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Multiple-Votes Parallel Symbol-Flipping Decoding
Algorithm for Non-Binary LDPC Codes

Nhat-Quang Nhan, Telex M. N. Ngatched, Octavia A. Dobre, Philippe Rostaing, Karine Amis, and Emanuel Radoi

Abstract—A novel decoding algorithm for non-binary low
density parity check (NB-LDPC) codes is proposed. The algorithm
builds on the recently designed parallel symbol-flipping decoding
(PSFD) algorithm and combines a technique of error estimation
and a method of multiple voting levels from each unsatisfied check-
sum to the corresponding variable nodes. Simulations results,
performed on a number of NB-LDPC codes of various lengths
and column weights constructed using several methods, show that
the new algorithm not only avoids using code-dependent voting
threshold but also improves the error rate performance of the
PSFD algorithm, particularly for low column weight parity-check
matrices.

Index Terms—NB-LDPC codes, low complexity decoding algo-
rithm, symbol flipping.

I. INTRODUCTION

F IRST introduced by Gallager in [1], and subsequently

rediscovered by Davey and Mackay in [2], non-binary low

density parity check (NB-LDPC) codes outperform their binary

counterparts, especially for short-to-moderate length codes.

Just like with binary LDPC codes, the algorithms for decoding

NB-LDPC codes can be classified into three general categories:

hard-decision decoding [3], soft-decision decoding [4]–[7], and

hybrid decoding (also known as reliability-based decoding)

[8]–[11]. From an implementation point of view, hard-decision

decoding is the simplest in complexity. However, its simplicity

results in a relatively poor performance that can be as far away

as a few decibels from that of soft-decision decoding. Soft-

decision decoding provides the best performance but requires

the highest computational complexity. Hybrid decoding is in

between the two extremes and provides a good trade-off be-

tween performance and complexity.
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Among reliability-based message-passing algorithms, the

parallel symbol flipping decoding (PSFD) algorithm recently

introduced in [10] offers one of the best trade-off between

performance and complexity. Using a flipping function which

combines both the weighted check-based message of the nor-

malized check-sums and the variable-based message of the

received sequence, the algorithm identifies, in each decoding

iteration, the relatively unreliable symbols in the hard-decision

symbol sequence and decodes them based on the corresponding

flipping symbols. The unreliable symbols are found using a vot-

ing system whereby each unsatisfied check node (CN) gives one

vote to the variable node (VN) with the largest flipping function

checked by it. Variable nodes thus accumulate votes and those

with a total number of votes exceeding a predefined threshold

are identified as unreliable. By only playing with the reliabil-

ities of hard-decisions, PSFD is a good choice to decode high

rate finite field NB-LDPC codes. However, simulation results

show that PSFD is suitable for decoding only regular NB-LDPC

codes whose parity-check matrices have large column weights,

e.g., column weights of at least 8. In addition, PSFD employs

a code-dependent voting threshold, which should be optimized

through simulation. Furthermore, the computation of its flip-

ping function involves a pair of scaling factors, (η, λ), which

also depend on the code and is optimized through simulation.

This letter proposes a new algorithm, referred to as multiple-

votes PSFD (MV-PSFD). When compared with PSFD, it intro-

duces a method of error estimation which results in avoiding

the use of the voting threshold, and passes multiple votes from

the unsatisfied CNs to the corresponding VNs. The proposed

algorithm significantly outperforms PSFD for low column

weight parity check matrices, as shown by simulation results.

Such improvements are achieved with a similar computational

complexity.

The organization of this letter is as follows: In Section II,

some preliminaries and the PSFD algorithm are briefly re-

viewed. The proposed algorithm and its complexity analysis

are introduced in Section III. Simulation results are presented

in Section IV. Finally, Section V concludes the letter.

II. PRELIMINARIES

A. Notations and Definitions

A regular NB-LDPC code C of length N and dimension

K over the Galois field of order q (GF(q)) is completely

described by a row-column (RC)-constrained parity-check ma-

trix of size M ×N (M ≥ K) H = [hj,i] over GF(q), which

has a constant column weight dv and a constant row weight

dc. For practical purpose, we only consider binary extension

fields, where q = 2p. Let Mj = {i : 0 ≤ i < N, hji �= 0} be

the set of all indices of VNs which connect to the CN cj and

Ni = {j : 0 ≤ j < M, hji �= 0} be the set of all indices of CNs

which connect to the VN vi.
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Suppose that a regular (N,K) NB-LDPC code is used

for error control over a binary-input additive white Gaussian

noise (BIAWGN) channel with zero mean and two-sided

power spectral density N0/2. Assume binary phase-shift-

keying (BPSK) signaling with unit energy. A codeword c =
(c0, c1, . . . , cN−1) in C, where cn = (cn,0, cn,1, · · · , cn,p−1) ∈
GF(2p) with cn,i ∈ GF(2), is mapped into the sequence

x = (x0, x1, . . . , xN−1) before its transmission, where xn =
(xn,0, xn,1, · · · , xn,p−1) with the mapping rule xn,i = (2cn,i −
1) ∈ {+1,−1}. Let y = (y0, y1, . . . , yN−1) be the soft-

decision received sequence at the output of the receiver matched

filter. For 0 ≤ i < N , yn = (yn,0, yn,1, · · · , yn,p−1) = (xn,0 +
νn,0, xn,1 + νn,1, · · · , xn,p−1 + νn,p−1) in which the νn,i’s are

statistically independent Gaussian random variable with zero

mean and variance N0/2. The hard-decision symbol sequence

at the decoder is denoted as z = (z0, z1, . . . , zN−1).
For any hard-decision symbol sequence z, the syndrome vec-

tor s is computed as s = z ·HT , where sj = hj0z0 + hj1z1 +
· · ·+ hj(N−1)zN−1 with 0 ≤ j < M . sj is known as the jth

check-sum of z. z is a valid codeword in C if and only if s = 0.

Let Si(z) = {sj : j ∈ Ni} be a set of check-sums that contain

the symbol zi at the VN vi and S̃i(z) = {s̃ji(z) = h−1
ji sj : sj ∈

Si(z)} be a normalized check-sum set. Finally, let S̃∗
i (z) be

S̃i(z) excluding zero elements, i.e., S̃∗
i (z) = S̃i(z) \ {0}.

B. PSFD Algorithm [10]

Given the initial hard-decision symbol vector z(0)=(z
(0)
0 , z

(0)
1 ,

. . . , z
(0)
N−1), the PSFD algorithm iteratively flips erroneous sym-

bols in z(0) until either a codeword is found or a maximum

number of iteration is reached. In other words, the algorithm

finds an error symbol vector e=[e0, e1, . . . , eN−1], such that

z=z(0)−e is a codeword. The error symbol vector is recur-

sively computed by e(0)=0 and e(l+1)=e(l)+ε
(l), where each

component of ε
(l) is chosen so as to maximize a flipping

function that is updated at each iteration and which is defined by

F
(l)
i = max

α∈S̃
∗(l)
i

(z)

F
(l)
i (α). (1)

In (1), F
(l)
i (α) with α ∈ GF (q) is given by

F
(l)
i (α) = E

(l)
i (α)− Ii

(

α+ e
(l)
i

)

, (2)

where the weighted check-based message about zi(l), E
(l)
i (α),

and the variable-based message, Ii(α+ e
(l)
i ), are respectively

defined by

E
(l)
i (α) =

∑

j′∈Ni:s̃
(l)

j′i
(z)=α

Wj′i −
∑

j′∈Ni:s̃
(l)

j′i
(z)=0

Wj′i, (3)

and

Ii(α) = ηφi(α), (4)

where η is a scaling factor. Wji in (3) is the weighting

coefficient contributed to zi by other zi′’s checked by sj and is

defined by

Wji = λ min
i′∈Mj\{i}

Ri′ , (5)

where λ is a scaling factor. Ri is the reliability of the initial

hard-decision symbol z
(0)
i and is given by

Ri = min
α∈GF (q)

φi(α), (6)

with φi(α) being a log-likelihood ratio representing the gap of

likelihood between z
(0)
i and z

(0)
i − α defined by

φi(α) =
N0

4
ln

P
(

vi = z
(0)
i |yi

)

P
(

vi = z
(0)
i − α|yi

) . (7)

To speed up the decoding, it is essential to be able to flip

multiple symbols in each decoding iteration. The PSFD algo-

rithm achieves this by adopting a voting system whereby each

unsatisfied CN gives one vote to the VN with the largest flipping

function checked by it. At the lth iteration, VN vi accumulates

the number of votes, V
(l)
i , from all the unsatisfied CNs. That is

V
(l)
i =

∑

j∈Ni

V
(l)
ji , (8)

where V
(l)
ji0

= 1 if s
(l)
j �= 0; otherwise V

(l)
ji = 0 with i0 =

argmaxi′∈Mj
F

(l)
i′ . The hard-decision z

(l)
i will be flipped to

z
(l+1)
i = z

(l)
i − ε

(l)
i when V

(l)
i > Vth, where Vth is a code-

dependent threshold.

III. MULTIPLE-VOTES PSFD ALGORITHM

A. Algorithm

The voting threshold, Vth, in the PSFD is code-dependent

and should be optimized through simulation [10]. In the sequel,

we design a new decoding algorithm which mitigates this

drawback while maintaining the strong aspects of the PSFD.

First, we introduce multiple voting levels, allowing each

unsatisfied CN to pass more than one vote to the VNs checked

by it. Without loss of generalization, let us introduce two voting

levels ζ0 > ζ1 > 0. At each VN vi, the voting function is still

given by (8) but with the voting principle defined as follows

For s
(l)
j �= 0,

• V
(l)
ji0

= ζ0 with i0 = argmaxi′∈Mj
F

(l)
i′ .

• V
(l)
ji1

= ζ1 with i1 = argmaxi′∈Mj\{i0} F
(l)
i′ .

• V
(l)
ji = 0 elsewhere.

The unsatisfied CN cj gives ζ0 to the VN that has the largest

flipping function and gives ζ1 to the VN that has the second

largest flipping function. Though it might appear that the two

factors ζ0 and ζ1 should be optimized, we will show through

simulations, in the next section, that their optimal values are

not code-dependent.

Secondly, we derive a relationship between the syndrome

weight, the number of errors, and the parity-check matrix

column weight dv from the following Lemma [12].

Lemma 1: For regular LDPC matrices, the average syndrome

weight increases linearly with the number of errors.

Proof: (Heuristic.) For any regular LDPC matrix, a plot

of the average syndrome weight in terms of the number of errors

yield a straight line with slope dv . �
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Based on the above Lemma, at iteration l, the number of

errors in the hard-decision vector z(l), and hence the number

of symbols to be flipped, can be estimated by

Ne
(l) =

⌊

w(l)(s)

dv

⌋

, (9)

where ⌊x⌋ denotes the greatest integer less than or equal to x,

and w(l)(s) is the syndrome weight at iteration l defined by

w(l)(s) =
∑

j

(

s
(l)
j �= 0

)

. (10)

The use of a voting threshold can therefore be avoided by

flipping the first Ne
(l) symbols with the highest votes V

(l)
i .

The steps of the new algorithm, which we call Multiple-

Votes Parallel Symbol-Flipping Decoding (MV-PSFD), can be

summarized as follows.

MV-PSFD algorithm

1: Inputs: Maximum number of iterations lmax, hard-

decision z(0) and the received symbol vector y.

2: Initialization: Set iteration index l = 0, maximum num-

ber of iterations to lmax, and error symbol vector e = 0.

Find φi(α) by (7) and the variable-based message Ii(α)
by (4). Compute the coefficients Wji by (5) and store

them.

3: while l ≤ lmax do

4: Compute the syndrome s(l)

5: if s(l) = 0 then

6: Stop the while loop

7: end if

8: With 0≤ i<N , compute the flipping function F
(l)
i and

find its corresponding flipping symbol α = ε
(l)
i by (1)

9: Compute V
(l)
i by (8) using the multiple-votes principle

10: Estimate the number of errors Ne
(l) by (9)

11: With 0 ≤ i < N , sort VNs according to descending

order of V
(l)
i

12: Flip the first Ne
(l) VNs by setting new hard-decision

symbols z
(l+1)
i = z

(l)
i − ε

(l)
i and new error symbols

e
(l+1)
i = e

(l)
i + ε

(l)
i

13: l ← l + 1
14: end while

15: Output: z(l).

B. Complexity Computation

We evaluate the computational complexity of the new algo-

rithm based on the number of integer addition (IA), multiplica-

tion (IM) and comparison (IC) operators as in [4].

At the initialization, the computations of Ii(α) and Ri

(BPSK modulation) need O(Nqlog2(q)) IAs, O(Nq) IMs,

and O(N(log2(q)− 1)) ICs. Additionally, O(M(2dc − 3))
ICs and O(Mdc) IMs are needed for Wji.

At each iteration, check-sums computations require

O(M(dc−1)) IAs and O(Mdc) IMs. The normalized check-

sums S̃
∗(l)
i need O(Mdc) IMs. The flipping functions and flip-

ping symbols require at most O(2N(dv−1)) IAs for F
(l)
i (α)

and at most O(N(dv−1)) ICs for F
(l)
i . The error estimation

needs at most O(M−1) IAs for ds
(l) and O(1) IM for Ne

(l).

TABLE I
COMPLEXITY BY OPERATORS AT EACH ITERATION

OF NB-LDPC DECODING ALGORITHMS

For voting function V
(l)
i , it requires at most O(M(dc−1))

ICs and at most O(M) IAs. If the Quick Sort algorithm [13]

is used, the sorting needs at most O(Nlog2(N)) ICs. Note

that the Quick Sort is not the best choice in terms of operators

saving, but it is the fastest algorithm to achieve high system

throughput. Finally, O(2N) IAs are used for z
(l+1)
i and e

(l+1)
i .

The total computational complexity of MV-PSFD and PSFD

algorithm for each iteration is shown in Table I. From [10],

it is proved that PSFD is the algorithm that costs the lowest

decoding complexity among the reliability-based decoding al-

gorithms. The MV-PSFD requires slightly more comparison

operators than PSFD due to the sorting process. However, in

practice, the cost of comparators is much cheaper than those

of multiplications and additions. Thus, for small to moderate

length codes, we can conclude that the complexity of MV-PSFD

is close to the original PSFD.

IV. SIMULATION RESULTS

In this section, using Monte Carlo simulations, the error per-

formance in terms of bit-error rate (BER), frame-error rate

(FER), and average number of iterations as a function of the

rate-normalized signal-to-noise ratio (SNR) per information bit

(Eb/N0), of the proposed algorithm is compared with that of

the PSFD algorithm on a number of NB-LDPC codes of various

constructions with short to medium block lengths. These con-

structions include Euclidean geometry [14], progressive edge-

growth [15] and the original method of Gallager. The maximum

number of iterations is set to 50 for both algorithms. At each SNR

value, at least 100 erroneously received codewords are detected.

The optimal values of η, λ, Vth, ζ1, and ζ0, are selected

through simulations for each code. It should be noted that only

the ratios η
λ

and ζ1
ζ0

are actually needed. An interesting result

is that the optimum ratio ζ1
ζ0

is 2
3 for all codes. Moreover,

no significant difference in error performance was observed

using ζ1
ζ0

= 2
3 and ζ1

ζ0
= 1. Thus, the parameters ζ1 and ζ0 in

MV-PSFD are not code-dependent.

Due to space considerations, we only present results for two

codes, referred to as Code 1 and 2. Code 1 is a (dv = 3, dc = 6)
[16] and Code 2 is a (dv = 5, dc = 10) [17]; both are regular

(102, 204) NB-LDPC codes over GF(24) constructed based

on Gallager’s method, whose parity-check matrix satisfies the

RC-constraint.

Fig. 1 shows the BER and FER performances of Code 1.

It can be observed that, unlike PSFD, the performance of the

proposed algorithm is not sensitive to the parameters η and λ.

Moreover, the proposed algorithm outperforms the optimal

PSFD by about 0.5 dB at the BER of 10−5. Note that the optimal

PSFD is plotted with the optimized η
λ

and Vth.

Fig. 2 shows the BER and FER performances of Code 2.

Contrary to the previous case, the performance of the proposed

algorithm is sensitive to the parameters η and λ. However, using

the optimal value of η
λ

, the MV-PSFD outperforms the PSFD
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Fig. 1. FER (solid) and BER (dashed) performance versus rate-normalized
SNR of MV-PSFD and PSFD for Code 1.

Fig. 2. FER (solid) and BER (dashed) performance versus rate-normalized
SNR of MV-PSFD and PSFD for Code 2.

Fig. 3. Average number of iterations versus rate-normalized SNR of MV-
PSFD and PSFD for Code 1 (solid) and 2 (dashed).

with a gain of about 0.3 dB at the BER of 10−5 and 0.4 dB at

the BER of 10−6. It can also be observed that, when MV-PSFD

is used without the optimal values of η and λ, the performance

is close to that of PSFD.

We would like to point out that, although the proposed algo-

rithm could be generalized to more than two voting levels, no

significant performance improvement was observed for more

than two voting levels for all the codes simulated. Therefore,

taking into account the additional complexity, two voting levels

appears to be the best choice for the proposed algorithm.

Furthermore, for regular NB-LDPC codes whose parity-check

matrices have large column weights, i.e., column weights of at

least 8, the proposed algorithm only slightly outperforms the

standard one. Results are not included here due to the space

consideration.

With these performance studies in mind, we move on to the

average number of iterations comparison. Fig. 3 depicts the

average number of iterations for Codes 1 and 2. We see that,

at low to medium SNR, the proposed algorithm with optimized

parameters converges faster than the standard one. However, at

high SNR, the convergence of the two algorithms is similar.

Overall, one can conclude that there is no significant difference

between the two algorithms in terms of convergence rate. As

such, the excellent performance of the proposed algorithm is

not obtained at the expense of the convergence rate.

V. CONCLUSION

In this letter, a new algorithm based on the PSFD algorithm

for regular NB-LDPC codes has been proposed. Simulation

results performed on a number of NB-LDPC codes of various

column weights show that the proposed algorithm significantly

outperforms the standard one for low column weight parity-

check matrices, i.e., column weights less than 8, with a similar

complexity.
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