
HAL Id: hal-01200812
https://hal.science/hal-01200812

Submitted on 17 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Hidden-Semi-Markov-Mode Markov Decision
Problems

Emmanuel Hadoux, Aurélie Beynier, Paul Weng

To cite this version:
Emmanuel Hadoux, Aurélie Beynier, Paul Weng. Solving Hidden-Semi-Markov-Mode Markov Deci-
sion Problems. Scalable Uncertainty Management, Sep 2014, Oxford, United Kingdom. pp.176-189,
�10.1007/978-3-319-11508-5_15�. �hal-01200812�

https://hal.science/hal-01200812
https://hal.archives-ouvertes.fr

Solving Hidden-Semi-Markov-Mode Markov
Decision Problems

Emmanuel Hadoux, Aurélie Beynier, and Paul Weng

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
firstname.surname@lip6.fr

Abstract. Hidden-Mode Markov Decision Processes (HM-MDPs) were
proposed to represent sequential decision-making problems in non-statio-
nary environments that evolve according to a Markov chain. We in-
troduce in this paper Hidden-Semi-Markov-Mode Markov Decision Pro-
cesses (HS3MDPs), a generalization of HM-MDPs to the more realistic
case of non-stationary environments evolving according to a semi-Markov
chain. Like HM-MDPs, HS3MDPs form a subclass of Partially Observ-
able Markov Decision Processes. Therefore, large instances of HS3MDPs
(and HM-MDPs) can be solved using an online algorithm, the Partially
Observable Monte Carlo Planning (POMCP) algorithm, based on Monte
Carlo Tree Search exploiting particle filters for belief state approxima-
tion. We propose a first adaptation of POMCP to solve HS3MDPs more
efficiently by exploiting their structure. Our empirical results show that
the first adapted POMCP reaches higher cumulative rewards than the
original algorithm. However, in larger instances, POMCP may run out of
particles. To solve this issue, we propose a second adaptation of POMCP,
replacing particle filters by exact representations of beliefs. Our empirical
results indicate that this new version reaches high cumulative rewards
faster than the former adapted POMCP and still remains efficient even
for large problems.

1 Introduction

Markov Decision Processes (MDPs) provide a general formal framework for se-
quential decision-making under uncertainty. They have proved to be powerful for
solving many planning problems [14]. However, MDPs run under the assump-
tion that the environment is stationary, i.e., the transition function and/or the
reward function do not evolve through time. In many real-world applications,
this assumption does not hold and the sources of non-stationarity are diverse.
For instance, the environment may change due to external events. In finance,
when investing on the stock market, a financial crisis changes the dynamics of
stock prices. Another example of non-stationary environment concerns multi-
agent systems. Indeed, from the viewpoint of one agent, a change of behavior
(e.g., due to learning) of another agent may affect the environment of the first
agent.

Planning in a non-stationary environment is a difficult problem to tackle
in the general case. We focus instead on a subclass of problems where non-
stationary environments evolve according to a small number of non-observable
modes, which are modeled as MDPs and represent different possible dynamics
and rewards of that environment. An example of problem belonging to this
subclass is that of elevator control [6] where the environment can typically be in
three modes: morning rush-hour, late-afternoon rush-hour and non-rush-hour.
Planning in such non-stationary environments has already been studied in the
MDP framework [8] and in the reinforcement learning framework [7, 9, 15]. In all
those works, non-stationary environments are represented with multiple modes.
The model of Hidden-Mode Markov Decision Processes (HM-MDPs) proposed
by Choi et al.[8] formalizes this idea. HM-MDPs constitute a subclass of Partially
Observable MDPs. In HM-MDPs, the environmental changes are described by a
Markov chain and thus occur at each decision step. However, we argue that this
assumption is not always realistic. Indeed, in the elevator problem for instance,
allowing, even with a small probability, the environment to be able to change
between different rush modes at every move of the elevator is debatable.

In this paper, we propose a natural extension of HM-MDPs, called Hidden-
Semi-Markov-Mode Markov Decision Process (HS3MDP), where the non-statio-
nary environment evolves according to a semi-Markov chain. This new model is
to hidden semi-Markov models [17] what HM-MDPs are to hidden Makov mod-
els. In HS3MDPs, when the environment stochastically changes to a new mode,
it stays in that mode during a stochastically drawn duration. While HM-MDPs
assume that environmental changes follow a geometric law, this assumption is
relaxed in HS3MDPs.

In order to solve large-sized HS3MDPs, we exploit the Partially Observable
Monte Carlo Planning (POMCP) algorithm [16], an online algorithm proposed
for approximately solving POMDPs, based on Monte Carlo Tree Search and
particle filters for belief state approximation. We present two improvements of
POMCP for solving HS3MDPs more efficiently. The first adaptation exploits
the special structure of HS3MDPs and the second furthermore represents belief
states exactly instead of using particle filters. Finally, we experimentally validate
those algorithms showing their effectiveness on a diverse range of domains.

In Sect. 2, we recall the necessary notations and definitions. Then, in Sect. 3,
we introduce our new model. In Sect. 4, we present two adapted algorithms for
solving HS3MDPs. Experimental results are presented in Sect. 5. Finally, we
conclude in Sect. 6.

2 Background

Markov Decision Process. A Markov Decision Process (MDP) [14] is defined
by 〈S,A, T,R〉 where S is a finite set of states, A is a finite set of actions,
T (s, a, s′) is the probability of reaching state s′ from s after executing action
a and R(s, a) ∈ IR is the immediate reward obtained after performing action a
in s. A policy π is a sequence (δ0, δ1, . . . , δt, . . .) of decision rules such as each

Fig. 1: HM-MDP representation with 3 modes and 4 states

decision rule δt : S→ A dictates which action to take for each state at timestep
t. In a state s, a policy π can be valued by the expected discounted total reward
it yields:

V π(s) = Eπ(
∑
t

γtR(St, At) |S0 = s) . (1)

where γ ∈ [0, 1[is a discount factor. Function V π is called the value function
of π. Solving an MDP consists in finding an optimal policy, i.e., a policy that
maximizes the expected discounted sum of rewards. One of the main limitations
of the standard MDP framework is that it requires the transition and reward
functions to be stationary.

Hidden-Mode MDP. Hidden-Mode MDPs (HM-MDPs) formalize a sub-
class of non-stationary problems where environmental changes are limited to a
fixed and known number n of modes. Each mode represents a possible station-
ary environment, formalized as an MDP. Transitions between modes represent
environmental changes. Formally, an HM-MDP is defined as follows [8]. For
i ∈ {1, . . . , n}, let mi = 〈S,A, Ti, Ri〉 be a mode, i.e., an MDP. An HM-MDP
is characterized by 〈M, C〉 where M = {m1, . . . ,mn} and C : M ×M → [0, 1]
is a transition function over modes. Notice that S and A are shared by all mi’s
and that an HM-MDP with n = 1 is a standard MDP. In HM-MDPs, the only
observable information is the current state s ∈ S, the current mode m ∈ M
is not observable. Figure 1, showing a 3-mode, 4-state HM-MDP, depicts how
HM-MDPs can be visualized. To illustrate further the definition of an HM-MDP,
we present a simple example:

Example 1. The elevator problem consists in controlling e elevators in a f -floor
building. At each decision step, a user may call an elevator at any floor and, once
inside, select any desired floor to go. The number of states is then 2f(e+1) × fe.
The modes are the different types of rush-hour and therefore have an influence
on which buttons are pressed, which is described by different transition functions
over states. Three actions can be applied to each elevator: go up/down by one
floor and open the doors, leading to an action set of size 3e. Finally, in this
problem, the reward function is identical for all modes, the controller receives a
penalty for each unsatisfied user.

Considering an office building of 2 floors with 1 elevator: M = {morning
rush-hour, late-afternoon rush-hour, non-rush-hour}, S = {1st floor call button
states} × {2nd floor call button states} × {1st floor drop-off button states}
× {2nd floor drop-off button states} × {elevator positions}, A = {open, up,
down}. In this small example, there are 32 states, 3 actions and 3 modes. The
transition function in the morning rush-hour mode describes the situation where
it is more probable for the elevator to be called at the first floor. In the late-
afternoon rush-hour mode, it describes the opposite situation where users tend
to leave the office. For the non-rush-hour mode, the transition function models
the normal operating situation.

Partially Observable MDP. Partially Observable MDPs (POMDPs) ex-
tends MDPs to partially observable settings [14] and are defined by 〈S,A,O, T ,
Q,R〉 where S is a set of POMDP states, A a set of actions, O a set of ob-
servations, T : S × A × S → IR is a transition function over POMDP states,
Q : S×O → IR is a probability distribution over observations andR : S×A → IR
is a reward function. Since the agent does not observe the POMDP state, she
has to act based on her only available information (i.e., at step t, the probability
distribution over the initial states and her history of observations and actions up
to the current step t) which can be represented as a probability distribution over
states, called belief state [2]. Optimal algorithms have been proposed to solve
POMDPs [10, 3], but they do not scale to large-sized problems. Indeed, finding
an optimal policy for infinite-horizon POMDPs is PSPACE-Complete [13].

Choi et al. have shown that an HM-MDP can be seen as a POMDP 〈S,A,O,
T ,Q,R〉 where S = M×S, A = A, O = S, T (〈m, s〉, a, 〈m′, s′〉) = Tm(s, a, s′) ×
C(m,m′), Q(〈m, s〉, a, o) = 1 if s = o and 0 otherwise, R(〈m, s〉, a) = Rm(s, a).
They have also proposed algorithms to optimally solve HM-MDPs [6, 8]. They
have adapted exact POMDP solving methods in order to exploit the structure
of HM-MDPs. Those adapted methods can solve larger instances of HM-MDPs
than the original ones, but they also suffer from the curse of dimensionality.
Indeed, solving an HM-MDP is still PSPACE-Complete [5]. Like exact POMDP
solving algorithms, exact HM-MDP solving algorithms does not scale. In that
case, one has to resort to approximate algorithms like POMCP.

POMCP. The Partially Observable Monte-Carlo Planning (POMCP) al-
gorithm [16] is one of the most efficient online algorithms to approximately
solve large-sized POMDPs. To choose an action at a given timestep, POMCP
(Alg. 1) runs an effective version of Monte-Carlo Tree Search (MCTS), called
UCT (Upper Confidence Bounds (UCB) applied to Trees) [11], using a black-box
simulator of the environment and a particle filter to approximate a belief state.
This search tree is built iteratively. POMCP uses the simulator to run a fixed
number of simulations in order to evaluate the actions before performing in the
real environment the best action found in the search tree. At one decision step,
to choose which action to perform, search(τ) is invoked with τ the current
history, i.e., the sequence of past observations and actions. This history can be
expanded with an action a giving τa and an observation o giving τao. The root
of the search tree is a node matching the last seen observation. Its children are

all possible actions, whose own children are the respective possible observations
given an action. A node of the tree is a triplet 〈N(τ), V (τ), B(τ)〉 associated
to τ where the components are respectively the number of times τ has been
visited, its mean value and the set of particles (i.e., POMDP states) for this his-
tory. During a simulation, the algorithm randomly draws a particle p from the
particle set B(τ) and uses the simulator G(p, a) to get the new particle p′, the
observation o and the reward r. Actions are selected (Line 19 of Alg. 1) following
the UCB1 procedure guaranteeing a good exploration-exploitation compromise.
Once all simulations have been done, a step is performed in the real environment
with the action returned by search, i.e., the best action found in the search
tree. The algorithm sets the new root to the node matching this observation and
prunes the tree.

At the beginning, POMCP is initialized with an empty history and an initial
(e.g., uniform) distribution I over states. Two important parameters have to be
set to guarantee that a good action is selected: the tree depth and the number
of simulations. The tree depth d can be deduced from the discount factor γ for
a given precision ε > 0 as follows: d = blog(ε)/ log(γ)c. The higher the num-
ber of simulations, the better the estimation of the values of the actions but
the longer it takes to run. This parameter is generally determined by time con-
straints. However, as the number of simulations tends to infinity, this algorithm
is theoretically guaranteed to choose the optimal action at each step. Finally,
notice that the size of the initial particle filter is generally set in function of the
number of simulations.

3 HS3MDP

The HM-MDP framework is not always the most suitable model for represent-
ing sequential decision-making in non-stationary environments as it assumes that
the environment may change at every timestep. For instance, modeling the el-
evator problem with an HM-MDP is problematic as decisions have to be made
every (say) second, while a mode (rush hour or not) can last several hours. In
a problem where this assumption does not hold, the usual modeling trick is to
set a low probability of transition between modes. However, from a theoretical
viewpoint, this is more than questionable when mode transitions are not geo-
metrically distributed. One of the main contributions of this paper is to propose
a more natural model for such cases where the environment dynamics evolve
according to a semi-Markov chain. More precisely, the new model we propose,
called Hidden-Semi-Markov-Mode MDP, represents environmental changes with
hidden semi-Markov models [17] while in HM-MDPs, they were represented with
hidden Makov models.

Definition of HS3MDP. Formally, Hidden-Semi-Markov-Mode Markov De-
cision Process (HS3MDP) is defined by 〈M, C,H〉 where M = {m1, . . . ,mn} is
a set of modes, C : M ×M → [0, 1] is a transition function over modes and
H : M×M× IN→ [0, 1] is a mode duration function. Transition C(m,m′) repre-

Algorithm 1: POMCP

procedure search(τ)
1 foreach simulations do
2 if τ = empty then
3 p ∼ I
4 else
5 p ∼ B(τ)

6 simulate(p, τ, 0)

7 return arg max
b
V (τb)

procedure rollout(p, τ, depth)

8 if γdepth < ε then
9 return 0

10 a ∼ πrollout(τ, ·)
11 (p′, o, r) ∼ G(p, a)
12 return r + γ.rollout(p′, τao, depth+ 1)

procedure simulate(p, τ, depth)

13 if γdepth < ε then
14 return 0

15 if τ /∈ Tree then
16 forall the a ∈ A do
17 Tree(τa)← (Ninit(τa), Vinit(τa), ∅)
18 return rollout(p, τ, depth)

19 a← arg max
b
V (τb) + c

√
logN(τ)
N(τb)

20 (p′, o, r) ∼ G(p, a)
21 R← r + γ.simulate(p′, τao, depth+ 1)
22 B(τ)← B(τ) ∪ {p}
23 N(τ)← N(τ) + 1
24 N(τa)← N(τa) + 1

25 V (τa)← V (τa) + R−V (τa)
N(τa)

26 return R

sents the probability of moving to new mode m′ from current mode m knowing
that the duration in m (i.e., the number of remaining timesteps to stay in m) is
null. Value H(m,m′, h) represents the probability of staying h timesteps in new
mode m′ when the current mode is m. Both the mode and the duration are not
observable.

At each timestep, after a state transition in current mode m, the next mode
m′ and its duration h′ are determined as follows: if h > 0 m′ = m and h′ = h− 1

if h = 0 m′ ∼ C(m, ·)
h′ = k − 1 where k ∼ H(m,m′, ·)

(2)

where h is the duration of current mode m. If h is positive, the environment does
not change. But, if h is null, the environment evolves according to transition
function C and the number of steps to stay in the new mode is drawn following
conditional probability H.

Like HM-MDPs, HS3MDPs form a subclass of POMDPs. An HS3MDP can
be reformulated as a POMDP 〈S,A,O, T ,Q,R〉 whose components are defined
by: S = M × S × IN, A = A, O = S, T (〈m, s, h〉, a, 〈m′, s′, h′〉) = αTm(s, a, s′)
with

α =

C(m,m′)×H(m,m′, h′) if h = 0,
1 if h′ = h− 1 and m′ = m,
0 otherwise

(3)

Q(〈m, s, h〉, a, o) = 1 if s = o and 0 otherwise, R(〈m, s, h〉, a) = Rm(s, a).
Discussions. When considering non-stationary environments in MDPs, each

component of the quadruplet 〈S,A, T,R〉 may be impacted by an environmental
change. Indeed, some states may become impossible or new states may become
reachable, some actions may become infeasible or new actions may appear, the
transition function and the reward function can of course also change after the
environment evolves. Interestingly, a change in the set of states and/or the set
actions may always be modeled by a change in the transition and reward func-
tions by considering the set of all possible states for S and the set of all possible
actions for A at the beginning.

It is easy to notice that HM-MDPs form a subclass of HS3MDPs. In fact, a
problem represented as an HS3MDP can also be exactly represented as an HM-
MDP by augmenting the modes. The two models are equivalent in the following
sense. A modelM is equivalent to a modelM′ if and only if a problem that can
be represented in model M can also be exactly represented in model M′ and
vice-versa.

Proposition 1. HM-MDPs are equivalent to HS3MDPs.

Proof. ⇒ Given an HM-MDP, we can define an equivalent HS3MDP by setting a
mode duration function H such that ∀m,m′, H(m,m′, 1) = 1 and H(m,m′, h) =
0,∀h 6= 1. At each timestep, h = 0, thus leading only to the first alternative of
3. This turns out to be the exact formulation of an HM-MDP.
⇐ Given an HS3MDP, we show how to build an equivalent HM-MDP. To

that aim, we build a sequence of equivalent HS3MDPs. Denote 〈M1, C1, H1〉 the
initial HS3MDP. We repeat the following operation to build the sequence: If, for
〈Mi, Ci, Hi〉, there exist m,m′ ∈Mi and h 6= 1 such that Hi(m,m

′, h) > 0, we
define the next HS3MDP 〈Mi+1, Ci+1, Hi+1〉 as follows:

Mi+1 = Mi ∪
⋃
h′ 6=1{m′0, . . . ,m′h′−1|Hi(m,m

′, h′) > 0}
Ci+1(m,m′h′−1) = Ci(m,m

′)×H(m,m′, h′)
Ci+1(m′j ,m

′
j−1) = 1,∀j > 0

Ci+1(m1,m2) = Ci(m1,m2),∀(m1,m2) 6= (m,m′)
Hi+1(m,m′h′−1, 1) = Hi+1(m′j ,m

′
j−1, 1) = 1,∀h′ > 0, j > 0

Hi+1(m1,m2, h
′) = Hi(m1,m2, h

′),∀(m1,m2) 6= (m,m′),∀h′

(4)

where for all j,m′j is a duplicate of m′ and Ci+1 and Hi+1 are null for the
unspecified cases. When this operation cannot be iterated, in the last HS3MDP,
unreachable modes can be removed. Finally, the resulting HS3MDP corresponds
to an equivalent HM-MDP. ut

However, representing HS3MDPs in such a way feels unnatural and leads to a
higher number of modes, which moreover, would have a negative impact on the
solving time. It is also obvious that, if the maximum duration is unbounded, the
equivalent HM-MDP would have an infinite number of modes, making it difficult
to solve.

As a final note, the models of HM-MDPs and HS3MDPs are particular in-
stances of Mixed-Observable MDPs (MOMDPs) [12, 1], a subclass of POMDPs.
Therefore, MOMDPs algorithms could be used for solving HS3MDPs. We chose
to base our solving method on POMCP, because it tends to be more efficient than
specialized algorithms on MOMDPs and more generally on factored POMDPs,
even when POMCP is run on the non-factored representations [16].

4 Solving an HS3MDP

As HM-MDPs form a subclass of HS3MDPs, solving exactly an HS3MDPs is a
PSPACE-complete problem [5]. In order to be able to tackle large instances of
problems, we therefore focus on an approximate solving algorithm. A first naive
approach is to apply POMCP (see Sect. 2) to directly solve the POMDP derived
from an HS3MDP. In that case, a particle in POMCP represents a mode m, a
state s and a duration h of the HS3MDP. We propose in this section two possible
improvements to this naive approach. Notice that, as a subclass of HS3MDPs,
these solving methods can also be applied to HM-MDPs. In the remaining of the
paper, we will therefore focus only on HS3MDPs.

Adaptation to the structure. In large instances, POMCP can suffer from
a lack of particles to approximate the belief state especially if the number of
states in the POMDP and/or the horizon are large. To tackle this issue, a particle
reinvigoration technique can be used in the original algorithm. However, it is
often insufficient. When POMCP runs out of particles, it samples the action
set according to a uniform distribution, which obviously leads to suboptimal
decisions.

We propose a first adaptation of POMCP that exploits the structure of
HS3MDPs to postpone the lack of particles. In fact, in the derived POMDP,
as the agent observes a part of the state of the POMDP, a particle needs only
to represent non-observable information, that is, the mode m and the number
of steps to stay h. This adaptation allows us to initially distribute particles over
a set whose cardinality is much smaller. However, the size of the particle set
|B(τ)| still depends on the number of simulations. This modification of POMCP
is introduced at line 3 of Alg. 1.

Exact representation of the belief state. When solving large-sized prob-
lems, the above adaptation of POMCP still suffers from lack of particles. We thus

propose a second adaptation where we replace the particle set B by an exact
representation of the belief state. This representation consists of a probability
distribution µ over M× IN (modes and duration in the current mode).

Lines 3 and 5 of Alg. 1 are modified as particles are now drawn according
to a probability distribution. Line 22 is not needed anymore. This probability
distribution is updated after a new observation using the following equation:

µ′(m′, h′) =
1

K

(
Tm′(s, a, s′)× µ(m′, h′ + 1) + (5)∑

m∈M

C(m,m′)× Tm(s, a, s′)× µ(m, 0)×H(m,m′, h′ + 1)
)
.

where K is the normalization term and elements s, s′, a are respectively the
previous observation, the new observation given by the real environment and the
action performed and given by the procedure search. This update is performed
after every action executed in the real environment.

In HM-MDPs we can rewrite the above equation knowing µ(m′, h′ + 1) =
0,∀m′, h′ and H(m,m′, 1) = 1. We then obtain:

µ′(m′) =
1

K

(∑
m∈M

C(m,m′)× Tm(s, a, s′)× µ(m)
)
. (6)

We fall back to the HM-MDP update equation described by [8].
Unlike the previous adaptation, the spatial complexity of this one does not

depend on the number of simulations. Indeed, µ is a probability distribution
over M × IN. Assuming a finite maximum number hmax of timesteps to stay
in a mode, which is often the case in practice, there always exists a number of
simulations N for which the size of the particle set is greater than the length of
this distribution. In such a case, this second adaptation will be more interesting
to consider. The time complexity of the update of the exact representation is
O(|M| × hmax). It is to be compared to the particle invigoration of the original
POMCP and the first adaption which is O(N) with N being the number of
simulations.

5 Experimental Results

We tested POMCP and our two adapted versions on four non-stationary prob-
lems. The first three environments are problems of the literature [8]. We solved
an extended version of each problem modeled as an HS3MDP. Recall that those
adapted versions of the problems cannot be represented as efficiently with HM-
MDPs (see Prop. 1). Results for this model are thus not reported.

H(m,m′, ·) is defined as a truncated Gaussian probability distribution on
duration h of the mode m′ after a transition from m. The mean of the Gaussian
is uniform randomly drawn between 1 and 5 when creating the environment.

We present the results for the original POMCP and for our adaptations of
POMCP: the Structure Adapted (SA) and Structure Adapted combined with

the Exact Representation (SAER) of belief states. We also show the results of
the optimal policy when it could be computed, using Finite Grid [4] and MO-
IP [1]. We also used MO-SARSOP [12] with one hour of policy computation
time when the model could be generated for offline computing. We present the
performances of the algorithms for several numbers of simulations to study how
the quality of the solutions evolves. For each number of simulations we averaged
the cumulative discounted rewards over 1000 runs. We reported results that could
be obtained within one hour on a computer equipped with an Intel XeonX5690
4.47 Ghz core. We chose to present the raw results for the original POMCP and
percentages for the others. Reported percentages correspond to the improvement
in the average cumulated discounted rewards between our modified versions and
the original POMCP.

Traffic light. In the traffic light problem, the environment is a two-way road
where the system has to choose which side to let pass. It has to decide which
traffic light to switch on, knowing only the current state of the lights and the
presence or not of cars on each side of the road. In this problem, the HS3MDP
has two modes: rush on the left or on the right and two actions to choose which
light to switch on. The model contains eight states depending on the presence or
not of cars on the left, on the right and on the light state. The reward function
gives a negative reward when a car waits on a side of the road whose light is
shut off. At each timestep, the environment has a probability of 0.9 to stay in
the same mode and 0.1 to change. Finally, the transition function over the state
depends on the probability of cars arriving on each side, according to the current
mode. Exact probabilities for the original problem can be found in [6].

Table 1 describes results for the traffic light problem, using different algo-
rithms: original POMCP (orig.), Structure Adapted (SA), Structure Adapted
combined with Exact Representation of belief states (SAER) and Finite Grid,
MO-IP and MO-SARSOP. The last three algorithms yield the same results,
which are presented in column “Opt.” to give an idea of the optimal value. The
performances of the original POMCP almost strictly increase with the number
of simulations. They therefore get closer to the optimal value, which translates
into decreasing percentages in Column “Opt.” of Table 1. Since our modified
versions of POMCP performs better than the original one (positive percentages
for columns “SA” and “SAER”), they also get closer to the optimal. For in-
stance, with 512 simulations, 4.7% of improvement for SAER compared to 9.3%
for Column “Opt.” means that the performances of SAER are half-way between
those of the original POMCP and the optimal value. Note that a decreasing
percentage does not mean a raw decrease in the performances. It means that
the increase of the performances of the original POMCP is higher than those of
the other algorithms. Nonetheless, the percentages being positive, the later still
perform better.

Theoretically, POMCP converges towards the optimal solution while the
number of simulations increases. Experimental results (Table 1) show that it

Sim. Orig. SA SAER Opt.

1 -3,42 0.0% 0.0% 38.5%

2 -2,86 3.0% 4.0% 26.5%

4 -2,80 8.1% 8.8% 25.0%

8 -2,68 6.0% 9.4% 21.7%

16 -2,60 8.0% 8.0% 19.2%

32 -2,45 5.3% 6.9% 14.3%

64 -2,47 10.0% 9.1% 14.9%

128 -2,34 4.3% 3.4% 10.4%

256 -2,41 8.5% 10.5% 12.7%

512 -2,32 5.6% 4.7% 9.3%

1024 -2,31 5.1% 7.0% 9.3%

2048 -2,38 9.0% 10.5% 11.8%

Table 1: Results for traffic light

Sim. Orig. SA SAER MO

1 60 11.7% 6.7% 408.3%

2 63 30.2% 30.2% 384.1%

4 55 38.2% 54.5% 454.5%

8 70 8.6% 27.1% 335.7%

16 59 13.6% 88.1% 416.9%

32 66 28.8% 92.4% 362.1%

64 90 21.1% 45.6% 238.9%

128 94 53.2% 71.3% 224.5%

256 119 48.7% 76.5% 156.3%

512 159 31.4% 27.0% 91.8%

1024 177 20.9% 28.8% 72.3%

2048 206 13.6% 10.2% 48.1%

4096 226 12.4% 16.4% 35.0%

8192 227 20.7% 25.6% 34.4%

Table 2: Results for sailboat (7×7 grid)

is also the case for our adapted versions whose performances are always at least
as good as the original POMCP.

In the traffic light problem, both adaptations of POMCP are roughly even.
In fact, the size of the problem is quite small so the original POMCP and the
structured adapted POMCP do not lack particles. Moreover, there are enough
particles to draw a high quality estimation of the belief state. That is why,
the exact representation of belief states does not significantly outperform other
POMCP versions. Nonetheless, our adaptations of POMCP both outperform
the original version since exploiting the structure of the HS3MDP leads to more
accurate belief states.

Sailboat. The sailboat problem is about controlling a boat from a corner
of a finite grid to the opposite corner. The states are possible positions in the
grid and the modes are the different wind directions, limited to North, South,
West and East. Two possible actions manage the sail orientation between North-
South and East-West. The transition function over states depends on the sail
orientation given the wind direction. The environment has a probability of 0.5
to stay in the same mode, 0.2 to go to an adjacent one and 0.1 to go to the
opposite one. The reward function gives a reward of 1 when the goal is reached.
This problem can be enlarged as needed by increasing the size of the grid. Results
for a 7× 7 grid are reported in Table 2.

Due to probabilities of transition between modes, the environment can stay
several steps in the same mode thus giving the same wind direction. When the
boat is on an edge of the grid, it cannot move until the wind changes to a more
favorable configuration. This particularity of the environment leads to a big set
of runs where the boat cannot reach the goal and gets stuck on an edge until the
end of the run. Moreover, the small drops in the original POMCP performances
can be explained with the low number of simulations. If this number is not

Sim. Orig. SA SAER

1 -10.56 0.0% 1.1%

2 -10.60 0.0% 0.0%

4 -10.50 2.2% 3.6%

8 -10.49 4.2% 3.9%

16 -10.44 5.2% 5.0%

32 -10.54 6.2% 6.2%

Table 3: Results for elevator
(f = 7, e = 1)

Sim. Orig. SA SAER

1 -7.41 1.0% 0.4%

2 -7.35 0.3% 0.0%

4 -7.44 1.5% 1.3%

8 -7.35 0.4% 0.0%

16 -7.30 19.1% 17.2%

32 -7.25 22.1% 21.6%

64 -7.17 24.3% 24.3%

128 -7.22 27.0% 27.0%

Table 4: Results for elevator
(f = 4, e = 2)

high enough to explore efficiently, the impact of the random can lead to a high
variance. Results show that our adaptations always perform better than the
original method and that SAER performs almost always better than SA. Column
“MO” stands for the results of MO-SARSOP. We can see that SAER converges
toward those results as the number of simulations increases.

Elevators. In the elevator problem, the environment can stay in the current
mode (see Example 1) with a probability of 0.1 and has a probability 0.45 to
change to the other two when the duration is null. Table 3 contains results
for an instance with 7 floors and 1 elevator whereas Table 4 shows results for
a 4 floors and 2 elevators instance. We were not able to compute the optimal
policy for these instances because of their high dimensionality. The results of our
adaptations are roughly even since the size of the problem remains quite limited
and does not lead to lack particles. However, it is important to note that our
methods always outperform the original POMCP whose performances increase
with the number of simulations and converge to the optimal solution.

The low number of simulations reached during the computation time is ex-
plained by the representation of the transition function. In this problem, transi-
tions are not represented by a matrix of probabilities because of the high number
of state components. The transitions are based on a set of rules, leading to a
longer computation time.

Randomly generated environments. These environments allow us to
study in a controlled setting the scalability of our algorithms. To create an
instance, a number of states ns, actions na and modes nm have to be defined.
Random MDPs are then automatically generated such that, in each state, each

action can lead to b |S|10 c states and b |S|5 c states can yield a positive reward. To
enlarge those environments, we varied the size of the sets of states, actions and
modes. We averaged results from 10 different instances with different state/mode
transition and reward functions for each parameter set.

Tables 5, 6 and 7 describe results for randomly generated environments with
respectively 5, 10 and 20 modes. We were not able to compute the optimal policy
for these instances because of their high dimensionality. We can see that our

Sim. Orig. SA SAER

1 0.41 0.0% 5.6%

2 0.41 4.9% 51.4%

4 0.42 11.5% 140.9%

8 0.44 30.9% 209.6%

16 0.48 34.6% 234.7%

32 0.58 46.0% 223.0%

64 0.77 53.1% 187.2%

128 1.08 45.7% 123.4%

256 1.52 33.5% 70.0%

512 1.98 19.6% 34.5%

1024 2.30 12.5% 17.3%

Table 5: Results for
random environments
with ns = 50, na = 5
and nm = 5

Sim. Orig. SA SAER

1 0.39 0.1% 8.9%

2 0.39 21.0% 57.5%

4 0.40 9.9% 149.0%

8 0.41 24.0% 224.6%

16 0.43 33.0% 261.3%

32 0.48 58.2% 275.8%

64 0.60 76.2% 248.7%

128 0.83 75.4% 184.5%

256 1.16 64.1% 115.9%

512 1.61 41.5% 61.5%

1024 2.05 2.2% 28.8%

Table 6: Results for
random environments
with ns = 50, na = 5
and nm = 10

Sim. Orig. SA SAER

1 0.39 0.8% 11.9%

2 0.40 2.6% 51.1%

4 0.40 2.7% 138.9%

8 0.41 11.8% 225.2%

16 0.41 22.3% 270.8%

32 0.45 42.9% 290.3%

64 0.51 77.5% 305.5%

128 0.63 102.2% 261.1%

256 0.85 102.7% 186.8%

512 1.23 73.3% 107.7%

1024 1.66 43.6% 55.3%

Table 7: Results for
random environments
with ns = 50, na = 5
and nm = 20

methods significantly outperform the original POMCP method. In fact, the exact
representation of belief states always outperforms POMCP versions based on
particles filter on sufficiently large environments. Indeed, these methods quickly
lack particles to accurately represent the belief state.

Moreover, the computation time of our adaptations are promising for appli-
cation to large-sized real life problems. For instance, in the random environment
with 20 modes (Table 7), one run of 1024 simulations took 1.15 seconds for solv-
ing the HS3MDP with structured adapted POMCP and 1.48 seconds for solving
the HS3MDP with POMCP and exact representation of the belief state.

6 Conclusion and discussions

In this paper, we introduced Hidden-Semi-Markov-Mode Markov Decision Pro-
cesses (HS3MDPs), a new generalization of Hidden-Mode Markov Decision Pro-
cesses (HM-MDPs) to handle in a more natural and efficient way non-stationary
environments. We proposed to use the Partially Observable Monte-Carlo Plan-
ning algorithm as a solving method for HS3MDPs. As a subclass of our model,
HM-MDPs can be solved efficiently using the same methods. However, this algo-
rithm does not solve large-sized problems modeled with HS3MDPs in the most
efficient way. We developed two adaptations of POMCP to improve its perfor-
mances. The first adaptation exploits the structure of HS3MDPs to alleviate
particle deprivation. The second adaptation uses an exact representation of the
belief state to reach better results with less simulations than the other two meth-
ods. Experimental results on various domains of the literature show that those
adaptation significantly improve the performance.

As future work, different research directions could be explored. In HM-MDPs
and HS3MDPs, transition functions over modes do not depend on the performed

action. This assumption does not hold in environments like stock markets where
buying big volumes may influence the market. An extension of HS3MDPs to
handle such situations would be interesting. Another research direction is to
relax the assumption that the transition function between modes is known and
to learn it in a multi-armed bandit or reinforcement learning setting.

Acknowledgments

Funded by the French National Research Agency under grant ANR-10-BLAN-
0215.

References

1. Araya-López, M., Thomas, V., Buffet, O., Charpillet, F.: A closer look at
MOMDPs. In: ICTAI (2010)

2. Aström, K.: Optimal control of markov decision processes with incomplete state
estimation. J. of Math. Analysis and Applications 10, 174–205 (1965)

3. Cassandra, A., Littman, M., Zhang, N.: Incremental Pruning: A simple, fast, exact
method for Partially Observable Markov Decision Processes. In: UAI. pp. 54–61
(1997)

4. Cassandra, T.: pomdp-solve. http://www.pomdp.org/code/index.shtml/ (2003–
2013)

5. Chadès, I., Carwardine, J., Martin, T.G., Nicol, S., Sabbadin, R., Buffet, O.:
MOMDPs: A solution for modelling adaptive management problems. In: AAAI
(2012)

6. Choi, S.: Reinforcement learning in nonstationary environments. Ph.D. thesis,
Hong Kong Univ. of Science and Tech. (2000)

7. Choi, S., Yeung, D., Zhang, N.: An environment model for nonstationary reinforce-
ment learning. In: NIPS. pp. 981–993 (2000)

8. Choi, S., Zhang, N., Yeung, D.: Solving Hidden-Mode Markov Decision Problems.
In: AISTATS. pp. 19–26 (2001)

9. Doya, K., Samejima, K., Katagiri, K., Kawato, M.: Multiple model-based rein-
forcement learning. Neural Computing 14(6), 1347–1369 (2002)

10. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially ob-
servable stochastic domains. Artificial intelligence 101(1–2), 99–134 (1998)

11. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: European Con-
ference on Machine Learning (2006)

12. Ong, S., Png, S., Hsu, D., Lee, W.: POMDPs for robotic tasks with mixed observ-
ability. In: Robotics: Science & Syst. (2009)

13. Papadimitriou, C., Tsitsiklis, J.: The complexity of Markov Decision Processes.
Math. of OR 12(3), 441–450 (1987)

14. Puterman, M.: Markov Decision Processes: Discrete dynamic stochastic program-
ming. John Wiley Chichester (1994)

15. da Silva, B., Basso, E., Bazzan, A., Engel, P.: Dealing with non-stationary envi-
ronments using context detection. In: ICML (2006)

16. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: NIPS. pp. 2164–
2172 (2010)

17. Yu, S.: Hidden Semi-Markov Models. Artificial Intelligence 174(2), 215–243 (2010)

