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Damage type classification based on
structures nonlinear dynamical signature

Myriam Bakir ∗ Marc Rebillat ∗ Nazih Mechbal ∗

∗ PIMM, Arts et Métiers ParisTech, Paris, France
(myriam.bakir@ensam.eu).

Abstract: Structural damages result in nonlinear dynamical signatures that significantly help
for their monitoring. A damage type classification approach is proposed here that is based
on a parallel Hammerstein models representation of the structure estimated by means of the
Exponential Sine Sweep Method. This estimation method has been here extended to take into
account for input signal amplitude which was not the case before. On the basis of these estimated
models, three amplitude dependent damage indexes are built: one that monitors the shift of the
resonance frequency of the structure, another the ratio of nonlinear versus linear energy in the
output signal, and a last one the ratio of the energy coming from odd nonlinearities to the
energy coming from even nonlinearities in the output signal. The slopes of these amplitude-
dependent DIs are then used as coordinates to place the damaged structure under study within
a three-dimensional space. A single mass-spring-damper system is considered to illustrate the
ability of this space to classify different types of damage. Four types of damage with different
severities are simulated through different spring nonlinearities: bilinear stiffness, dead zone,
saturation, and Coulomb friction. For all severities, the four types of damage are extremely well
separated within the proposed three-dimensional space, thus highlighting its high potential for
classification purposes.

Keywords: Structural Health Monitoring, Damage type classification, Nonlinear model
estimation, Parallel Hammerstein models.

1. INTRODUCTION

The process of implementing a damage identification strat-
egy for aeronautic or civil infrastructures is referred to
as Structural Health Monitoring (SHM) and may pro-
vide considerable improvements with respect to safety
and maintenance costs (Worden et al., 2007). A SHM
process is classically performed in four steps: detection,
localization, classification and quantification. There exists
several algorithms able to handle for both the detection
and localization steps, but still there is almost no reliable
solution for the classification and quantification steps.

One commonly used SHM technique is that of “active
sensing” whereby permanently attached actuators launch
Lamb waves in the structure under inspection and a
set of sensors records the structural responses in order
to extract some damage related information (Raghavan
and Cesnik, 2007). One of the outstanding advantage
of using Lamb waves for SHM is that such waves can
travel over relatively long distance and can be used to
monitor various types of damage (such as cracks, impacts,
or delaminations). Furthermore, in many cases, damages
that appear on complex structures generate nonlinear
dynamical responses that can be used efficiently for SHM
purposes (Farrar et al., 2007; Worden et al., 2008).

Existing damage type classification procedures are based
on a time representation (de Lautour and Omenzetter,
2010) or on a time-frequency representation (Chakraborty
et al., 2009; Zhou et al., 2009; Das et al., 2010) of signals

recorded by sensors. In those procedures a test signal is
sent by an actuator and the signal received by a sensor is
then modeled using various signal processing tools (match-
ing pursuit decomposition or autoregressive models) and
classified by means of various machine learning algorithms
(supports vector machine, artificial neural networks or
hidden Markov chains). These approaches only model the
received signals at the sensor position and not the path
followed by the signal from the actuator to the sensor.
Furthermore they rely only on linear signal processing
tools and are thus unable to take benefit of the nonlinear
part of the information coming from the damage.

We thus aim here at exploiting a richer nonlinear rep-
resentation of the path followed by the signal from the
actuator to the sensor within the structure to develop and
validate an original and simple solution for the “classifi-
cation” step of SHM systems based on guided waves. This
approach (see Fig. 1 for an overview of the procedure) is
based on a Parallel Hammerstein models representation
of the actuator-sensor path. Such models are classically
estimated by means of Exponential Sine Sweeps put as
input of the damaged nonlinear structure (Rébillat et al.,
2011, 2014) but without taking into account for the input
sweep amplitude. As a first contribution of the paper,
this estimation method has been extended to take into
account for input signal amplitude. On the basis of models
estimated at different input amplitudes, three amplitude
dependent damage indexes are built: the first one monitors
the shift of the resonance frequency of the structure, the



Fig. 1. Overview of the proposed classification method. Three amplitude dependent damage indexes DI1(A), DI2(A)
and DI3(A) are built on the basis of nonlinear models [hk(Ai)] that are estimated at different amplitudes Ai by
means of Exponential Sine Sweeps, e(Ai). The slopes of these amplitude-dependent DIs, S1, S2, and S3, are then
used as coordinates to place the damaged structure under study within a three-dimensional space.

second the ratio of nonlinear versus linear energy in the
output signal, and the last one the ratio of the energy
coming from odd nonlinearities to the energy coming from
even nonlinearities in the output signal. The slopes of these
amplitude-dependent DIs are then used as coordinates to
place the damaged structure under study within a three-
dimensional space. A single mass-spring-damper system is
considered to illustrate the ability of this space to classify
different types of damage. Four types of damage with
different severities are simulated through different spring
nonlinearities: bilinear stiffness, dead zone, saturation, and
Coulomb friction.

After extending the exponential sine sweep method in
order to take into account for input signal amplitude
(see Sec. 2), the way the amplitude-dependent damage
indexes are built based on a Parallel Hammerstein models
representation of the system is explained (Sec. 3). Their
ability to classify several types of damage modeled as
various nonlinearities is then tested numerically on a mass-
spring-damper system (Sec. 4) before concluding (Sec. 5).

2. AMPLITUDE COMPENSATED PARALLEL
HAMMERSTEIN MODELS ESTIMATION

2.1 Parallel Hammerstein models (PHM)

In PHM, each branch is composed of one nonlinear static
polynomial element followed by a linear one hn(t) as shown
in Fig. 2. The relation between the input e(t) and the
output s(t) of such a system is given by Eq. (1) where (∗)
denotes the convolution operator.

Fig. 2. Parallel Hammerstein models

s(t) =

N∑
n=1

(hn ∗ en) (t) (1)

Any PHM is fully represented by its kernels {hn(t)}n∈{1...N},
which are only a set of linear filters. This model is thus
interesting as it is at the same time quite simple to use
and intuitive to understand.

Estimating each kernel of a PHM is not a straightforward
task. As can be seen in Eq. (1), PHM are linear in the
parameters to be estimated. A naive approach is to identify
the model using a classical least square method. However,
the least square method requires the inversion of a MN ×
MN matrix, where N is the order of the system under
test and M is the length of the impulse responses hn(t) in
samples. This matrix can be very ill-conditioned since it is
generated from the exponent (until N) of the input signal.
This results in important estimation errors especially in
noisy conditions. Moreover the computation of the matrix
from the input signal and of the inverse of the matrix
is computationally costly and limits in practical case the
memory M of the system. For those reasons, we rely here
on an alternate estimation procedure based on exponential
sine sweeps.

2.2 Exponential sine sweeps

In order to experimentally cover the frequency range
over which the system under study has to be identified,
cosines with time-varying frequencies and amplitude A
are commonly used. When the instantaneous frequency of
e(A, t) = Acos [φ(t)] is increasing exponentially from f1 to
f2 in a time interval T , this signal is called an “Exponential
Sine Sweep”. It can be shown (Rébillat et al., 2011) that by

choosing T =
(
2m− 1

2

) ln(f2/f1)
2f1

withm ∈ N∗, one obtains:

∀k ∈ N∗ cos [kφ(t)] = cos [φ(t+ ∆tk)] (2)

with ∆tk =
T ln(k)

ln(f2/f1)

Using Chebyshev polynomials associated to this property,
ei(A, t) is rewritten as in Eq. (3).

ei(A, t) = Ai−1
i∑

k=1

C (i, k) e (A, t+ ∆tk) (3)

2.3 Kernel recovery in the time domain

If an exponential sine sweep is presented at the input of
PHM, by combining Eq. (1) and Eq. (2), we obtain the
following relation:



s(A, t) =

N∑
n=1

(γn ∗ e)(A, t+ ∆tn) (4)

with γn(A, t) = An−1
n∑

k=1

ck,nhk(A, t)

where γn(A, t) is the contribution of the different kernels
to the nth harmonic for an input amplitude A. In order
to identify each kernel hn(A, t) separately, a signal y(A, t)
operating as the inverse of the input signal e(A, t) in the
convolution sense can be built (Rébillat et al. (2011)).
After convolving the output of the PHM s(A, t) given in
Eq.4 with y(A, t), one obtains:

(y ∗ s)(A, t) =

N∑
n=1

γn(A, t+ ∆tn) (5)

Because ∆tn ∝ ln(n) and f2 > f1, the higher the order
of non-linearity n, the more advanced the corresponding
γn(A, t). Thus, if Tm is chosen long enough, the different
γn(A, t) do not overlap in time and can be separated by
simply windowing them in the time domain. Using Eq. (6),
the family {hn(A, t)}n∈[1,N ] of the kernels of the PHM
under study can then be fully extracted.

[h1(A, t) . . . hN (A, t)]
T

= DC̃T [γ1(A, t) . . . γN (A, t)]
T

(6)

with D = diag(1, A−1, . . . , A1−N )

In Eq. (6), C̃T stands for the transpose of the Chebyshev
matrix C from which the first column and the first row
have been removed (see Rébillat et al. (2011)). The ampli-
tude compensation term is the matrix D and constitutes
an extension of previous methods (Rébillat et al., 2011).

3. NONLINEAR DAMAGE INDEXES
COMPUTATION

The way the three damage indexes mentioned above are
built from PHM estimated at different amplitudes A by
means of the procedure described in Sec. 2 is described in
this section.

3.1 PHM-based decompositions of the output signal

By rephrasing Eq. (1), it is possible to decompose the
output of the PHM as follows:

s(A, t) = (h1 ∗ e)(A, t) +

N∑
n=2

(hn ∗ en) (A, t)

= sL(A, t) + sNL(A, t) (7)

where sL(A, t) stands for the linear and sNL(A, t) for the
nonlinear parts of the output signal s(A, t). It is also
possible to decompose further sNL(A, t) in order to obtain
the odd, sNL

o (A, t), and even, sNL
e (A, t), nonlinear parts of

the output signal:

sNL(A, t) =
∑
n odd

(hn ∗ en) (A, t) +
∑

n even

(hn ∗ en) (A, t)

= sNL
o (A, t) + sNL

e (A, t) (8)

As the input signal e(A, t) is known and as the Ham-
merstein kernels {hn(A, t)}n∈[1,N ] have been estimated
previously, those linear, and total, odd, and even nonlinear
parts of the output signal are then easily evaluated thanks
to the procedure described in Sec. 2 and can be used to
build damage indexes. In the following sections, SL(A, f),
SNL(A, f), SNL

e (A, f), and SNL
o (A, f) will be denoting the

Fourier transforms of sL(A, t), sNL(A, t), sNL
e (A, t), and

sNL
o (A, t).

3.2 Damage index definitions

DI1: Classic frequency variation damage index: As a first
approximation, the effect of a damage in the structure
under study can be modeled as a local modification of
its stiffness. Let fH(A) be the frequency of the first mode
of the structure in the healthy case and fD(A) the same
frequency in the damaged case for a given input amplitude
A. These frequencies can here be easily extracted from the
estimated nonlinear model as the kernel h1(A, t), or its
Fourier transform H1(A, f), is nothing else than the linear
response of the system. After the analysis of H1(A, f) in a
healthy and a damaged cases, we can then define a classic
linear damage index (DI) as (Salawu, 1997):

DI1(A) =
fD(A)− fH(A)

fH(A)
(9)

DI2 : Ratio of the nonlinear energy to the linear energy:
Taking advantage of Eq. (7), we use a second DI that
is defined as the ratio of the energy contained in the
nonlinear part of the output of the PHM versus the energy
contained in the linear part of the output of the PHM for
a given input amplitude A (Rébillat et al., 2014). This
damage index is defined as follow:

DI2(A) =

∫ f2
f1
|SNL(A, f)|2df∫ f2

f1
|SL(A, f)|2df

(10)

where f1 and f2 have been defined earlier in Sec. 2.2.

DI3 : Ratio of the even to the odd nonlinear energies: Using
Eq. (8), we build a third DI that is defined as the ratio
of the energy contained in the even nonlinear part of the
output of the PHM versus the energy contained in its odd
nonlinear part for a given input amplitude A. We build a
damage index defined as follow:

DI3(A) =

∫ f2
f1
|SNL

e (A, f)|2df∫ f2
f1
|SNL

o (A, f)|2df
(11)

4. NUMERICAL APPLICATION

4.1 Dynamical system under study

A simple spring-mass-damper system, see Fig. 3, has been
chosen to demonstrate the ability of the proposed method
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Fig. 3. Simulated spring-mass-damper system

to classify different types of damages. All the simulations
are done using Simulinkr and a Runge-Kutta solver. The
input signal is the ground acceleration ẍG(t) and the oup-
tut signal is the mass acceleration ẍM (t). Both the damper
and the spring are subjected to the relative displacement
∆x(t) = xM (t)− xG(t). For this system, the following val-
ues have been selected: M = 450 kg, b = 103 Ns/m, and
k = 106 N/m. The mechanical equation of this kind of
system is then:

MẍM (t) = −F [∆x(t)]− b∆ẋ(t) (12)

where F [∆x(t)] is the force associated with the spring, and
is assumed to be linear and given by F [∆x(t)] = k∆x(t)
in the healthy state of the system.

At the end of the simulation, some noise (Gaussian noise
of zero mean and scaled variance) is added to the output
signal. The signal to noise ratio (SNR) is defined here as
the ratio in dB between the maximum amplitude of the
output acceleration in the linear healthy case (k×xlim/M)
to the standard deviation of the added noise. xlim denotes
the maximum relative displacement in the linear case.

4.2 Considered damage types

Four types of damage with different severities are simu-
lated through different spring nonlinearities: bilinear stiff-
ness, dead zone, saturation, and Coulomb friction. By
denoting α ∈ [0, 1] the damage severity coefficient (α = 0 :
healthy, and α = 1 : totally damaged) the restoring forces
F [∆x(t)] associated with the different nonlinear damages
are expressed as in Tab. 1. To calibrate the nonlinearities,
two additional parameters are needed, xlim and xlow. The
former is defined as the maximum relative displacement in
the linear case while the latter corresponds to the static
relative displacement in the linear case.

The four nonlinearities have been chosen as idealized
representations of four types of damages:

• The bilinear stiffness corresponds to a crack that is
opening and closing and thus that presents different
stiffnesses depending on its state. For the bilinear
stiffness the severity parameter α corresponds to the
relative stiffness decrease when the crack opens.
• The saturation can be seen as a dry friction phe-

nomenon associated with a spring and may corre-
spond to relative movements between parts of a sys-
tem caused by an overdrive in force. The severity
α has been defined as a system that never satu-
rates when α = 0 and that always saturate when
α = 1. Furthermore α has been scaled not to grow
too quickly (see Tab. 1).
• The dead zone models systems where damage causes

some mechanical slack without any contact between

Bilinear stiffness

F [∆x(t)] =

{
k∆x if ∆x < 0
(1− αl)k∆x if ∆x ≥ 0
αl = α

Saturation

F [∆x(t)] =

{
k∆x if |∆x| < αsxlim
kαsxlim else

αs = (1− (log2(1 + α))
1
4 )

Dead zone

F [∆x(t)] =

{
k∆x+ kαdxlow if ∆x < −αdxlow
k∆x− kαdxlow if ∆x ≥ αdxlow
0 else

αc = 0.1α

Coulomb friction

F [∆x(t)] =

{
k(∆x− αcxlow) if ∆x < 0
k(∆x+ αcxlow) if ∆x ≥ 0
αc = 0.1α

Table 1. Nonlinear considered damage types.

two parts. The severity α has been defined as a system
without any slack when α = 0 and with a slack of
10%× xlow when α = 1.

• The Coulomb friction models systems where damage
manifests itself by the appearance of Coulomb friction
due for example to the lack of lubrification between
parts. The severity α has been defined as a system
without any Coulomb friction when α = 0 and with
a Coulomb force of 10%× k × xlow when α = 1.

4.3 Amplitude-compensated PHM

For bilinear damage type and severity α = 0.6 (see
Sec. 4.2), the first step consists in the generation of the
exponential sine sweep input signals for different given
amplitudes as shown in Fig. 4(a). We chose f1 = 0.7 Hz
and f2 = 25 Hz to cover a range of frequencies that
includes the linear resonance that is around 7 Hz here and
can be observed in the output signal in Fig. 4(a). The
duration of the signal is fixed at T = 150/f1, the order of
the Hammerstein estimation at N = 4 and the sampling
frequency is defined by fs = 2f2Nω, where ω is a safety
coefficient set to 1.1. The estimated PHM representation
of the damaged structure is shown in Fig. 4(b). On
the first kernel we recognize the typical response of a
linear resonant system and we can see that outside the
excited frequency range, the system is not characterized.
As expected, the increase of the input amplitude causes
the growth of harmonics that can be seen on the kernels
of orders 2, 3, and 4.

4.4 Damage index computation

The kernels are then used to compute the three DIs
DI1(A), DI2(A), and DI3(A) (as shown in Fig. 5 for
the different type of damages and for different damage
severities) and their mean slopes S1, S2, and S3. Fig. 5
shows that the global behavior of the DIs depends mainly
on the chosen type of damage, and not on its severity if it
is high enough (i.e. for α > 10− 15% here). Furthermore,
by comparing each type of damage to the others, one
can see that the magnitude of the variation of the DIs
is representative of the type of damage.
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(a) Bilinear stiffness
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(b) Saturation
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(c) Dead zone
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(d) Coulomb friction

Fig. 5. Damage indexes evolution with input amplitude for several severities for the different types of nonlinear damages.
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Fig. 4. (a) Input (top) and output (bottom) signals for a
bilinear spring at α = 0.6 and an amplitude of 1. (b)
Estimation of the 4 first kernels for a bilinear spring
at α = 0.6.

4.5 Proposed classification space

In Fig. 6(a), each point representing one type of damage
with one severity level, is placed in the (S1, S2, S3) space.
As it can easily be seen, the four damage types are well
separated in this space, thus assessing the efficiency of the
proposed space for classification purposes. As can be seen,
when the SNR is 120 dB, see Fig. 6(a), the classification
space is almost not affected by noise. When decreasing
the SNR to 100 dB, see Fig. 6(b), the classification space
is more affected and specially the points associated with
the saturated spring. However, for this SNR, the global
organisation of the space is still intact.

5. DISCUSSION AND CONCLUSION

A nonlinear damage type classification approach is pro-
posed here that is based on a PHM representation of the
structure. Such models are estimated at different ampli-
tudes by means of an adapted version of the Exponential
Sine Sweep Method. On the basis of these estimated mod-
els, three amplitude dependent damage indexes are built.
The slope of these amplitude-dependent DIs are then used
as coordinates to place the damaged structure under study
within a three-dimensional space. A single mass-spring-
damper system is considered to highlight the ability of
this space to classify different types of damage.

However, one can still not conclude regarding the general
validity of such a classification space and the results
presented here only constitute preliminary work. Indeed,
this space has for the moment not been used in conjunction
with any machine learning algorithm (such as support
vector machine for example). Furthermore, the chosen
numerical example is very simple and not representative of
real life complex structures. A beam simulated by means



(a) SNR= 120 (b) SNR= 100

Fig. 6. Evolution of the mean slopes of the damage indexes for several damage severities, for the different types of
considered nonlinear damages, and for different SNRs.

of a finite-element model on which a nonlinear damage is
inserted at a given node could for example be considered.
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Rébillat, M., Hajrya, R., and Mechbal, N. (2014). Non-
linear structural damage detection based on cascade of
hammerstein models. Mechanical Systems and Signal
Processing, 48(1-2), 247–259.
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