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Abstract

The turbulence closure model is the dominant source of error in most Reynolds Averaged
Navier-Stokes simulations, yet no reliable estimators for this error component currently
exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific
classes of flow. It is based on variability in model closure coefficients across multiple
flow scenarios, for multiple closure models. The variability is estimated using Bayesian
calibration against experimental data for each scenario, and Bayesian Model-Scenario
Averaging (BMSA) is used to collate the resulting posteriors, to obtain an stochastic
estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The
scenario probabilities in BMSA are chosen using a sensor which automatically weights
those scenarios in the calibration set which are similar to the prediction scenario. The
methodology is applied to the class of turbulent boundary-layers subject to various pres-
sure gradients. For all considered prediction scenarios the standard-deviation of the
stochastic estimate is consistent with the measurement ground truth. Furthermore, the
mean of the estimate is more consistently accurate than the individual model predictions.

Keywords: Bayesian Model Averaging; Bayesian Model-Scenario Averaging; RANS
models, model inadequacy; uncertainty quantification; calibration; boundary-layers;
error estimation

1. Introduction

Numerical predictions of continuum mechanics are affected by several sources of error:
discretization error, parametric uncertainty, and physical modelling error, are the three
most significant. Yet only the latter can not be estimated and controlled with standard
techniques. As such it represents the bottleneck to a robust predictive capability in many
fields.

In industrial Computational Fluid Dynamics (CFD) simulations, the Reynolds-Averaged
Navier-Stokes (RANS) equations are the workhorse tool for modelling turbulent flow
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fields. The equations require a turbulence closure model, of which there are many [36];
each of which requires empirical closure coefficients parameterising modelling assump-
tions. Standard practice is to calibrate these coefficients against simple flow configu-
rations (generally, incompressible homogeneous isotropic turbulence, free shear layers,
and zero pressure gradient flat plate boundary layers [25]) using available experimental
data. Even so there is no consensus on the best coefficient values for most models, as
evidenced by the wide range of coefficients seen in the literature. As a consequence model
predictions can differ significantly [34, 38].

In the Bayesian framework, model error is typically accounted for with a stochastic
term added to (or multiplying) the output of the simulation. For instance Kennedy
and O’Hagan [13] define “model inadequacy” as the discrepancy that remains between
the true process and the prediction of the simulation code evaluated using the best-
fit parameter values. We believe however that modelling this discrepancy directly is
inappropriate when the simulation is an approximation of continuum mechanics, which
is characterized by perfectly known conservation laws (e.g. conservation of momentum),
containing imperfect, subordinate, empirical models, such as turbulence closure models
in RANS. In this context, it makes much more sense to include stochastic modelling of
inadequacy at the level of the empirical model, not at the level of the simulation code
output. This choice has the ancillary benefit that predictions of quantities of other type
than the calibration data can be made – and in other geometries – while still incorporating
estimates of model inadequacy. This is not possible in the original Kennedy and O’Hagan
framework.

There are two natural ways to incorporate stochastic model inadequacy into turbu-
lence closure models: via the Reynolds-stress tensor [9], and via the closure coefficients [8].
It is the latter approach that we will use; and our goal is to quantify model error in the
predictions of RANS codes.

Our novel approach is based on Bayesian statistics [10], and can be summarized as
follows: we first choose a class of flows for which we wish to make reliable predictions
with quantified model error, in this work the class is flat-plate boundary-layers at a vari-
ety of pressure gradients. We select a number of examples of this class for which we have
reliable experimental data; these flows form our calibration scenarios. Finally we select
a set of turbulence closure models, that are both expected to perform acceptably on the
flow-class, but which are also heterogeneous in their modelling approaches, in this work
we use k − ε, k − ω, Spalart-Allmaras, Baldwin-Lomax and stress-ω models [36]. For
each model and each scenario we perform Bayesian calibration to obtain posteriors on
closure coefficients [3] as well as on model probabilities, i.e. probabilities of recovering
the data by using a given model with the calibrated coefficients. For all models a strong
dependence of coefficients on scenario is observed. This variation is interpreted as the
extent to which the coefficients must be adjusted to match scenarios in the calibration
set; informally a kind of coefficient uncertainty. Precisely, to make predictions for some
Quantity of Interest (QoI) in some unmeasured scenario, we use Bayesian Model Averag-
ing (BMA) [12] to collate the individual coefficient posteriors. A key step is propagating
these posteriors through the simulation code for the prediction scenario. By using the
freedom inherent in BMA to define prior scenario probabilities, we automatically assign
a higher weight to those calibration scenarios which allow recovering consistent predic-
tions for a new scenario with all alternative models considered; these are often found to
be similar to the prediction scenario. The prediction is summarized by the mean and
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variance of the posterior predictive distribution [6, 27]. Because in our framework the
variation between scenarios is at least as important as the variation between models, we
speak of Bayesian Model-Scenario Averaging (BMSA), rather than BMA.

There is very little work in the literature on numerical methods for estimating RANS
closure model error. The authors of [22] perform calibration with multiple turbulence
models and model-inadequacy terms on the simulation output, but they do not combine
them to make reliable predictions. Other authors have applied Bayesian approaches to
problems in aeroelasticity, but rely on expert judgement [26]. Recently Emory et al. [9]
proposed a physically-motivated method for perturbing the Reynolds stress tensor, but
again the uncertainty is determined by physically possible states, and not informed by
experimental data. Finally in [8] the present authors used Bayesian statistics to estimate
the model error of the k − ε turbulence model [15], via multiple posterior distributions
of the closure coefficients. However our use of p-boxes limited the flexibility of the
predictions, leading to model error estimates that contained the true solution, but which
were impractically large.

This work proposes one of the first error estimates for turbulence closure models.
However the computational cost of the method investigated here is extremely high, if
it would be applied to complex flow topologies. Our primary goal in this article is to
investigate the potential of our framework for estimating model error, in the absence
of simplifying approximations. Success at this stage motivates investigation of both
numerical and statistical techniques for making the framework computationally feasible
for expensive simulation codes. As a proof of concept, one such a technique is already
proposed in the current article.

The paper is laid out as follows: the four turbulence models are described in Section 2,
and the scenarios together with experimental data in Section 3. Section 4.1 lays out our
calibration framework, Section 4.2 prediction with Bayesian Model-Scenario Averaging,
and Section 4.3 automatic scenario weighting. Section 5 discusses results.

2. RANS Turbulence Modelling

2.1. Governing equations

Directly solving the Navier-Stokes equations for a turbulent flow at a high Reynolds
number is computationally intractable, since the range of scales present increases rapidly
with the Reynolds number [25]. Capturing all these scales of motion in a Direct Numerical
Simulation (DNS) would require a very fine grid and a very small time step such that
the computational resources required are beyond the capability of currently available
computing clusters. For this reason, DNS is presently a research tool limited to low-
Reynolds number flows, not a brute-force option for engineering problems. For the latter
problems often knowledge of the mean-flow only is sufficient, hence a common option
is to employ the Reynolds-Averaged Navier-Stokes (RANS) equations coupled with an
eddy-viscosity closure model. The governing RANS equations, once a particular eddy-
viscosity closure model is adopted, for an incompressible boundary-layer flow are given
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by

∂ū1

∂x1
+
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∂ū1

∂x2

]
, (2)

where ρ is the constant density, ūi is the mean velocity in xi direction and ν is the
kinematic viscosity. The eddy viscosity νT is meant to represent the effect of turbulent
fluctuations on the mean flow, and is calculated by means of a turbulence model.

2.2. Turbulence models

The models we use in our analysis are given below. For conciseness, we do not give
full details on these models. Rather, we refer to [36] for a more complete description of
their mathematical structure.

2.2.1. The k − ε model with Launder-Sharma damping functions

The k − ε model is a so-called two-equation model in which the eddy viscosity is
calculated as νT = Cµk/ε. Here, k is the turbulent kinetic energy and ε the turbulent
dissipation, each of which has its own transport equation that has to be solved in order
to compute νT . These equations, and the expression for νT itself, contain the following
empirically determined closure coefficients: Cµ, Cε1, Cε2, σk and σε. The values of
these coefficients are traditionally determined by calibration on simple flow problems,
and different versions of the k − ε model assume different values [36]. By introducing
empirical damping functions which improve the predictive capability close to a wall, the
Launder-Sharma k − ε model [15] is arrived at.

A common fundamental flow problem is fully developed channel flow. The resulting
simplified governing equations lead to the following constraint amongst several parame-
ters [25]

κ2 = σεC
1/2
µ (Cε2 − Cε1) , (3)

where κ is the von Karman constant. Likewise, the balance between the production P
and dissipation ε of turbulent kinetic energy in free shear layers gives the constraint [25]

(P
ε

)
=
Cε2 − 1

Cε1 − 1
. (4)

We use (3)-(4) to fix the value of σε and Cε1, where we follow the advice of the authors
of [24] and set P/ε = 2.09 for the latter. This is the value obtained when inserting the
nominal values of Cε1 and Cε1 in (4). Experimental values of P/ε vary, but they are in
general closer to 1.7 than 2.09 [33]. But, as we shall see in Section 5.1, using P/ε = 2.09
will center the posterior Cε2 distributions close to its standard value of 1.92. In this case
we expect greater stability of the k − ε model, especially in the prediction phase (see
Section 4.2) where we will propagate multiple posterior parameter distributions through
the RANS code. Alternatively, we could calibrate for P/ε instead. In this case we can
fix either Cε1 or Cε2 to infer the value of the other via relation (4), leading to a similar
situation as the present setup. Although not investigated in the current article, a final
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option would be to make both Cε2 and P/ε random, in which case Cε1 becomes a function
of 2 random variables.

We are now left with 4 calibration parameters, namely Cε2, Cµ, σk and κ. The
nominal values of these coefficients as traditionally determined in the literature are given
in Table 1.

2.2.2. The Wilcox (2006) k − ω model

This model is also a two-equation model, which computes the eddy viscosity as νT =
k/ω̃, where ω̃ is a quantity related to the specific dissipation ω = ε/k [36]. The following
closure coefficients are present: α, βo, β

∗, σ, σ∗ and σdo. Again, a constraint between
parameters, equivalent to (3), can be found [36]

α =
β

β∗
− κ2

2
√
β∗
, (5)

which we use to fix α. The nominal values of the remaining coefficients can be found in
Table 1.

2.2.3. The Spalart-Allmaras model

This is a one-equation model where a transport equation is solved for a viscosity-like
variable ν̃ [30]. It contains the following seven closure coefficients: Cb1, Cb2, σ, Cw2,
Cw3, Cv1 and κ. The coefficient Cw1 is constraint by the values of the other coefficients
as

Cw1 =
Cb1
κ2

+
1 + Cb2

σ
, (6)

the other 7 parameters are considered for calibration.

2.2.4. The Baldwin-Lomax model

Unlike the preceding models, which require the solution of one or two additional
transport equations, this model assumes an algebraic expression for νT [1]. It is therefore
the simplest model in our set. Like the other models it also contains closure coefficients,
namely A+

0 , Ccp, Ckleb, Cwk, α and κ, which are all considered for calibration. Again,
their nominal values can be found in Table 1.

2.2.5. The Stress-ω model

All preceding models utilize the Boussinesq hypothesis to close the RANS equations,
which assumes that the principal axes of the Reynolds-stress tensor τij are coincident with
those of the mean strain-rate tensor Sij [36]. The constant of proportionality between
τij and Sij is the eddy viscosity νT , which is calculated by means of a turbulence model,
and appears in (1). However, the validity of the Boussinesq hypothesis is questionable,
see e.g. [28] for a discussion. A class of (more complex) turbulence models attempting
to remedy these shortcomings are stress-transport models. These directly write a model
transport equation for the Reynolds-stress tensor τij , rather than relying on the linear
relationship between τij and Sij suggested by the Boussinesq hypothesis. An ancillary
transport equation for a turbulent length scale is also required, (see [36] for further
details). One such a model is the stress-ω model of Wilcox [36]. As it uses ω from the
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laminar turbulent

Figure 1: A schematic overview of a flat-plate turbulent boundary layer. Shown are the uniform inflow
velocity ū∞, a schematic visualisation of the instantaneous flow field, and the averaged velocity ū1 (x2)

.

k − ω model for certain terms in the τij transport equation, it contains all the same
closure coefficients as the Wilcox (2006) k − ω model, plus two additional coefficients,
denoted as C1 and C2.

Table 1: Traditional closure coefficient values [36].

k − ε k − ω SA BL stress-ω

κ 0.41 κ 0.41 κ 0.41 κ 0.4 κ 0.41

Cµ 0.09 β∗ 0.09 cv1 7.1 A+
0 26.0 β∗ 0.09

Cε2 1.92 βo 0.0708 cb1 0.1355 α 0.0168 βo 0.0708
σk 1.0 σ∗ 0.6 cb2 0.622 Ccp 1.6 σ∗ 0.6

σ 0.5 σ 2/3 Ckleb 0.3 σ 0.5
σdo 0.125 cw2 0.3 Cwk 1.0 σdo 0.125

cw3 2.0 C1 9/5
C2 10/19

3. Turbulent boundary-layer configuration

In the following, we investigate the predictive capabilities of our Bayesian methodol-
ogy for a specific class of flows, namely incompressible turbulent boundary layers subject
to different pressure gradients. Figure 1 depicts a sketch of a turbulent boundary layer.

3.1. Numerical solutions

As in [8], we use the fast boundary-layer code EDDYBL[35] to obtain efficient numer-
ical solutions to the boundary-layer problem (1), supplemented with one of the described
turbulence models. To make sure that the discretization error does not dominate over
the uncertainties that we wish to quantify we use a computational grid in which the first
grid point satisfies ∆y+ < 1. For more information on the finite-difference scheme and
discretization error of EDDYBL, we refer to [8, 35]. Here, y+ := x2/δν represents the dis-
tance to the wall x2, normalized by the length-scale of the viscous layer δν := ν/

√
τw/ρ,

τw being the wall shear stress. The velocity scale of the viscous layer, i.e. the so-called
friction velocity, is denoted as uτ :=

√
τw/ρ.
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Figure 2: Our experimental data set.

3.2. Experimental boundary-layer data

EDDYBL comes with configuration files which mimic the experiments described in
the 1968 AFOSR-IFP-Stanford conference proceedings [5]. From this data source, we se-
lected one zero pressure-gradient flow, and 13 flows from other types of available pressure
gradients, which range from favorable (dp̄/dx1 < 0) to strongly adverse (dp̄/dx1 > 0)
gradients. These 14 flows are described in table 2. The identification number of each
flow is copied from [5]. We plotted the experimentally determined, non-dimensional,
streamwise velocity profiles in Figure 2. As usual, the normalized streamwise velocity is
defined as u+ ≡ ū1/uτ . Too much weight should not be given to the classifications of
the severity of the adverse gradients in Table 2, since some flows (such as 2100 and 2400)
experience multiple gradient types along the spanwise direction.

Therefore, it can be more informative to also inspect which flows are in equilibrium.
There are two main forces acting on a boundary-layer. First, the pressure gradient acts
with a force per unit length and width as δ∗dp̄/dx1, where δ∗ is the boundary-layer
displacement thickness. The second force on the boundary layer comes from the wall-
shear stress τw. A boundary-layer is said to be in equilibrium when the ratio of these
two forces is constant along the length of the boundary layer, i.e. when the so-called
equilibrium parameter βT := (δ∗/τw)(dp̄/dx1) is constant [4]. We plot the absolute
value of the experimentally determined βT values in figure 3. Flows such as 6300 with
constant βT are simple flows for which the turbulence models should be able to make
accurate predictions. Other flows are more complex. We especially expect that models
will encounter difficulties in the last part of flow 2100, i.e. flows 2133 and 2134.

We calibrate each model of section 2 for each flow of table 2 separately, using one
velocity profile as experimental data. We omit any experimental data in the viscous wall
region. Since some models have damping functions which dominate over the effect of
the closure coefficients in this region, little information is obtained from the measure-
ments here. We investigated the effect of not including near-wall data on the posterior
distributions in [8]. We found that the posteriors were not significantly affected by this
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Figure 3: Experimental |βT | values for all flows but 1400 and 0141. Source [5].

exclusion.

3.3. Sensitivity analysis of boundary-layer problem

To get an idea of which coefficients can be informed by our data, we perform a
variance-based, global-sensitivity analysis before we start the calibrations. We expect
that we can obtain informative posterior distributions for the parameters with a high
sensitivity measure, whereas the ones with low sensitivities are likely to yield posterior
distributions that do not differ much from the uniform prior distributions. To this end
we call θ ∈ RQ a random vector, the components of which are Q uncertain closure
coefficients. We carry out a sensitivity analysis of the output quantity u+ = u+ (y+;θ)
by computing the Sobol indices Sw, defined as [29]:

D = VarW
{
u+
}
,

Dw = Varw
{
Ew′(u+|θw)

}
,

Sw = Dw/D (7)

where w ⊂ {1, . . . , Q} = W indexes the components of θ, w′ = W \ w, and Varw{·}
indicates variance taken over priors of θw, etc. The indices Sw satisfy

∑
P(W) Sw = 1,

where P(W) is the power set of W. A value close to unity for Si can be interpreted as
the coefficient corresponding to i ∈ W being responsible for most of the total variance
in u+ on its own (also without interaction effects with other parameters). A value close
to zero indicates an uninfluential parameter. The Dw are computed using a 3rd-order
polynomial approximation to the response in the stochastic space [16], given which the
expectation and variance can be evaluated analytically [31, 32]. The method of [16]
requires running (p + 1)d deterministic simulations, where p is the polynomial order of
the approximation and d is the number of uncertain parameters. We contrasted the
results with those obtained from a 2nd-order polynomial approximation, and found no
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102 103

y+

0.0

0.2

0.4

0.6

0.8

1.0

Sb1

Sb2

Sv1

Sw2

Sσ

Sw3

Sκ

∑Si

(c) The Spalart-Allmaras model.
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(e) The stress-ω model.

Figure 4: Sobol indices of the considered turbulence models for flow case 1400.
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Table 2: Flow descriptions, source [5].

Identification Type Description

1400 Zero Equilibrium boundary layer at constant pressure
1300 Fav Near-equilibrium boundary layer in moderate negative pressure

gradient
2700 Fav Equilibrium boundary layer in mild negative pressure gradient
6300 Fav Near-equilibrium boundary layer growing beneath potential flow

on model spillway
1100 Mild adv Boundary layer in diverging channel
2100, 2133, 2134 Div Boundary layer on large airfoil-like body; pressure gradient first

mildly negative, then strongly positive, with eventual separation
2500 Mild adv Equilibrium boundary layer in mild positive pressure gradient
2400 Div Initial equilibrium boundary layer in moderate positive pressure

gradient; pressure gradient abruptly decreases to zero, and flow
relaxes to new equilibrium

3300 Mod adv Boundary layer, initially at constant pressure, developing into
equilibrium flow in moderate positive pressure gradient

0141 Str adv Boundary-layer with strong adverse pressure gradient, source [14]
1200 Str adv Boundary layer in diverging channel with eventual separation
4400 Str adv Boundary layer in strong positive pressure gradient

significant deviations. This makes us confident about the convergence of the stochastic
method with respect to the polynomial order.

We considered uniform input pdfs for all coefficients, with the boundaries located at
±10% of the nominal values displayed in Table 1. The results can be found in Figure
4. In case of the k − ε model with the constraints (3)-(4) applied, the most influential
parameter is Cε2, followed by κ. The parameter Cε2 is the proportionality constant of
the dissipation term in the transport equation of ε. The von Karman constant κ enters
the model through the constraint on σε (3), which is the proportionality constant of the
diffusion term in the ε equation.

The Sobol indices of the k−ω model were calculated with the constraint (5) applied.
We can see that κ is by far the most influential parameter. Again, κ enters the model
through a constraint. This time the constraint is on α, which regulates the production
of ω. The second parameter that has an impact on the computed u+ is σ, which is the
proportionality constant of the diffusion term of the ω transport equation.

For the SA model we see that again κ is the most influential parameter when it comes
to u+ profiles. And, like the two preceding models, it also enters the model through a
constraint. Here, the constraint (6) is on Cw1, which regulates the dissipation of ν̃. A
second influential parameter is Cv1, which appears in the function fv1. In turn, this
function relates ν̃ to the eddy viscosity as νT = fv1ν̃.

For the Baldwin-Lomax model the most influential parameter is κ as well, although
it enters the model directly though algebraic expressions of the eddy viscosity νT . The
u+ profiles are sensitive to A+

0 as well, which is a parameter in the van Driest damping
function [36].
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(a) Sobol indices for k − ε model for case 1400.
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(b) Sobol indices for k − ε model for case 0141.

Figure 5: Variation of Sobol indices over flow cases for the k − ε model.

Finally, for the stress-ω model we find that again κ, which performs exactly the same
function as for the k − ω model, is the most influential, although to a lesser extend
compared to the other 4 models. Unlike the k−ω model however, the parameters β and
β∗ also carry some weight.

So far we have examined Sobol indices for one particular flow case, i.e. 1400. The
variation over different flow cases is not very large, although small changes can occur,
see Figure 5 for an example, which compares Sobol indices associated to the closure
coefficients of k − ε computed for flow case 1400, and for the strong adverse pressure
gradient case 0141. In both cases Cε2 is by far the most influential. And in both cases
κ becomes more influential than σk when we move away from the wall. However, in the
strong adverse case the intersection point is at a higher y+ value, and before that σk has
a higher Sobol index than it had in case 1400.

4. Statistical Methodology

The first step in our method consists of calibrating the closure coefficients of each
turbulence model of Section 2.2 against different sets of experimental data. The cali-
bration framework is described in Section 4.1. We obtain 14 sets of posterior parameter
distributions for each model by calibrating our computer code to each flow of Section 3.2.
We summarize this large amount of information by calculating Highest Posterior Den-
sity intervals, see Section 4.5. The final phase consists of using the posterior parameter
distributions to make predictions for a new flow case. To achieve this we use the BMA
framework described in Section 4.2.

4.1. Calibration framework

The essential step in Bayesian inference is the application of Bayes’ rule, given by

p (θ | z) =
p (z | θ) p(θ)

p(z)
, (8)
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where z is the vector of experimental data and θ is the vector containing the random
input parameters, i.e. the closure coefficients in our case. The law of total probability
states that p(z) =

∫
p(z | θ)p(θ)dθ. Furthermore, p (θ | z) is the joint posterior pdf of the

coefficients given the observed data, p (θ) represents the prior belief on θ and p (z | θ) is
the likelihood function which represents our statistical model. Details of the calibration
framework can be found in [8], so for brevity we repeat only the key elements here.

Our statistical model is based on the framework of Cheung et al. [3]:

z = ζ(y+) + e

ζ(y+) := η(y+) · u+(y+,S;θ),

e ∼ N(0,Λ), Λ := diag(λ)

η ∼ GP(1, cη). (9)

Here z ∈ RN is a vector of measurements of the flow speed at locations distances y+ ∈ RN
from the wall. The specific flow-case, or scenario, is completely described by the known
vector of deterministic parameters S. This includes boundary conditions, material pa-
rameters, etc. The vector θ contains the turbulence model closure coefficients. The
computer code output u+(y+,S;θ), represents the prediction of the flow speed at y+,
i.e. our simulation’s approximation to z. The measurement error e is modelled as uncor-
related, unbiased, with known variance λ. Remaining model error is modelled with the
Gaussian-process η.

This statistical model leads directly to the likelihood:

p(z | θ,γ) =
1√

(2π)N |K|
exp

[
−1

2
dTK−1d

]
,

d := z− u+(y+,S;θ),

K := Λ +Kζ . (10)

The covariance matrix K is specified via

[Kζ ]ij := cζ(y
+
i , y

+
j |θ,γ) (11)

= u+
(
y+
i ,S;θ

)
cη
(
y+
i , y

+
j | γ

)
u+
(
y+
j ,S;θ

)
, (12)

where γ := (σhp, αhp) is a vector of unknown hyper-parameters, which will be calibrated
alongside θ. Finally, the covariance function of η is taken as

cη
(
y+
i , y

+
j | γ

)
:= σ2

hp exp


−

(
y+
i − y+

j

10αhp l

)2

 . (13)

The magnitude of the correlation length 10αh l is determined by the hyper parameter αhp,
where l is a user-specified length scale. We set l to 5 y+ units, which signifies the end of
the viscous-wall region. The magnitude of cη itself is determined by σhp. We prescribe
uniform priors for both σh and αh, with ranges [0.0, 1.0] and [0.0, 4.0] respectively.

To obtain samples from the posterior parameter distributions, we employ the Markov-
chain Monte-Carlo (McMC) method [11]. We subsequently approximate the marginal
pdf of each closure coefficient using kernel-density estimation, using the last 5, 000 (out

12



10−2 10−1 100 101 102 103 104 105

y+

0

200

400

600

800

1000

1200

1400

1600

1800

u+

2134

(a) 5000 samples obtained by propagating ±50%
priors through the stress-ω model configured for
case 2134. Clearly some extremely non-physical
samples are present considering that the maximum
experimental u+ value is 58.3.

10−1 100 101 102 103 104 105

y+

0

10

20

30

40

50

60

70

80

u+

2134

(b) 5000 samples obtained by propagating ±20%
priors through the stress-ω model configured for
case 2134. The red dots are the experimental data.

Figure 6: Outlier analysis as a function of the prior domain.

of a total of 40, 000) samples from the Markov chain. Visual inspection of the chain is
used to judge convergence. Those cases not achieving convergence at 35, 000 samples,
are re-sampled using a larger number of total samples.

4.1.1. Priors for θ and γ

All priors, for both the closure coefficients θ and hyper-parameters γ, are independent
uniform distributions. The choice of interval end-points was mainly on the range of
coefficients for which the solver was stable and provides physical solutions. By physical
solutions we mean u+ profiles that are not excessively large. Take for instance the
stress-ω model. If we assume a uniform prior where we perturb the coefficients by
±50% from their nominal values, we found u+ values that were extremely large. The
worst case we encountered is depicted in Figure 6(a). In the calibration phase this
does not pose a problem. The McMC chain will automatically reject the bad samples
and move to a part of the stochastic domain that does generate samples close to the
data. However, our predictive methodology (Section 4.2), involves the propagation of
multiple posterior distributions through the code at validation settings. In this case
the extremely unphysical samples can re-occur, although with low probability. This
was observed especially in the case of the stress-ω model. Therefore we chose the prior
domain such that these extreme outliers are not possible. At the same time we checked
that the solution variation, obtained by prior propagation, was still large enough to easily
encompass the data, see e.g. Figure 6(b).

For the k − ε model, which does not suffer from extreme outliers, we re-used our
posterior distributions from [8]. For the stress-ω and k − ω models the prior domain
boundaries of each coefficient were set at ±20% of their respective nominal values. For
the Spalart-Allmaras and Baldwin-Lomax models we used ±30%.
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4.2. Bayesian scenario averaging: Prediction

Calibration according to Section 4.1 gives values of θ that reproduce the single sce-
nario S accurately. The variance of p(θ|z) only contains information about how well θ
has been identified by z, but nothing about the variability needed in θ when varying the
scenario S. It is this latter information that is relevant for predicting model inadequacy
in some unmeasured scenario S′. In the remaining derivation the effect of γ is integrated
out, that is we work with marginal posteriors of θ only.

To capture this we consider a set of K measured scenarios S = {S1, . . . ,SK} chosen
to encompass the class of flows we wish to predict. In this work they are a subset of the
14 cases described in Section 3.2. The class of flows we may expect to reliably predict is
therefore the class of attached flat-plate boundary-layers at any pressure-gradient within
the range of cases in S. However, the predictive capability of our θ for a QoI outside this
class is investigated in Section 5.4. The measurements associated with these scenarios
are denoted z = {z1, . . . , zK}. Furthermore, to capture some model error due to the
form of the turbulence model, we consider the set of I modelsM = {M1, · · · ,MI}. Here
we use the 5 models described in Section 2.2.

For each turbulence model and each scenario the calibration procedure results in a
posterior on θ:

θ̂i,k ∼ θ|Mi,Sk, zk, i = 1, . . . , I, k = 1, . . . ,K,

whereby the nature of θ depends on the model. Formally we write θ ∈ Θi for i = 1, . . . , I
depending on the context.

Now let ∆ be the Quantity of Interest in an unmeasured scenario S′ 6∈ S. This is a
velocity at y+′, modelled as

∆ = u+
i (y+′,S′;θ), (14)

but it could equally be a quantity of entirely different type, such as turbulent kinetic
energy. In (14), u+

i (·) indicates the simulation code under turbulence model Mi. Eval-
uating p(∆|z) conditional on M and S is commonly called Bayesian Model Averaging
(BMA) – but in our case could equally be called Bayesian Model-Scenario Averaging
(BMSA), since the choice of S is critical to the validity of the resulting estimate. In
particular

p(∆|z)
(a)
=

I∑

i=1

K∑

k=1

∫

Θi

p(∆,Mi,Sk,θ|zk) dθ

(b)
=

I∑

i=1

K∑

k=1

∫

Θi

p(∆|Mi,θ)p(θ|Mi,Sk, zk)P(Mi,Sk|zk) dθ

(c)
=

I∑

i=1

K∑

k=1

∫

Θi

p(∆|Mi,θ)p(θ̂i,k)︸ ︷︷ ︸
p(∆̂i,k)

P(Mi|Sk, zk)P(Sk) dθ. (15)

Here we use P (· ) to denote a probability mass function (pmf) rather than a pdf. The
equalities in the above are established using: (a) the law of total probability, and the
fact that scenario k depends only on zk; (b) the definition of conditional probability
(twice), and the conditional independence of ∆ from z and Sk given θ; (c) the definition
of conditional probability, and the conditional independence of Sk and zk. The braced
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term ∆̂i,k is equivalent to the posterior θ̂i,k propagated through the simulation code for
∆ (14). The weights P(Mi|Sk, zk) are commonly interpreted as the level of evidence
for a given model [12], in this case specific to a given scenario. Finally we are free to
choose P(Sk), and it is reasonable to preferentially weight those scenarios that are (in
some sense) similar to the prediction scenario S′.

The posterior probability of model Mi can be calculated through another application
of Bayes’ rule

P (Mi | Sk, zk) =
p (zk |Mi,Sk)P (Mi | Sk)

∑J
j=1 p (zk |Mj ,Sk)P (Mj | Sk)

, (16)

∀k ∈ {1, 2, · · · ,K}, where additionally

p (zk|Mi,Sk) =

∫

Θi

p (zk|θ,Mi,Sk) p (θ|Mi,Sk) dθ. (17)

Furthermore, the axioms of probability require that

I∑

i=1

P (Mi | Sk) = 1, and

K∑

k=1

P(Sk) = 1. (18)

Following Draper [6], and the derivation in [19], the leading moments of p(∆|z) can be
written as

E [∆|z] =

I∑

i=1

K∑

k=1

E[∆̂i,k]P (Mi|Sk, zk)P (Sk) , (19)

Var [∆ | z] =

I∑

i=1

K∑

k=1

Var[∆̂i,k]P (Mi | Sk, zk)P (Sk)

+

I∑

i=1

K∑

k=1

(
E[∆̂i,k]− E [∆ | Sk, zk]

)2

P (Mi | Sk, zk)P (Sk)

+

K∑

k=1

(E [∆ | Sk, zk]− E [∆ | z])
2 P (Sk) , (20)

Here, E[∆̂i,k] and Var[∆̂i,k] are the mean and variance obtained by propagating θ̂i,k
though the code of ∆. Furthermore,

E [∆ | Sk, zk] =

I∑

i=1

E[∆̂i,k]P (Mi | Sk, zk) .

This decomposition of the variance into 3 (positive) terms, allows for additional inter-
pretation. The first term on the right-hand side is called the within-model, within-scenario
variance. This can be considered a measure of the effect of the variance in all the θ̂i,k
on the variance in ∆|z – specifically an average weighted according to the importance of
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each model and scenario. The second term is the between model, within scenario vari-
ance. It is large when when different models applied to the same scenario give different
predictions. The last term is the between scenario variance. It accounts for the fact that
the same model Mi, calibrated under different scenarios, results in different posterior θ
and therefore different predictions of ∆ [8].

4.3. Smart scenario weighting

In order to close the above system we must specify P(Mi|Sk) and P(Sk). As we
will show in Section 5.3.1, simply specifying a uniformly distributed P(Sk) yields an

unacceptably large variance. This is due to the large spread of θ̂i,k between scenarios,
see Section 5.2, resulting in a large spread of ∆. We would like to preferentially weight
those scenarios in S which are – in some relevant sense – similar to S′. Furthermore we
would like to do this in an automatic, geometry- and flow-independent way.

We propose choosing P (Sk) to preferentially weight those scenarios for which all

models in M give similar mean predictions of ∆, under the coefficients θ̂i,k. Equally,
we assign low probabilities to scenarios with large scatter in the model predictions of ∆.
The rationale is that, if S′ is very similar to Sk, the 4 models are expected to give similar
predictions under θ̂i,k, as they have each been calibrated to the same data zk, containing

physical processes similar to S′. If S′ is completely different to Sk, the choice of θ̂i,k is
likely to be inappropriate, and the models – provided they are sufficiently heterogeneous
– will deliver different predictions.

In particular we define the scenario probabilities as

Ek =

I∑

i=1

‖E[∆̂i,k]− E [∆ | Sk, zk]‖2

P (Sk) =
E−pk∑K
k=1 E

−p
k

, ∀Sk ∈ S. (21)

Here Ek represents the measure for the prediction similarity, and p is a tuning param-
eter, controlling the degree to which the preferred scenarios are weighted. Setting p = 0
yields uniform probabilities, and as p → ∞ a single scenario is selected (provided that
the Ek have distinct values).

4.4. Numerical evaluation

In CFD evaluating the likelihood involves running a CFD code. Here, the posteriors
θ̂i,k are approximated with Markov-chain Monte-Carlo (McMC) methods [18, 11], which

provide samples θ̂
n

i,k, n = 1, 2, . . . , N from θ̂i,k. This chain approximation is thereafter
used to approximate everything else by Monte-Carlo, e.g.:

E(∆̂i,k) ≈ 1

N

N∑

n=1

u+
i

(
y+′,S′; θ̂

n

i,k

)
. (22)
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Clearly the process outlined here is impractically costly for an expensive CFD simulation
code applied to a complex geometry – here it is possible due to the use of a boundary-layer
code. Our intention in this paper is to explore the statistical framework, and determine
to what extent prediction of model inadequacy is possible, under the assumption that
numerical costs can be handled. Success will motivate us to study numerical techniques
for improving the computational efficiency of the procedure. There are many possible ap-
proaches, including: surrogate modelling [7], Occam’s window [12], zero-variance McMC
methods [20], etc. Also, a means of reducing the computational cost is described in
Section 5.5. Furthermore, the calibration step is perhaps necessary for simple geome-
tries only, giving a database of coefficient distributions θ̂i,k which can then be applied to
more complex geometries. A flowchart of our entire procedure, from calibration to BMA
prediction, can be found in Appendix A.

4.5. Summarizing posteriors: HPD intervals

To summarize the 60 posterior parameter distributions of θ̂i,k for the purposes of vi-
sualization we construct Highest Posterior Density (HPD) intervals on the 1D marginals.
An HPD interval is a Bayesian credible interval which satisfies two main properties, i.e.:

1. The probability density for every point inside the interval is greater than that for
every point outside the interval.

2. For a given probability content 1−βhpd, βhpd ∈ (0, 1), the interval is of the shortest
length.

We use the algorithm of Chen et al. [2] to approximate the HPD intervals using the
McMC samples, and we set βhpd = 0.5. This summary is appropriate provided the
posteriors are not strongly multi-modal, and there is no strong correlation structure
between coefficients. Both these conditions are satisfied for all θ̂i,k.

5. Results

5.1. HPD intervals of coefficient posteriors

To evaluate the success of the individual calibrations, we inspect the coefficient pos-
terior distributions θ̂i,k. Instead of plotting full multi-dimensional distributions, we plot
HPD intervals of the two most sensitive parameters for each model, shown in Figures 7
and 8. The scenarios are presented roughly in order of increasing pressure-gradient,
but with the zero-pressure-gradient case (1400) first. The coefficient κ was the most
well-informed coefficient for all models except k − ε, for which it was the second most
well-informed coefficient. As can be seen by the small width of the individual HPD in-
tervals compared to the prior width, these coefficients have been informed by the data.
This was to be expected considering the results of the sensitivity analysis of Section 3.3.
The remaining closure coefficients were not informed well enough by the data to be
interesting.

The four κ’s presented in Figure 7 are not the same κ: the coefficient has a differ-
ent meaning and influence in each model. Neither should they be confused with any
model-independent, or “true” von Karman constant. Nonetheless, ideally κ would be
independent of scenario for a given model. Figure 7 clearly shows statistically signif-
icant variation in calibrated coefficients across scenarios. This may be interpreted as
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pressure-gradient dependence in the models, and we might conclude, for example, that
Spalart-Allmaras can reproduce attached boundary-layer flows with a single set of coef-
ficients better than Baldwin-Lomax can.

This observed coefficient variation also supports our choice of a statistical model
with scenario-dependent coefficients. A standard calibration approach is to assume there
exists a single best value of model coefficients θ?, and then use all available data to
inform this value, with model inadequacy captured by an η-like term only [13]. These
results question the validity of that assumption in the case of turbulence closure models.

Figure 8 shows the HPD intervals of the 2nd most sensitive coefficients (or the 1st
most sensitive in the case of k − ε). In general coefficients are less well informed and
the scenario scatter is greater, supporting the view that optimal closure coefficients are
strongly dependent upon the pressure gradient.

The HPD intervals of the hyper-parameter σhp give insight into the model error that
remains after optimal closure coefficients have been found for each scenario, see Figure 9.
HPD interval values close the the 0.1 boundary indicates that the turbulence model has to
rely on the η term in order to capture the data better. All models encounter flow cases
where this occurs, although some more than others. Especially the Spalart-Allmaras
model shows high HPD intervals of σhp in most cases. This indicates that, of the models
in our set M, it is worst at matching the experimental velocity profiles exactly. As we
shall see in the next section, BMA provides a coherent mechanism for penalizing models
that do not perform well on the calibration dataset.

5.2. Posterior model probability

For a given flow case, once we have calibrated each model in the set M on the
data zk we can calculate the posterior model probability (16). This posterior model
probability P (Mi | Sk, zk) can be interpreted as the evidence for model Mi given the
available data, and the other models in M. It should be emphasized that the posterior
model probabilities are conditional on the choice of models inM, i.e. P (Mi | Sk, zk,M).
Since in our analysis the set M remains fixed we drop it from the notation for the sake
of brevity.

We compute P (Mi | Sk, zk) for each flow case k in the set S, assuming a uniform
probability mass function for P (Mi | Sk). The results can be found in Figure 10. From
this figure it becomes clear that also the posterior model probability is dependent upon
the applied flow case. Which model has the highest posterior probability given the data
can change significantly from one flow case to another. Thus, both the posterior closure
coefficients and the posterior model probabilities are functions of the pressure gradient.
There is no clear “best” θ or Mi that will outperform its competitors in M for every
scenario in S. For a predictive case that is not in S it would be hard to select the best
model and coefficient set a priori, given that in prediction we do not have access to
experimental data by definition.

More speculatively, these results could be interpreted as a explanation for why it
is that no clear “winner” amongst turbulence closure models has been found, see e.g.
[38], and why there are a wide spread of closure coefficients recommended and used in
literature and industry. Note in particular that no clear superiority of the more advanced
Reynolds-Stress model over the other is noticed, even if it does exhibit somewhat higher
probabilities for strong adverse pressure gradient cases. On the other hand, no clear
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(a) κ of the k − ε model.
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(b) κ of the k − ω model.
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(c) κ of the Spalart-Allmaras model.
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(d) κ of the Baldwin-Lomax model.
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(e) κ of the stress-ω model.

Figure 7: The HPD intervals of κ for all (Mi,Sk) combinations.
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(a) Cε2 of the k − ε model.
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(b) σ of the k − ω model.
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(c) Cv1 of the Spalart-Allmaras model.
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0 of the Baldwin-Lomax model.
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Figure 8: The HPD intervals of second-most well-informed closure coefficients for all (Mi,Sk) combina-
tions.
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(a) σhp of the k − ε model.
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(b) σhp of the k − ω model.
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(c) σhp of the Spalart-Allmaras model.
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(d) σhp of the Baldwin-Lomax model.
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(e) σhp of the stress-ω model.

Figure 9: The HPD intervals hyper parameter σhp for all (Mi,Sk) combinations.
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Figure 10: The distribution of P (Mi | Sk, zk) for all models and scenarios.

inferiority of the algebraic model is observed either, not even for adverse pressure gradient
scenarios. Indeed – based on these results – the practice of tuning a set of deterministic
closure coefficients for specific applications seems futile, even if that tuning is done in a
rigourous way. Predictions made with existing models and deterministic coefficients seem
to be subject to a degree of model error that is not substantially reducible by parameter
tuning. For this reason we choose to make model- and scenario-averaged predictions,
using our framework of Section 4.2.

5.3. Predictions with Bayesian Model-Scenario Averaging

In this section the methodology of Section 4.2 is applied to prediction of boundary-
layer flows at pressure gradients for which (nominally) no data is available. Our goal is
to assess the predictive capability of (19)-(20). Our predictions are in the form of mean
and variance of velocity profiles for the unmeasured flows, that is E(∆|z) and Var(∆|z)
where ∆ = u+(y+).

We proceed as follows: one case is selected from the 14 flows in Table 2 as validation
flow, S′. The experimental data for this case is completely excluded from the analysis,
and only used for comparison purposes in the final plots. The remaining cases form the
set of calibration scenarios S, so that K = |S| = 13. Each of these cases is calibrated
independently, following Section 4.1, to give the coefficient posteriors per scenario and per
model, θ̂i,k. The moments E[∆̂i,k] and Var[∆̂i,k] are obtained by propagating the K × I
McMC chains from the calibration step through (14). The chains are our best available
representation of the coefficient posteriors, and therefore no uncertainty information gets
lost in this step. Finally (19)-(20) are evaluated.

To close (19) it remains only to specify the probability mass function (pmf) for P (Sk).
This could be based on expert opinion. For instance if one believes that the current
prediction flow is subject the mildly-adverse pressure gradients, the posterior parameter
distributions that were calibrated under similar circumstances could be favored through
P (Sk). Ideally an automatic procedure is preferred, or if no information is available one
must admit ignorance and select a uniform pmf. In the following sections first predictions
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based on this last choice are examined as a worst-case; then a smart automated selection
of P (Sk) is developed

5.3.1. Results of uniform P(Sk)

In the worst-case we are completely ignorant of the relationship between S′ and the
members of S, and select a uniform pmf for P (Sk), i.e. assuming that each pressure-
gradient scenario is equally likely. We show the results for two validation flow cases in
Figure 11, an “easy” case (flow 1300), and a “difficult” case subject to a strongly adverse
pressure gradient (flow 4400). The mean prediction for case 1300 in Figure 11(a) is
reasonable, it falls within the region of experimental uncertainty for all y+. However the
standard deviation of the prediction σ∆ :=

√
Var [∆ | z] is almost 2 u+ units. As can

be seen from the 1σ, 2σ and 3σ quantiles, plotted in blue, this is very large, and a clear
over-estimation of the true model error. Nonetheless the fact that the correct solution
lies within the range of our prediction should be interpreted as a successful prediction –
albeit perhaps not a very useful one.

Thanks to the variance decomposition in (20), the source of the large variance can be
diagnosed, see Figure 11(b). It seems the contributions from all three sources are of the
same order, but dominated somewhat by the between scenario variance. It is exactly this
variance that stands to be reduced most by smart weighting of scenario probabilities.

The story for case 4400 is essentially the same, where again the variance is a substan-
tial over-estimation.

One could argue that it is better to be conservative in predictions of uncertainty
in the QoI, however the amount of uncertainty should also not be so high as to make
the prediction useless. We are of the opinion that the amount of uncertainty (in these
relatively simple flows) crosses that line. For instance the results for flow case 4400 show
an uncertain maximum 3σ∆ range of ±15 u+ units in the defect layer, roughly 43% of
the mean.

Ultimately the source of this large variance is the large spread of closure coefficient
values across the calibration cases. As more extreme cases are added to S – with the goal
of extending the range of validity of the predictions – this variance will only increase.
This result echoes our previous results using p-boxes in Edeling et al. [8] which also
lead to very large error bars. Unlike p-boxes however, our Bayesian Scenario Averaging
framework is not limited to a uniform scenario weighting.

5.3.2. Results of smart P (Sk) weighting

In order to bring σ∆ down to realistic levels we use the model prediction-spread based
P(Sk) defined in (21). To clarify, we plot the model prediction spread for validation
case 1300 in Figure 12. This corresponds to the envelope of predictions provided by
the different models, using posterior coefficients associated to a particular calibration
scenario. Figure 12 displays such a prediction spread for different calibrations scenarios.
Note that the spread is quite small for predictions made with posteriors coming from
cases similar to 1300, and that it steadily grows as we move to the predictions made with
θ̂i,k calibrated under strongly-adverse Sk. It is this behavior that is used to inform P(Sk)
via Ek, and the effect is amplified by selecting a p ≥ 1. The resulting scenario weights
for p = 1, 4, 8 are shown in 13. Notice that in both cases the sensor favours cases with
pressure-gradients similar to the validation scenario. For case 1300 it selects favorable
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Figure 11: Selected BMSA predictions with uniform P (Sk).
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pressure-gradients, and for case 4400 adverse gradients. In both cases with p = 8 most
scenarios have an almost-zero weight and can be neglected.

We now examine how this new P (Sk) affects the BMSA predictions, for different
values of p. In Figure 14a we plot E [∆|z] for p = 0, 1, · · · , 8 for case 1300. We see that
for p = 0, 1 the predictions are slightly off the experimental data. For all p > 1 the
predictions overlap and match the data quite well. However, in most cases we found
that the value of p had no significant effect on the BMSA prediction E [∆|z], see e.g.
Figure 14b. The posterior variance (20) on the other hand is significantly affected by p.
This can be inferred from Figure 15, where we show the same predictions with quantified
uncertainty as in the previous section, but using the smart weighting (with p = 8). As
discussed, the BMSA prediction mean for 1300 is improved, and now lies right on top of
the measurement points. In addition the maximum σ∆ value has more than halved from
2.0 to 0.8. It is now comparable to the level of measurement error indicating that our
prediction is as accurate as our reference experimental data. For 4400 the prediction with
p = 0 was already reasonable, and remains unchanged for p > 0. Again, the maximum
σ∆ has decreased, in this case from 5.5 to roughly 3.7 u+-units.

From Figures 15(b) and (d), we observe the variance reduction was most strong for
between scenario variance as expected, but between model, within scenario variance also
took a substantial hit. The remaining variance is dominated by the term representing
the lack of identification of closure coefficients in the individual calibrations, i.e. the
variance of θ̂i,k. This can be reduced by using more data (and more informative data)

in the calibrations, to better inform coefficients. Alternatively, approximating each θ̂i.k
by its maximum a posteriori (MAP) estimate, would reduce the computational cost of
evaluating E(∆̂i,k), and set the blue region in the above plots to zero. Given that the
blue region dominates the variance however, this is an approximation of questionable
validity.

Finally, to demonstrate the generality and robustness of these results, the above
analysis is performed for prediction of each one of the 14 boundary-layer cases, each time
using data from the remaining 13 cases only. The results are summarized in Table 3.
There we show the set of Sk which make up 75 % or more of P (Sk), the relative error of
the BMSA prediction (19) defined as ε′∞ := ‖E [∆ | z]− zv‖∞/‖zv‖∞ and the coefficient
of variation (CoV), given by Ccov := σ∆/E [∆ | z]. The CoV is a measure of the solution
variability with respect to the mean. Note that most validation cases favour a Sk with
a pressure-gradient classification similar to their own, only the mild- and moderately
adverse S′ tend to mix different type of scenarios. Also, almost all BMSA predictions
are satisfactory, which can be inferred from the fact that they have both small ε′∞ and
max Ccov. The only real exceptions are cases 2133 and 2134. These are cases with
an extremely adverse pressure gradients, for which all turbulence models in our set M
struggle to make accurate predictions.

5.4. Cf prediction

Up this point the QoI has always been u+ profiles, and all posterior θ̂i,k have been
informed using only experimental u+ data. The question now arises whether these dis-
tributions are also effective when we try to predict a QoI of a different nature. To
that end we make predictions for a variety of different skin-friction profiles, using the
same procedure, distributions and posterior model probabilities as in the preceding sec-
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Figure 13: Two Ek-based P (Sk) distributions.
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Figure 14: E [∆|z] vs p for two validation flow cases.
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Table 3: Results validation flow cases using (21).

Val. case {Sk|
∑
k P(Sk) ≥ 0.75} ε′∞ max Ccov

1400 (zero) 6300 0.030 0.042
1300 (fav) 6300 0.013 0.042
2700 (fav) 6300, 1300 0.030 0.058
6300 (fav) 1300 0.011 0.045

1100 (mild adv) 1200,2100,6300 0.062 0.061
2100 (mild adv) 6300,1400 0.028 0.055
2500 (mild adv) 1100,1400,6300 0.039 0.057
2400 (mod adv) 2500,1100,2700,1400 0.013 0.067
3300 (mod adv) 1100 0.046 0.065

0141 (strong adv) 4400 0.051 0.081
1200 (strong adv) 1100,2133,2100 0.043 0.091
4400 (strong adv) 1200 0.050 0.108

2133 (very strong adv) 0141,4400,1200 0.14 0.099
2134 (very strong adv) 0141,4400,1200 0.29 0.099

tions. Thus, the only change is our new QoI, the dimensionless skin-friction coefficient
Cf := τw/(ρu

2
∞/2). Here τw is the wall-shear stress and u∞ is the freestream velocity.

The results for a uniform P(Sk) distribution and a large range of different scenarios
are shown in Figure 16. We see that all predictions fall within the range of experimental
uncertainty, and in most cases are quite well centered on the data points. Only the
3300 prediction is slightly off center. The amount of uncertainty in the predictions is
reasonable, E [∆|z]±σ∆ being in most cases contained within the region of experimental
uncertainty.

As in the case of the u+ predictions, we now examine the effect of our scenario-
weighting procedure, starting with the influence of p on E [∆|z]. In Figure 17a we plot
E [∆|z] vs p on the same vertical scale as used in Figure 16. It is again clear that the
BMSA predictions are robust, as they are relatively invariant considering the large range
of the exponent p. When zooming in on E [∆|z] (see Figure 17b), we see that unlike
the u+ case, the predictions move slightly away from the data with increasing p, but
basically become insensitive to p starting from p = 3. When we examine the model
prediction spread for 0141 in Figure 18, it becomes clear that predictions can be more
in agreement with each other for flow cases not similar to 0141, which underlines the
importance of considering different calibration scenarios. Also, including posterior dis-
tributions calibrated for QoIs other than u+ could possibly be beneficial. The prediction
with quantified uncertainty for the same validation case and p = 3 is shown in Figure
19. We can again see that the variance is affected more by p than the prediction.

5.5. Reduction of computational effort - Scenario-Averaged Posteriors

The full BMSA approach, with I models and posterior distributions coming from
K scenarios requires us to propagate I × K p(θ̂i,k) through the code for ∆. In order
to use BMSA, only convergence in mean and variance is required for each propagation.
This poses no problem for our current computational setup. Full propagation can be
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Figure 16: Selected BMSA predictions for Cf with uniform P (Sk).
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Figure 17: E [∆|z] vs p. Here, ∆ = Cf .

achieved within a single day with moderate computational resources, in our case parallel
propagation using 14 cores. Calibration takes longer, but is still easily achieved. A single
calibration can take anywhere from 1 hour up to (at the very most) 12 hours, depending
on the turbulence model, the streamwise location of the data, and the number of specified
steps in the Markov chain. With the mentioned computational resources, all flow-case
model combinations can be calibrated in roughly a week time. This needs to be performed
only once, after which the posteriors can be re-used (also for complex flow topologies) as
much as needed in the predictive phase of the method.

However, the required propagation by BMSA using the same number of models and
scenarios is unlikely to be computationally tractable when considering more complex
flow topologies. This could be alleviated, e.g. through the use of surrogate models
[37, 21, 23], and will be explored in future work. But even with the use of surrogate
models, performing I × K propagations could prove to be computationally expensive.
Therefore we propose to replace the I ×K p(θ̂i,k) by I scenario-averaged p(θ̃i) defined
as

p(θ̃i) := p (θ|Mi, z) =

K∑

k=1

p (θ|Mi,Sk, z)P (Sk) . (23)

Instead of using (19), the prediction for ∆ is now made with

E [∆|z] =

I∑

i=1

E[∆̃i]P (Mi|z) , (24)

where E[∆̃i] := E[∆|Mi, z] is obtained by propagating p(θ̃i,k) through ∆ and

P (Mi|z) =

K∑

k=1

P (Mi|Sk, z)P (Sk) . (25)
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Figure 18: The model prediction spread of Cf for validation case 0141. Each subplot shows the envelope
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Figure 19: BMSA prediction for Cf with Ek-based P (Sk) and p = 3.

Furthermore, the posterior variance (20) now reduces to

Var[∆|z] =

I∑

i=1

Var[∆̃i]P (Mi|z) +

I∑

i=1

(
E[∆̃i]− E[∆|z]

)2

P (Mi|z) . (26)

The first of two terms in (26) is denoted as the in-model variance, and the second one is
called the between-model variance. Note that (24)-(26) is not a traditional BMA, as the
influence of the different Sk is still implicitly present. Of course, propagating scenario-
weighted posteriors is likely to provide different results with respect to a full BMSA
using the same scenario weights, if significant nonlinear interaction effects are present.
However, the computational effort is reduced significantly, since now only I propagations
are required to compute the prediction and its variance. Scenario probabilities P(Sk)
now have to be specified before we propagate, and thus we lose the ability of using an
automated sensor such as (21).

Instead, we must rely on expert opinion to specify the distribution of the Sk. As
proof of concept, let us imagine an expert RANS user, interested in predicting Cf for a
favourable pressure gradient case. Furthermore suppose this user selects from the closure-
coefficient database two favourable (1300, 2700), one zero (1400) and one mildly-adverse
(1100) Sk, and sets for each of these scenarios P(Sk) = 0.25. Next, for each model one
p(θ̃i) is created via (23). As an example we show the marginals of p(θ̃i) for the k − ε
model in Figure 20. The prediction (24) and standard deviation of (26) are shown in
Figure 21. To contrast, the full BMSA prediction and standard deviation are plotted as
well. Although the full BMSA prediction lies closer to the validation data, the E[∆|z]
computed with (24) is not far off. This is especially true for the two σ∆, which almost lie
on top of each other. Finally, when examining Figure 21b we see that through Var[∆̃i],
most of the between-scenario uncertainty has now been incorporated into the in-model
standard deviation, which is significantly larger than the between-model σ∆.

5.6. Discussion - Closure Coefficient Database

The full BMSA approach described would be clearly extremely computationally ex-
pensive if applied to complex flow problems. We have deliberately made no simplifications
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Figure 20: The marginals of p(θ̃i) in case of the k − ε model.
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Figure 21: Prediction for Cf obtained using 5 scenario-averaged posterior distributions. The full BMSA
results are depicted by the dotted lines.
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– such as using MAP estimators, moment methods, or surrogate models – in order to
assess the performance of the approach in the best-case scenario. Clearly, application to
complex flow topologies requires some performance optimization. For instance, the fact
that (21) usually picks Sk similar to S′ suggests that we might set certain P (Sk) to 0 by
hand based upon physical reasoning, saving code runs. More specifically, this approach
would deduct I from the total number of required propagations. Another option with a
more significant reduction of computational effort was outlined in Section 5.5, i.e. the
use of scenario-averaged posterior distributions. This particular method requires the user
to a priori specify P(Sk), which could also be done based upon physical reasoning. This
P(Sk) can then be used to create one Sk-averaged posterior coefficient distribution per
model, reducing the required number of propagations to I. Initial results look promising,
showing only a small deviation from the full BMSA prediction. Such a strategy could
allow S to contain many hundreds of scenarios, as it is the user who decides which of
these to incorporate into p(θ̃i). In addition to different scenarios, we envision the closure
coefficient database to contain posteriors calibrated for different QoIs as well. So far
we have only used u+ data to inform our posteriors. Our results indicate that we can
still use these distributions to make robust predictions of Cf profiles, but some of the
optimality is lost compared to the case where u+ is the QoI. Enriching the database
with distributions calibrated, amongst others, for Cf profiles could possibly remedy this.
Also it would also provide a user with a more natural choice of which Sk to include, plus
it could inform certain coefficient distributions that are just not informed by u+ data.
Posterior distributions that were calibrated using, e.g., both u+ and Cf data could be
included as well.

For many propagation techniques, e.g. [37], the computational cost increases with the
number of uncertain coefficients. Therefore, further gains could come by reducing the
dimensionality of the problem via a Sobol analysis. For instance our results of Section 3.3
show that for boundary-layer flows there are only 2 influential parameters for each model
under consideration. If in other flow topologies a similar situation occurs, we might fix
the non-influential parameters.

The hope is that this framework could be equally successful when applied to more
general and complex classes of flows. There are two approaches here. As described
earlier, since closure coefficient posteriors are topology independent, we can apply the
“coefficient-database” from our limited class of flows to general flow problems. Then
only uncertainty propagation needs to be performed for the complex problem to obtain
predictions. Many techniques are available for efficiently propagating pdfs through a
computer code, notably sparse-grid stochastic-collocation methods [37, 21, 23]. In the
worst-case, MAP estimators can be used instead of full pdfs. The success of this approach
will depend on to what extent the features in the complex flow are represented in the
database.

The second approach is to build a new database S, tailored to the class of flows to be
predicted. This would entail performing new calibrations. If possible, these calibrations
should be done using cheap codes, and subsequently again use the topology-independent
nature of θ. If this is not possible, Bayesian calibration could also be performed using
a surrogate model as a replacement for the expensive computer code, see e.g. [17]. The
scenarios in the new set should be (a) representative of this class, and (b) have rich
experimental data available. This need not include only (or even mainly) flows of the
same type – for wing aerodynamics, flat-plate boundary-layers are likely to be relevant.
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Models performing poorly – as judged by P(Mi|Sk, zk) – could be culled from the set to
reduce the effort needed in the coming predictions. The calibration step must only be
performed once to set up the database. After which predictions are again a matter of
uncertainty propagation only.

To summarize, we remain somewhat within the classical paradigm of RANS calibra-
tion, in that we calibrate on simple flow problems, the result of which we will apply to
more complex problems. However, the classical paradigm: i) uses one point estimate of θ
and subsequently assumes generality of this estimate, taking no form of parameter error
into account; ii) does not account for model-form error. To stochastically model these
errors, we build a database of posterior distributions for several alternative turbulence
models, which could be calibrated under a wide range of different scenarios and/or QoIs.
If computationally allowable, a full BMSA could be performed to obtain predictions with
quantified uncertainty, where the results coming from certain posteriors can be automat-
ically favoured through a sensor like (21). If not, posteriors could be averaged over a
weighted set of user-selected scenarios. This approach requires the construction of only
one surrogate model for each turbulence model inM, increasing its range of applicability
compared to the full BMSA.

6. Conclusion

We performed Bayesian calibrations of the closure coefficients of 5 turbulence models:
the Launder-Sharma k − ε, Wilcox k − ω, Spalart-Allmaras and Baldwin-Lomax model
and Wilcox stress-ω. Each model was calibrated for 14 scenarios consisting of flat-
plate boundary-layers at varying pressure-gradients, using experimental velocity mea-
surements. Substantial variation in closure coefficients for all models was observed across
this large range of simple flow cases.

In order to synthesize these results, and make predictions for unmeasured flows,
we utilized Bayesian Model Averaging, with an emphasis on scenarios, i.e. Bayesian
Scenario Averaging. The framework requires the computation of the posterior model
probabilities, which can be thought of as a measure of consistency that a model has with
the experimental data. We found that, like the closure coefficients, the posterior model
probabilities vary greatly with the applied pressure-gradient scenario. These results
suggest that there is no single best choice of turbulence model or closure coefficients, and
no obvious way to choose an appropriate model a priori.

Instead we used BMSA to make stochastic predictions of unmeasured velocity profiles.
Closing BMSA with uniform scenario weighting produced predictions which matched ref-
erence data, but with excessively large variance. We therefore developed a smart scenario
sensor, to automatically preferentially weight those scenarios in the calibration set that
are similar to the prediction case. This resulted in substantially improved predictors,
both in terms of mean and variance. For almost all of 14 prediction cases, the pre-
dictions lie within one standard deviation of the experimental validation data, and the
variance was of the same order as the experimental measurement error.

Despite the fact that only experimental u+ data was used to inform our posterior
distributions, we also used their topology independent nature to make predictions for
skin-friction profiles. Although these posterior distributions were not optimal for this
particular quantity of interest, we were still able to make consistently more robust pre-
dictions than can be expected from a single turbulence model.

36



Finally, an approach was suggested to significantly reduce the computational effort
required by the predictive phase of our methodology. By averaging the posterior distri-
butions over different scenarios, the number of pdf propagations drops from I × K to
just I. Here, I is the number of turbulence models and K the number of scenarios. Even
though expert opinion is now needed to specify the scenario weighting, initial results look
promising.

Future work will involve the application of our method to more complex flow topolo-
gies. We see the methods developed here as a step towards providing estimates of the
error due to turbulence closure models, and thereby lending a robust predictive power
to RANS.
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Appendix A. Flowchart

A flowchart of our predictive BMSA approach can be found in Figure A.22.
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Figure A.22: Flowchart of the BMSA procedure.
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