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Numerical Simulation of Combined Natural Convection Surface Radiation
for Large Temperature Gradients

Saber Hamimid∗ and Messaoud Guellal†
Université Ferhat Abbas, Sétif 19000, Algeria

and
Madiha Bouafia‡

Université d’Évry Val-d’Essonne, 91000 Évry, France

Nomenclature

Cp = dimensionless specific heat
Fij = geometry view factor
g = gravitational acceleration
H = dimension of the enclosure
k = thermal conductivity
Nr = dimensionless parameter of conduction–radiation,

σT4
0H∕kΔT

Nu = convective Nusselt number
Pr = Prandtl number, ν∕α
p = dynamic pressure
p 0 = dynamic perturbed pressure
�p = mean thermodynamic pressure
Qr = dimensionless net radiative heat flux
Ri = radiosity
Ra = Rayleigh number, gβΔTH3∕�να�
T = temperature
t = dimensionless time
U, V = dimensionless velocity components
X, Y = dimensionless coordinates
α = thermal diffusivity, k∕ρ · Cp
β = thermal expansion coefficient
εb = temperature difference parameter (Boussinesq param-

eter), ΔT∕2T0

Θ = dimensionless radiative temperature, T∕T0

θ = dimensionless temperature, �T − T0�∕�Th − Tc�
μ = dimensionless dynamic viscosity
ν = kinematic viscosity
Π = dimensionless pressure, �p − �p� ρ0gy�∕ρ0�α0∕H�2

ρ = dimensionless fluid density
σ = Stefan–Boltzmann constant

Subscripts

avg = average value
BS = Boussinesq model
CP = constant properties
c = cold
h = hot
max = maximum value
mid = midplane
min = minimum value
0 = reference state

I. Introduction

Coupled natural convection and radiation transport processes in 
cavities are interesting topics concerning thermal and mass
transport processes involved in various types of engineering systems,
such as solar energy collectors, cooling of electronic devices, multi-
layered walls (facades) and double windows, thermal behavior in
nuclear reactors, space technology, and processes involving high
temperatures.
In most of the work reported on enclosure (coupling natural con-

vection with surface radiation), the Boussinesq approximation has
been invoked. However, for higher overheat ratios, compressibility
effects need to be taken into account, since the Boussinesq approxi-
mation can become inadequate. Such an approximation leads to an
accurate description of convection flows if the temperature difference
in the flow domain does not exceed a few degrees. However, in many
physical and industrial applications such as thermal insulation
systems, chemical vapor deposition reactors [1], atmospheric flows
[2,3], and combustion process [4,5], the temperature differences
reach tens and hundreds of degrees; all the assumptions used to justify
the Boussinesq approximation fail; and a different, more complicated
modeling approach is required that accounts for realistic nonlinear
fluid properties variations. The low-Mach-number (LMN) approxi-
mation suggested by Paolucci [6], and used later by Hamimid et al.
[7] for pure natural convection, allows one to take into account
arbitrary property variations for a general fluid.
This study illustrates a comparative investigation to analyze the

physical differences between numerical simulations obtained with
both the Boussinesq and LMN forms of the Navier–Stokes equations
for natural convection flow coupled with surface radiation in simple
geometries. The purpose of this Note is to study the combined effects
of surface radiation and temperature-dependent viscosity and con-
ductivity on themomentum and heat transfer in the enclosure, as well
as to quantify how the incompressible flow assumption differs from
the compressible form when solving flows driven by gravity acting
upon density variations resulting from local temperature gradients.
A complete parametric study is made for different Rayleigh num-

bers, conductivities and viscosities of the fluid, Boussinesq param-
eter, andwall emissivity. From these simulations, the selected charac-
terization parameters of the maximum convective and radiative
Nusselt number, the average Nusselt number, and the normalized
pressure reductionwere calculated. Comparisons of these parameters
were made with benchmark solutions for air with the ideal gas as-
sumption. Additionally, we generated vertical and horizontal veloci-
ties at the midvertical plane and midhorizontal planes, respectively,
streamlines, and isotherms distributions to provide a basis for further
analysis.

II. Problem Formulation

We consider a bidimensional square cavity of sideH (Fig. 1) filled
with a variable-property Newtonian fluid of density ρ, molecular
viscosity μ, thermal conductivity k, and temperature T. The natural
convection problem is described by two vertically heated walls with
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prescribed temperatures Th and Tc (Th ≻ Tc), which are the “hot”
and “cold” wall temperatures, respectively. We assume that the
horizontal surfaces are under the combined action of the convective
and radiative contributions such as −k ∂T

∂y
� qr � 0. All four walls

have no-slip zero-mass flux boundary conditions (V � 0) and have
the same emissivity value, ε. A Cartesian �x; y� coordinate system is
selected with y pointing vertical and x horizontal; thus, the gravita-
tional vector g is applied on the y coordinate. Initial conditions are
composed of constant distributions of reference pressure and temper-
ature, p0 and T0, and stationary flow (V � 0). The reference
temperature T0 is defined as T0 � �Th � Tc�∕2. Using the mean
temperature and the temperature difference between the hot and
cold walls (ΔT � Th − Tc), we introduce the Boussinesq ratio
εb � ΔT∕2T0. The inner surfaces, in contact with the fluid, are
assumed to be gray, diffuse emitters and reflectors of radiation with
identical emissivity.
In addition to assuming a Newtonian fluid, another assumption

must be made in order to obtain the usual compressible Navier–
Stokes equations. This assumption has to do with the relationship
between the dynamic and bulk viscosity coefficients (μ and λ) that
relate the strain rate and the stress: λ� 2

3
μ � 0.

A low-Mach-number [8–14] flow model is used to describe the
dynamics of the heated cavity. In this limit, the complete Navier–
Stokes equations are expanded in powers of a small parameter M2

(where M is the Mach number), and the total pressure P is decom-
posed into the mean thermodynamic pressure �p�t� and the dynamic
pressure P 0.

A. Governing Equations

Sincewe are interested in the case of large temperature differences,
the low-Mach-number equations are adopted in order to describe
such a flow. The equations aremade nondimensional by the use of the
nondimensional variables:

x

H
;

y

H
;

uH

α0
;

vH

α0
;

t

H2∕α0
;

pH2

ρ0α
2
0

;

�T − T0�

�Th − Tc�
; and

Y

�
π

ρ0�α0∕H�2
�

p − �p� ρ0gy

ρ0�α0∕H�2

The thermophysical properties (density, dynamic viscosity,
thermal conductivity, and thermal diffusivity) are scaled by ρ0, μ0, k0,
and α0, where the subscript 0 denotes values at the reference temper-
ature T0. The influence of the temperature on the specific heat is
assumed to be negligible so that Cp∕Cp0 � 1 [15].
The system Navier–Stokes equations are expressed in nondimen-

sional conservative form [7] as

∂ρ
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ρ �
�P

�2εbT � 1�
(5)

Additional equations are needed to calculate the mean thermody-
namic pressure �p�t� and its derivate:

d �P

dt
� 2εbγ ·

1
R

Ω
dΩ

·
Z

S

k
∂T

∂n
dS (6)

�P �

R

Ω
dΩ

R

Ω
�1∕�2εbθ� 1�� dΩ

(7)

In this study, the fluid (air) is considered as a perfect gas at
reference temperature To � 300K (we set in this case Th � 480 K

and Tc � 120 K) and the transport coefficients μ�T� and k�T� are
given by Sutherland’s law:

μ � �2εbT � 1�3∕2
�1� Sμ∕T0�

2εbT � 1� Sμ∕T0

(8)

Where Sμ � 110.4 [16]. The conductivity is given by

k�T� �
μ�T�

Pr
(9)

B. Radiative Analysis

When surface radiation transfer is considered in the analysis, the
temperature boundary condition at the top and bottom adiabatic walls
of the square cavity must be changed. Thus, one assumes that the
solid surfaces are in thermal equilibrium under the combined action
of the convective and radiative contributions, which give

∂θ

∂Y

�

�

�

�

Y�0;1

− NrQr � 0 (10)

where Nr � σT4
0H∕kΔT is the dimensionless parameter of

conduction–radiation, and Qr � qr∕σT
4
0 is the dimensionless net

radiative heat flux on the corresponding insulated wall expressed as

Qr;i � Ri −
X

N

j�1

RjFi−j (11)

where Ri is the dimensionless radiosity of surface Ai, obtained by
resolving the following system:

X

N
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Fig. 1 Flow configuration and coordinate system.
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where the dimensionless radiative temperature Θi is given by

Θi �
Ti

T0

� ��Th − Tc�θi � T0�∕T0 � θi
ΔT

T0

� 1 �
θi

θ0
� 1 (13)

C. Heat Transfer Parameters

The nondimensional heat transfer rate in terms of convective and
radiative Nusselt numbers, Nuc and Nur, on the heated vertical
surface are given by

Nuc � −
∂θ

∂X

�

�

�

�

Y�0;1

(14)

Nur � NrQrjY�0;1 (15)

The average convective Nusselt number was calculated by
integrating the temperature gradient over the vertical wall as

Nucavg �
1

A

Z

A

0

−
∂θ

∂X
dX (16)

The average radiative Nusselt number is obtained by integrating
the net radiative flux

Nuravg � Nr

1

A

Z

A

0

Qr dX (17)

The total average Nusselt number is calculated by summing the
average values of convective and radiative Nusselt numbers [17]:

Nuavg �
1

A

Z

A
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0;Y

� NrQr�0; Y�

�

dY (18)

D. Numerical Modeling

The numerical solution of the governing differential equations for
the velocity, pressure, and temperature fields is obtained by using a
finite volume technique. A power scheme was also used in approxi-
mating advection–diffusion terms. The SIMPLER algorithm, for
which the details can be found in work by Patankar [18], with a stag-
gered grid is employed to solve the coupling between pressure and
velocity. The radiosities of the elemental wall surfaces are expressed
as a function of elemental wall surface temperature, emissivity, and
theview factors. The radiosityRi and temperature θi are connected by
a matrix of the type

�Ai;j�fRig � fσθ4i g (19)

The inverse of the matrix �Ai;j� is determined (only once) by the
Gauss elimination method. The coefficients of �A� are constants and
depend only on the emissivity and view factors.
In a two-dimensional formulation, the view factors are analytic [19]:
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(20)
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(21)

For the most computations reported in this study, 242 × 242 grid
points were chosen to optimize the relation between the accuracy
required and the computing time; nevertheless, in the case of variable
properties, a 322 × 322 gridwas used.Thegrid is nonuniformandvery
fine in the near-wall region.

III. Verification

The validity of the solution procedure described previously is
demonstrated in this section by presenting a solution in the classical
case of natural convection and surface thermal radiation in a
Boussinesq approximation. A good agreement was found between the
present calculations and those reported in the work of [20] (Table 1).

IV. Results and Discussion

In this section, the low-Mach-number code is applied to analyze
the effect of the Boussinesq parameter εb, temperature-dependent
fluid properties, and surface radiation on heat transfer and fluid flow
in steady-state conditions.
The fixed parameters of simulation are Pr � 0.71, T0 � 300 K,

A � 1, and ε. However, to examine the effect of the Boussinesq
parameter and emissivity, we consider different values of εb�0 : : : 0; 6�
and ε�0 : : : 1�.
When the radiation exchange is taken into account, the charac-

teristic dimension of the cavity may be calculated for a specific
Rayleigh number (H � 0.097 in the case Ra � 106). For the
Boussinesq solution, the difference temperature ΔT is fixed to 10 K.
Substituting values of H and ΔT into the expression of Nr gives

Nr �
σT4

0

kΔT

�

να

gβΔT

�

1∕3

Ra1∕3

A. Effect of Boussinesq Parameter εb

Figures 2–10 allow comparison of the results obtained from
Boussinesq,weak non-Boussinesq, and strong non-Boussinesq cases

Table 1 Nusselt number at active walls obtained with T0 � 293.5 K and Δt � 10 Ka,b

Wang et al. [20] Present work

Hot wall Cold wall Hot wall Cold wall

Ra H ε Nuc Nur Nut Nuc Nur Nut Nuc Nur Nut Nuc Nur Nut

104 0.021 0 2.246 0 2.246 2.246 0 2.246 2.246 0 2.246 2.246 0 2.246
104 0.021 0.2 2.260 0.507 2.767 2.268 0.499 2.767 2.262 0.507 2.769 2.271 0.498 2.769
104 0.021 0.8 2.249 2.401 4.650 2.278 2.372 4.650 2.255 2.401 4.656 2.284 2.371 4.656
105 0.045 0 4.540 0 4.540 4.540 0 4.540 4.532 0 4.532 4.532 0 4.532
105 0.045 0.2 4.394 1.090 5.484 4.411 1.073 5.484 4.398 1.090 5.489 4.417 1.072 5.489
105 0.045 0.8 4.189 5.196 9.385 4.247 5.137 9.384 4.200 5.196 9.397 4.261 5.136 9.397
106 0.097 0 8.852 0 8.852 8.852 0 8.852 8.863 0 8.863 8.863 0 8.863
106 0.097 0.2 8.381 2.355 10.736 8.417 2.319 10.736 8.379 2.355 10.734 8.416 2.318 10.734
106 0.097 0.8 7.815 11.265 19.080 7.930 11.150 19.078 7.861 11.265 19.126 7.971 11.151 19.126

aNut � Nuc � Nur.
bComparison with values published in [20].
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at Ra � 106 in the presence of radiation with a wall emissivity of
ε � 0.2. The properties are assumed to be variable.
From a general point of view, it can be seen that, for a low

temperature difference (ε � 0.017), the solutions for compressible
and incompressible models did not differ significantly. Isotherms and
streamlines (Fig. 2) indicate a symmetric structure with respect to the
cavity center with the presence of two secondary flows symmetrically
arranged at the cavity center. At the horizontal walls, the isotherms
show the existence of temperature gradients due to radiative
exchange.
For a large temperature difference (εb � 0.6), the symmetric

nature of the flow is broken. A rapid look in Fig. 2 allows us to note
that the isotherms’ slopes near the lower wall are different from those
of the upper wall; moreover, the secondary rolls inside the primary
flow are no longer symmetric.
Considering the convective heat transfer along the hot and cold

walls, there is a remarkable change in their profiles according to the

parameter εb (Fig. 3). This behavior is especially observed at the
bottom, where the Nusselt number for εb � 0.6 is larger than for
εb � 0.017 on the hot wall. An opposed comportment is noticed on
the cold wall.
Profiles of the local radiative Nusselt number on the vertical walls

are depicted on Fig. 4. The quasi-linear character of these profiles
reflects a uniform temperature on each side. Note, however, that the
difference betweenNur�h� andNur�c� is evenmore important, as the
parameter εb is small. This remark is also observed on the horizontal
walls (Fig. 5). The shape of these profiles reflects the temperature
evolution on the top and bottom walls, which results from a balance
between convective and radiative exchanges. Temperature profiles
on the horizontal walls are plotted in Fig. 6. With increasing εb, the
bottom wall is cooling while the top wall is heating.
Horizontal profiles of air temperature at themidheight of the cavity

are displayed in Fig. 7. One can see that, for εb � 0.6, the thermal
boundary layer gets thicker near the hot wall and thinner near the cold

Fig. 2 Streamlines (top) and temperature contours (bottom) at Ra � 106 and ε � 0.2. From left to right, Boussinesq model (BS), εb � 0.017, and
εb � 0.6.
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wall, showing a deflection of peaks toward the cold wall. This
behavior is due entirely to non-Boussinesq effects. In the center
region, the fluid heats up with increasing εb and the stratification
decreases, as shown in Fig. 8.
The effect of the parameter εb on the flow is presented in Figs. 9

and 10,where horizontal and vertical velocity components are plotted
at x � 0.5 and y � 0.5, respectively. Compared to the casewith a low
value (εb � 0.017), profiles of the U component show that the
boundary layer contracts in the vicinity of the bottom wall and
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Fig. 6 Distributions of upper and lowerwall temperatures forRa � 106
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Table 2 Variation of
thermophysical properties as a

function of Boussinesq parameter

εb ΔT Δρ, % Δk, % Δμ, %

0.0083 5 1.59 1.19 1.26
0.017 10 3.24 2.57 2.50
0.025 15 4.87 3.73 3.87
0.033 20 6.47 4.98 4.95
0.042 25 8.05 6.20 6.28
0.05 30 9.59 7.42 7.46
0.058 35 11.02 8.62 8.50
0.083 50 15.48 12.04 12.05
0.167 100 28.61 22.89 22.84
0.25 150 40.00 32.74 32.78
0.33 200 49.97 41.84 41.87
0.417 250 58.81 50.39 50.44
0.5 300 66.67 58.59 58.53
0.6 360 75.01 67.95 67.97
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Fig. 5 Radiative Nusselt number distribution on the horizontal walls at
Ra � 106 and ε � 0.2.
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expands near the opposite wall. The same trend is observed for the V
component near thevertical walls but not in the same proportions. It is
interesting to note that, in the stratified region, the flow remains
invariant for the component V, and the peak value near the cold
vertical wall is slightly lower for εb � 0.6 than for εb � 0.017.
In Fig. 11, the lowvariations ofNusselt number for theweak values

of the Boussinesq parameterεb show that, under the condition
εb ≤ 0.05, the incompressible model based on the Boussinesq
approximation can be used to simulate both pure natural convection
(ε � 0) and combined natural convection surface radiation (ε > 0).
Furthermore, onemay note that this interval of Boussinesq parameter
corresponds to a temperature difference ΔT ≤ 30°C and maximal
variations of thermophysical properties less than 9.5% for the density
and 7.5% for the conductivity and viscosity (see Table 2). It is also

interesting to note that Gray and Giorgini [21] showed in their study
that, for air, the Boussinesq approximation is valid forΔT ≤ 28.6 °C
corresponding to the density variation of 10%.

B. Effect of Conductivity and Viscosity Variations

Another aimof this study is to examine the effect of fluid properties
on the flow and heat transfer in the case of large temperature gradient.
Simulation parameters for the compressible model are εb � 0.6,
Ra � 106, ε � 0.5, and a reference temperature T0 � 300 K.
A comparison between results obtained with constant and variable

properties is first illustrated by isotherms and streamlines plotted in
Fig. 12. The most visible effect on isotherms occurs at the top wall.
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Fig. 11 Variation of the average convection Nusselt number on the hot

wall as a function of Boussinesq parameter.

Fig. 12 Streamlines (top) and temperature contours (bottom) for Ra � 106 and ε � 0.5: a) constant properties, and b) Sutherland’s law.
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Fig. 13 Distributions of local convectiveNusselt numbers on the hot and
cold walls for Ra � 106 and ε � 0.5.
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The center region of the cavity is marked by a sensible change in the
fluid flow. Note that the symmetrical nature of the flow is strongly
broken in the case of the constant.
Distributions of convective and radiative Nusselt numbers along

the vertical walls are displayed in Figs. 13 and 14. By taking into
account variable properties, the most noted change concerns the
decrease of the convective Nusselt number on the cold wall at the
upper part of the cavity. Unlike convection, Nur profiles undergo a
weak translation, showing a slight decrease of radiative heat transfer
for variable properties. On the horizontal walls, the fluid properties
weakly affect the radiative exchanges for which the effects are more
visible on the upper wall (Fig. 15). Consideration of variable

properties slightly enhances the radiative exchange at the top wall.
The temperature profiles on the horizontal walls are higher for
variable properties than for constant properties (Fig. 16).
The effect of fluid properties on the air temperature is evidenced

in Fig. 17. By assuming variable properties, the temperature consid-
erably increases in both boundary layers and at the core cavity. For the
velocity components, the influence of fluid properties essentially
appears near the bottom wall, at the cavity center forU, and near the
hot wall forV. Variable properties lead to a decrease of themagnitude
of both components, as seen in Figs. 18 and 19. It is interesting to note
that the boundary layers near the hot wall remain thicker for both
cases (constant or variable properties), reflecting that this behavior is
mainly due to the nonlinear density variation.
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Fig. 14 Distributions of local radiative Nusselt numbers on the vertical
walls for Ra � 106 and ε � 0.5.
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Ra � 106 and ε � 0.5.
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C. Effect of Surface Radiation

In this section, computations are carried out for different values of
emissivity (0.1 ≤ ε ≤ 1.0), Ra � 106, εb � 0.6, and T0 � 300 K.
The properties are assumed to be variable according to
Sutherland’s law.
Typical isotherms and streamlines are plotted in Fig. 20 for dif-

ferent values of emissivity. Compared to the case without radiation,
the temperature contours show the existence of temperature gradients
near the top and bottom walls due to the radiative exchange. At the
center region, the stratification is changed and the flow is modified
but remains globallywith the same structure: a primary flow along the
walls and inside two asymmetrical secondary flows.
Figure 21 shows the variations of local convective Nusselt num-

bers on the vertical walls as a function of emissivity ε. Convective

exchanges on the hotwall are greatly influenced by thewall radiation,
especially on the lower part of the hot wall. Increasing the wall
emissivity ε produces a decreasing of Nuh, whereas it is less
significant for Nuc. For the local radiative exchange, an opposite
trend is observed. Increasing ε leads to an increase ofNur on the hot
wall and a decrease on the cold wall (see Fig. 22). On the horizontal
walls, it is clearly seen that an increase of the wall emissivity leads to
the cooling of the top wall and the heating of the bottom wall
(Fig. 23). This behavior is explained by the fact that the top wall loses
heat while the bottom wall receives heat. The distribution of the
radiative Nusselt number on the top and bottom walls, presented in
Fig. 24, shows that the net radiative heat flux is essentially positive at
the top and negative at the bottom. Vertical profiles of air temperature

Fig. 20 Streamlines (top) and temperature contours (bottom) for Ra � 106 and εb � 0.6.
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show that the emissivity reduces the stratification in the core
(Fig. 25).
Figure 26 shows the variations of the average convective and

radiative Nusselt numbers �Nucavg; Nuravg� according to the
emissivity for Ra � 105, 106, and 107. With increasing of the wall
emissivity ε, the radiative Nusselt number on the hot wall increases
and the convective Nusselt number Nucavg decreases. On the cold
wall, an opposite trend is observed for the radiative Nusselt number,
whereas the convective Nusselt number keeps the same shape of
variation.
Velocity components are plotted in Figs. 27 and 28 across the

midplanes. Unlike the vertical velocity where ε has almost no effect,
the influence of the wall emissivity on the horizontal component
indicates that the flow is intensified near the horizontal walls and the
stratified region is almost at rest.
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Fig. 25 Cross section of the temperature at x � 0.5 for Ra � 106 and

εb � 0.6.
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V. Conclusions

In this Note, computations have been made in the context of a low-
Mach-number formulation to study the combined natural convection
and surface radiation in a square enclosure using a control volume
approach. The present study shows the effects of the temperature
difference parameter, surface emissivity, and temperature-dependent
fluid properties on the flow and heat transfer. In view of the results
presented, the main points can be summarized as follows:
1) Under non-Boussinesq conditions, and when the temperature

difference increases, a significant variation between incompressible
and compressible solutions is observed. In this case, the compressible
model based on a low-Mach-number approximation can be usedwith
a sufficient accuracy to simulate the combined natural convective
surface radiation.
2) The variation of thermophysical properties could put a signif-

icant influence on the convective and radiative heat transfer and on
the fluid flow.
3) The radiation exchange reduces the stratification at the cavity

center and intensifies the flow at the horizontal walls.
4) The presence of radiation increases the temperatures of the

fluid, and it considerably modifies the fluid flow and temperature
distribution.
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