Nhat-Quang Nhan
email: nhat-quang.nhan@univ-brest.fr

Telex M N Ngatched
email: tngatched@grenfell.mun.ca

Octavia A Dobre
email: odobre@mun.ca

Philippe Rostaing
email: philippe.rostaing@univ-brest.fr

Karine Amis
email: karine.amis@telecom-bretagne.eu

Emanuel Radoi
email: emanuel.radoi@univ-brest.fr

N.-Q Nhan

Multiple-Votes Parallel Symbol-Flipping Decoding Algorithm for Non-Binary LDPC Codes

Keywords: LDPC codes, low complexity decoding algorithm, symbol flipping

A novel decoding algorithm for non-binary low density parity check (NB-LDPC) codes is proposed. The algorithm builds on the recently designed parallel symbol-flipping decoding (PSFD) algorithm and combines a technique of error estimation and a method of multiple voting levels from each unsatisfied checksum to the corresponding variable nodes. Simulations results, performed on a number of NB-LDPC codes of various lengths and column weights constructed using several methods, show that the new algorithm not only avoids using code-dependent voting threshold but also improves the error rate performance of the PSFD algorithm, particularly for low column weight parity-check matrices.

I. INTRODUCTION

F IRST introduced by Gallager in [1], and subsequently rediscovered by Davey and Mackay in [START_REF] Davey | Low-density parity-check codes over GF(q)[END_REF], non-binary low density parity check (NB-LDPC) codes outperform their binary counterparts, especially for short-to-moderate length codes. Just like with binary LDPC codes, the algorithms for decoding NB-LDPC codes can be classified into three general categories: hard-decision decoding [START_REF] Zhang | Low-complexity reliability-based messagepassing decoder architectures for non-binary LDPC codes[END_REF], soft-decision decoding [START_REF] Wymeersch | Log-domain decoding of LDPC codes over GF(q)[END_REF]- [START_REF] Wang | A simplified min-sum decoding algorithm for non-binary LDPC codes[END_REF], and hybrid decoding (also known as reliability-based decoding) [START_REF] Chen | A symbol-reliability based message-passing decoding algorithm for non-binary LDPC codes over finite fields[END_REF]- [START_REF] Garia-Herrero | Non-binary LDPC decoder based on symbol flipping with multiple votes[END_REF]. From an implementation point of view, hard-decision decoding is the simplest in complexity. However, its simplicity results in a relatively poor performance that can be as far away as a few decibels from that of soft-decision decoding. Softdecision decoding provides the best performance but requires the highest computational complexity. Hybrid decoding is in between the two extremes and provides a good trade-off between performance and complexity.

Among reliability-based message-passing algorithms, the parallel symbol flipping decoding (PSFD) algorithm recently introduced in [START_REF] Huang | Parallel symbolflipping decoding for non-binary LDPC codes[END_REF] offers one of the best trade-off between performance and complexity. Using a flipping function which combines both the weighted check-based message of the normalized check-sums and the variable-based message of the received sequence, the algorithm identifies, in each decoding iteration, the relatively unreliable symbols in the hard-decision symbol sequence and decodes them based on the corresponding flipping symbols. The unreliable symbols are found using a voting system whereby each unsatisfied check node (CN) gives one vote to the variable node (VN) with the largest flipping function checked by it. Variable nodes thus accumulate votes and those with a total number of votes exceeding a predefined threshold are identified as unreliable. By only playing with the reliabilities of hard-decisions, PSFD is a good choice to decode high rate finite field NB-LDPC codes. However, simulation results show that PSFD is suitable for decoding only regular NB-LDPC codes whose parity-check matrices have large column weights, e.g., column weights of at least 8. In addition, PSFD employs a code-dependent voting threshold, which should be optimized through simulation. Furthermore, the computation of its flipping function involves a pair of scaling factors, (η, λ), which also depend on the code and is optimized through simulation.

This letter proposes a new algorithm, referred to as multiplevotes PSFD (MV-PSFD). When compared with PSFD, it introduces a method of error estimation which results in avoiding the use of the voting threshold, and passes multiple votes from the unsatisfied CNs to the corresponding VNs. The proposed algorithm significantly outperforms PSFD for low column weight parity check matrices, as shown by simulation results. Such improvements are achieved with a similar computational complexity.

The organization of this letter is as follows: In Section II, some preliminaries and the PSFD algorithm are briefly reviewed. The proposed algorithm and its complexity analysis are introduced in Section III. Simulation results are presented in Section IV. Finally, Section V concludes the letter.

II. PRELIMINARIES A. Notations and Definitions

A regular NB-LDPC code C of length N and dimension K over the Galois field of order q (GF(q)) is completely described by a row-column (RC)-constrained parity-check matrix of size M × N (M ≥ K) H =[h j,i] over GF(q), which has a constant column weight d v and a constant row weight d c . For practical purpose, we only consider binary extension fields, where q =2 p .L e tM j = {i :0≤ i<N,h ji =0} be the set of all indices of VNs which connect to the CN c j and N i = {j :0≤ j<M,h ji =0} be the set of all indices of CNs which connect to the VN v i .

Suppose that a regular (N, K) NB-LDPC code is used for error control over a binary-input additive white Gaussian noise (BIAWGN) channel with zero mean and two-sided power spectral density N 0 /2. Assume binary phase-shiftkeying (BPSK) signaling with unit energy. A codeword c = (c 0 ,c 1 ,...,c N -1) in C, where c n =(c n,0 ,c n,1 , ••• ,c n,p-1) ∈ GF(2 p) with c n,i ∈ GF [START_REF] Davey | Low-density parity-check codes over GF(q)[END_REF], is mapped into the sequence x =(x 0 ,x 1 ,...,x N -1) before its transmission, where x n = (x n,0 ,x n,1 , ••• ,x n,p-1) with the mapping rule x n,i =(2c n,i -1) ∈{+1, -1}.L e ty =(y 0 ,y 1 ,...,y N -1) be the softdecision received sequence at the output of the receiver matched filter. For 0 ≤ i<N, y n =(y n,0 ,y n,1 ,

••• ,y n,p-1)=(x n,0 + ν n,0 ,x n,1 + ν n,1 , ••• ,x n,p-1 + ν n,p-1
) in which the ν n,i 's are statistically independent Gaussian random variable with zero mean and variance N 0 /2. The hard-decision symbol sequence at the decoder is denoted as z =(z 0 ,z 1 ,...,z N -1).

For any hard-decision symbol sequence z, the syndrome vector s is computed as s = z • H T , where

s j = h j0 z 0 + h j1 z 1 + •••+ h j(N -1) z N -1 with 0 ≤ j<M. s j is known as the j th check-sum of z. z is a valid codeword in C if and only if s = 0.
Let S i (z)={s j : j ∈N i } be a set of check-sums that contain the symbol z i at the VN v i and Si (z)={s ji (z)=h -1 ji s j : s j ∈ S i (z)} be a normalized check-sum set. Finally, let S * i (z) be Si (z) excluding zero elements, i.e., S * i (z)= Si (z) \{0}.

B. PSFD Algorithm [10]

Given the initial hard-decision symbol vector z (0) =(z

(0) 0 ,z (0) 1 ,
...,z (0)
N -1), the PSFD algorithm iteratively flips erroneous symbols in z (0) until either a codeword is found or a maximum number of iteration is reached. In other words, the algorithm finds an error symbol vector e =[e 0 ,e 1 ,...,e N -1], such that z = z (0) -e is a codeword. The error symbol vector is recursively computed by e (0) = 0 and e (l+1) = e (l) +ε (l) , where each component of ε (l) is chosen so as to maximize a flipping function that is updated at each iteration and which is defined by

F (l) i =m a x α∈ S * (l) i (z) F (l) i (α). (1)
In (1), F

i (α) with α ∈ GF (q) is given by

F (l) i (α)=E (l) i (α) -I i α + e (l) i , (2)
where the weighted check-based message about z i (l), E

i (α), and the variable-based message, I i (α + e (l) i), are respectively defined by

E (l) i (α)= j ′ ∈N i :s (l) j ′ i (z)=α W j ′ i - j ′ ∈N i :s (l) j ′ i (z)=0 W j ′ i , (3)
and

I i (α)=ηφ i (α), (4)
where η is a scaling factor. W ji in (3) is the weighting coefficient contributed to z i by other z i ′ 's checked by s j and is defined by

W ji = λ min i ′ ∈M j \{i} R i ′ , (5
)
where λ is a scaling factor. R i is the reliability of the initial hard-decision symbol z (0) i and is given by

R i =m i n α∈GF (q) φ i (α), (6)
with φ i (α) being a log-likelihood ratio representing the gap of likelihood between z (0) i and z

(0) i α defined by

φ i (α)= N 0 4 ln P v i = z (0) i |y i P v i = z (0) i -α|y i . (7
)
To speed up the decoding, it is essential to be able to flip multiple symbols in each decoding iteration. The PSFD algorithm achieves this by adopting a voting system whereby each unsatisfied CN gives one vote to the VN with the largest flipping function checked by it. At the l th iteration, VN v i accumulates the number of votes, V

i , from all the unsatisfied CNs. That is

V (l) i = j∈N i V (l) ji , (8)
where

V (l) ji 0 =1 if s (l) j =0; otherwise V (l) ji =0 with i 0 = arg max i ′ ∈M j F (l) i ′ . The hard-decision z (l) i will be flipped to z (l+1) i = z (l) i -ε (l) i when V (l)
i >V th , where V th is a codedependent threshold.

III. MULTIPLE-VOTES PSFD ALGORITHM A. Algorithm

The voting threshold, V th , in the PSFD is code-dependent and should be optimized through simulation [START_REF] Huang | Parallel symbolflipping decoding for non-binary LDPC codes[END_REF]. In the sequel, we design a new decoding algorithm which mitigates this drawback while maintaining the strong aspects of the PSFD.

First, we introduce multiple voting levels, allowing each unsatisfied CN to pass more than one vote to the VNs checked by it. Without loss of generalization, let us introduce two voting levels ζ 0 >ζ 1 > 0. At each VN v i , the voting function is still given by (8) but with the voting principle defined as follows For s

(l) j =0, • V (l) ji 0 = ζ 0 with i 0 =argmax i ′ ∈M j F (l) i ′ . • V (l) ji 1 = ζ 1 with i 1 =argmax i ′ ∈M j \{i 0 } F (l) i ′ . • V (l)
ji =0elsewhere. The unsatisfied CN c j gives ζ 0 to the VN that has the largest flipping function and gives ζ 1 to the VN that has the second largest flipping function. Though it might appear that the two factors ζ 0 and ζ 1 should be optimized, we will show through simulations, in the next section, that their optimal values are not code-dependent.

Secondly, we derive a relationship between the syndrome weight, the number of errors, and the parity-check matrix column weight d v from the following Lemma [START_REF] Bossert | Channel Coding for Telecommunications[END_REF]. Lemma 1: For regular LDPC matrices, the average syndrome weight increases linearly with the number of errors.

Proof: (Heuristic.) For any regular LDPC matrix, a plot of the average syndrome weight in terms of the number of errors yield a straight line with slope d v .

Based on the above Lemma, at iteration l, the number of errors in the hard-decision vector z (l) , and hence the number of symbols to be flipped, can be estimated by

N e (l) = w (l) (s) d v , (9)
where ⌊x⌋ denotes the greatest integer less than or equal to x, and w (l) (s) is the syndrome weight at iteration l defined by

w (l) (s)= j s (l) j =0 . (10
)
The use of a voting threshold can therefore be avoided by flipping the first N e (l) symbols with the highest votes V (l)

i . The steps of the new algorithm, which we call Multiple-Votes Parallel Symbol-Flipping Decoding (MV-PSFD), can be summarized as follows.

MV-PSFD algorithm 1: Inputs: Maximum number of iterations l max , harddecision z (0) and the received symbol vector y. 2: Initialization: Set iteration index l =0, maximum number of iterations to l max , and error symbol vector e = 0. Find φ i (α) by (7) and the variable-based message I i (α) by (4). Compute the coefficients W ji by (5) and store them. 3: while l ≤ l max do 4:

Compute the syndrome s (l) 5:

if s (l) = 0 then 6:

Stop the while loop 7:

end if 8:

With 0 ≤ i<N, compute the flipping function

F (l)
i and find its corresponding flipping symbol α = ε i by (8) using the multiple-votes principle 10:

Estimate the number of errors N e (l) by (9) 11:

With 0 ≤ i<N, sort VNs according to descending order of V (l) i

12:

Flip the first N e (l) VNs by setting new hard-decision symbols z

(l+1) i = z (l) i -ε (l) i
and new error symbols e

(l+1) i = e (l) i + ε (l) i
13: l ← l +1 14: end while 15: Output: z (l) .

B. Complexity Computation

We evaluate the computational complexity of the new algorithm based on the number of integer addition (IA), multiplication (IM) and comparison (IC) operators as in [START_REF] Wymeersch | Log-domain decoding of LDPC codes over GF(q)[END_REF].

At the initialization, the computations of I i (α) and R i (BPSK modulation) need O(Nqlog . The total computational complexity of MV-PSFD and PSFD algorithm for each iteration is shown in Table I. From [START_REF] Huang | Parallel symbolflipping decoding for non-binary LDPC codes[END_REF], it is proved that PSFD is the algorithm that costs the lowest decoding complexity among the reliability-based decoding algorithms. The MV-PSFD requires slightly more comparison operators than PSFD due to the sorting process. However, in practice, the cost of comparators is much cheaper than those of multiplications and additions. Thus, for small to moderate length codes, we can conclude that the complexity of MV-PSFD is close to the original PSFD.

IV. SIMULATION RESULTS

In this section, using Monte Carlo simulations, the error performance in terms of bit-error rate (BER), frame-error rate (FER), and average number of iterations as a function of the rate-normalized signal-to-noise ratio (SNR) per information bit (E b /N 0), of the proposed algorithm is compared with that of the PSFD algorithm on a number of NB-LDPC codes of various constructions with short to medium block lengths. These constructions include Euclidean geometry [START_REF] Zeng | Construction of non-binary cyclic, quasi-cyclic and regular LDPC codes: A finite geometry approach[END_REF], progressive edgegrowth [START_REF] Hu | Progressive edgegrowth Tanner graphs[END_REF] and the original method of Gallager. The maximum number of iterations is set to 50 for both algorithms. At each SNR value, at least 100 erroneously received codewords are detected.

The optimal values of η, λ, V th , ζ 1 , and ζ 0 , are selected through simulations for each code. It should be noted that only the ratios η λ and ζ 1 ζ 0 are actually needed. An interesting result is that the optimum ratio ζ 1 ζ 0 is 2 3 for all codes. Moreover, no significant difference in error performance was observed using Due to space considerations, we only present results for two codes, referred to as Code 1 and 2. Code 1 is a (d v =3,d c =6) [START_REF] Mackay | s Code Resource[END_REF] and Code 2 is a (d v =5,d c = 10) [START_REF] Mackay | s Code Resource[END_REF]; both are regular (102, 204) NB-LDPC codes over GF (2 4) constructed based on Gallager's method, whose parity-check matrix satisfies the RC-constraint.

Fig. 1 shows the BER and FER performances of Code 1. It can be observed that, unlike PSFD, the performance of the proposed algorithm is not sensitive to the parameters η and λ. Moreover, the proposed algorithm outperforms the optimal PSFD by about 0.5 dB at the BER of 10 -5 . Note that the optimal PSFD is plotted with the optimized η λ and V th . Fig. 2 shows the BER and FER performances of Code 2. Contrary to the previous case, the performance of the proposed algorithm is sensitive to the parameters η and λ. However, using the optimal value of η λ , the MV-PSFD outperforms the PSFD with a gain of about 0.3 dB at the BER of 10 -5 and 0.4 dB at the BER of 10 -6 . It can also be observed that, when MV-PSFD is used without the optimal values of η and λ, the performance is close to that of PSFD. We would like to point out that, although the proposed algorithm could be generalized to more than two voting levels, no significant performance improvement was observed for more than two voting levels for all the codes simulated. Therefore, taking into account the additional complexity, two voting levels appears to be the best choice for the proposed algorithm. Furthermore, for regular NB-LDPC codes whose parity-check matrices have large column weights, i.e., column weights of at least 8, the proposed algorithm only slightly outperforms the standard one. Results are not included here due to the space consideration.

With these performance studies in mind, we move on to the average number of iterations comparison. Fig. 3 depicts the average number of iterations for Codes 1 and 2. We see that, at low to medium SNR, the proposed algorithm with optimized parameters converges faster than the standard one. However, at high SNR, the convergence of the two algorithms is similar. Overall, one can conclude that there is no significant difference between the two algorithms in terms of convergence rate. As such, the excellent performance of the proposed algorithm is not obtained at the expense of the convergence rate.

V. C ONCLUSION

In this letter, a new algorithm based on the PSFD algorithm for regular NB-LDPC codes has been proposed. Simulation results performed on a number of NB-LDPC codes of various column weights show that the proposed algorithm significantly outperforms the standard one for low column weight paritycheck matrices, i.e., column weights less than 8, with a similar complexity.

 2 (q)) IAs, O(Nq) IMs, and O(N (log 2 (q) -1)) ICs. Additionally, O(M (2d c -3)) ICs and O(Md c) IMs are needed for W ji . At each iteration, check-sums computations require O(M (d c -1)) IAs and O(Md c) IMs. The normalized checksums S * (l) i need O(Md c) IMs. The flipping functions and flipping symbols require at most O(2N (d v -1)) IAs for F (l) i (α) and at most O(N (d v -1)) ICs for F (l) i . The error estimation needs at most O(M -1) IAs for d s (l) and O(1) IM for N e (l) .

i

 , it requires at most O(M (d c -1)) ICs and at most O(M) IAs. If the Quick Sort algorithm[START_REF] Hoare | Quicksort[END_REF] is used, the sorting needs at most O(Nlog 2 (N)) ICs. Note that the Quick Sort is not the best choice in terms of operators saving, but it is the fastest algorithm to achieve high system throughput. Finally, O(2N) IAs are used for z

ζ 1 ζ 0 = 2 3 and ζ 1 ζ 0

 0 =1. Thus, the parameters ζ 1 and ζ 0 in MV-PSFD are not code-dependent.

Fig. 1 .

 1 Fig. 1. FER (solid) and BER (dashed) performance versus rate-normalized SNR of MV-PSFD and PSFD for Code 1.

Fig. 2 .

 2 Fig. 2. FER (solid) and BER (dashed) performance versus rate-normalized SNR of MV-PSFD and PSFD for Code 2.

Fig. 3 .

 3 Fig. 3. Average number of iterations versus rate-normalized SNR of MV-PSFD and PSFD for Code 1 (solid) and 2 (dashed).

TABLE I COMPLEXITY

 I BY OPERATORS AT EACH ITERATION

OF NB-LDPC DECODING ALGORITHMS

For voting function V

ACKNOWLEDGMENT

We would like to thank the Editor, Prof. Zheng Ma, and the anonymous reviewers for their constructive feedback. We also would like to acknowledge Prof. Emmanuel Boutillon and Dr. Deyuan Chang for their helpful discussions.