2

,a5,a6︸ ︷︷ ︸
PO 3︸ ︷︷ ︸

NPO 3

, . . . ,a2L−1,a2L︸ ︷︷ ︸
PO L

]

Fig. 1. Layout of the coefficient matrix AL. Illustration of the
notions of pure order (PO) and non-pure order (NPO).
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(b) OBF-3 receiver

Fig. 2. Representations of the first component of the signal
of the second target (white) over its noisy observation for
SNR = −15 dB (black) (a) and of the output of the OBF-3
receiver calculated in a sliding window of 2000 samples (b).
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Fig. 3. Performance of the OBF-L detectors when applied to
the first (a) and to the second target (b).
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Fig. 4. AIC when applied to the first (a) and to the second
target (b) for different model orders and SNR = −15 dB.
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Fig. 5. Influence of the energy distribution on the AIC-based
model selection for a target of order 2 (SNR = −15 dB).



5.2. Influence of the relative order magnitudes

We consider now successive targets of order 2, for which the
coefficients in AL are adjusted so that the relative energy of
the second order varies from 0 to 100%. Figure 5 shows the
results of the AIC-based model selection (averaged on 100
simulations) for each of these targets (with SNR = −15 dB).
It shows that very little energy is needed in the second order
for OBF-2 to become more relevant than OBF-1.

6. CONCLUSION

In this paper, the MAD approach has been generalized to
the detection of magnetic multipoles. While the “classical”
MAD is restricted to the detection of dipoles, our multipolar
approach is applicable to a wider variety of targets and, as
such, could be used in more scenarios and applications than
the typical context of the MAD. When the target is indeed
more complex than a simple dipole, the multipolar approach
provides a clear gain of performance, which illustrates the rel-
evance of the method, especially in a detection context where
even a slight gain could mean much.
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d’anomalies magnétiques, Ph.D. thesis, INP Grenoble,
France, 1979.

[3] R. Otnes, “Static magnetic dipole detection using vec-
tor linear prediction, Anderson functions, and block-
based adaptive processing,” in Proc. OCEANS 2007,
Aberdeen, Scotland, 2007.

[4] A. Sheinker, L. Frumkis, B. Ginzburg, N. Salomonski,
and B.-Z. Kaplan, “Magnetic anomaly detection using
a three-axis magnetometer,” IEEE Trans. Magn., vol.
45, no. 1, pp. 160–167, Jan. 2009.

[5] S. Zozor, L.-L. Rouve, G. Cauffet, J.-L. Coulomb, and
H. Henocq, “Compared performances of MF-based and
locally optimal-based magnetic anomaly detection,” in
Proc. EUSIPCO 2010, Aalborg, Denmark, 2010, pp.
149–153.

[6] H. Zhang and M.-Y. Xia, “Magnetic anomaly detection
for simultaneous moving target and magnetometer,” in
Proc. APCAP 2014, Harbin, China, 2014, pp. 884–888.

[7] A. Sheinker, N. Salomonski, B. Ginzburg, L. Frumkis,
and B.-Z. Kaplan, “Magnetic anomaly detection using
entropy filter,” Meas. Sci. Technol., vol. 19, no. 4, pp.
045205, Feb. 2008.

[8] A. Sheinker, B. Ginzburg, N. Salomonski, P. A. Dick-
stein, L. Frumkis, and B.-Z. Kaplan, “Magnetic
anomaly detection using high-order crossing method,”
IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp.
1095–1103, Apr. 2012.

[9] J. D. Jackson, Classical Electrodynamics, John Wiley
& Sons, Inc., 3rd edition, 2007.

[10] L.-L. Rouve, L.-A. Schmerber, O. Chadebec, and
A. Foggia, “Optimal magnetic sensor location for
spherical harmonic identification applied to radiated
electrical devices,” IEEE Trans. Magn., vol. 42, no. 4,
pp. 1167–1170, Apr. 2006.

[11] L.-A. Schmerber, Identification et caractérisation de
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des moteurs de propulsion navale, Ph.D. thesis, INP
Grenoble, France, 2006.

[12] T. S. Nguyen, J.-M. Guichon, O. Chadebec, P. Labie,
and J.-L. Coulomb, “Ships magnetic anomaly computa-
tion with integral equation and fast multipole method,”
IEEE Trans. Magn., vol. 47, no. 5, pp. 1414–1417, May
2011.

[13] K. Jerbi, J. C. Mosher, S. Baillet, and R. M. Leahy, “On
MEG forward modelling using multipolar expansions,”
Phys. Med. Biol., vol. 47, no. 4, pp. 523–555, Feb. 2002.

[14] S. Parimal, S. M. Cramer, and S. Garde, “Application
of a spherical harmonics expansion approach for cal-
culating ligand density distributions around proteins,”
J. Phys. Chem. B, vol. 118, no. 46, pp. 13066–13076,
Sept. 2014.

[15] A. C. Simmonett, F. C. Pickard, H. F. Schaefer, and
B. R. Brooks, “An efficient algorithm for multipole en-
ergies and derivatives based on spherical harmonics and
extensions to particle mesh Ewald,” J. Chem. Phys., vol.
140, no. 18, pp. 184101, May 2014.

[16] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products, Academic Press, 7th edition,
2007.

[17] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.
Clark, NIST Handbook of Mathematical Functions,
Cambridge University Press, New York, NY, 2010.

[18] S. M. Kay, Fundamentals of Statistical Signal Process-
ing: Detection theory, Prentice-Hall PTR, 1998.

[19] A. K. Gupta and D. K. Nagar, Matrix Variate Distribu-
tions, CHAPMAN & HALL/CRC, 2000.

[20] S. M. Kay, Fundamentals of Statistical Signal Process-
ing: Estimation theory, Prentice-Hall PTR, 1993.

[21] H. Akaike, “A new look at the statistical model identi-
fication,” IEEE Trans. Automat. Contr., vol. 19, no. 6,
pp. 716–723, Dec. 1974.


