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a  b s  t  r  a  c t

In this paper, we revise the structure of the residue curve maps (RCM) theory of simple

evaporation from the point of view of Differential Geometry. RCM are  broadly used for the

qualitative analysis of distillation of multicomponent mixtures within the thermodynamic

equilibrium model. Nevertheless, some of their basic properties are still a  matter of discus­

sion.  For instance, this concerns the connection between RCM and the associated boiling

temperature surface and the topological characterization of the distillation boundaries. In

this  paper we put in evidence the  Riemannian metric hidden behind the thermodynamic

equilibrium condition written in the form of the  van der Waals–Storonkin equation, and we

show that the differential equations of residue curves have formal gradient structure. We

discuss the first non­trivial consequences of this fact for the RCM theory of ternary mixtures.

1.  Introduction

The preliminary design of distillation processes for the sepa­

ration of multicomponent mixtures relies upon the analysis

of residue curve maps (RCM). Typically RCM can be used

for assessing the distillation column sequence in continu­

ous operation or the step sequence in batch operation, the

achievable product of each column or step, the composition

and temperature trajectories in the product tanks and in the

column.

Indeed, the topological properties of RCM enable to iden­

tify in the composition manifold some features like azeotropes

and distillation boundaries, whose knowledge is of utmost

importance for the choice of a  suitable distillation pro­

cess and its design. Other properties relevant for distillation

processes are displayed in terms of temperature, unidistri­

bution and  univolatility manifolds. These properties have

been surveyed in several works, in particular in the review

paper by  Kiva et al. (2003), which also provides a  compre­

hensive history of RCM, and  in  Doherty and Malone (2001)
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E­mail address: nshcherb@ensiacet.fr (N. Shcherbakova).

and  Petlyuck books (2004). The usefulness of these proper­

ties for azeotropic distillation process design is described in

Widagdo and  Seider (1996) and Skiborowski et al. (2014) and

for extractive distillation in Gerbaud and Rodriguez­Donis

(2014).

In this paper, we focus on the simple isobaric distillation of

homogeneous n­component mixtures under thermodynamic

equilibrium. Residue curves describe the evolution of the liq­

uid composition with  respect to  some parameter �, and can

be computed by solving the system of ordinary differential

equations

dxi

d�
= vi(x, Tb(x1, .  .  .,  xn−1)), i  =  1, .  .  .,  n  −  1, (1)

where vi = xi −  yi, i = 1, . . ., n − 1 are components of the equilib­

rium vector field v,  Tb is the boiling temperature of the mixture

of composition x = (x1, .  .  .,  xn−1), xi,  yi being the molar concen­

trations of the ith component in the liquid and  vapour phases

correspondingly. Despite of their broad utilisation, some of

the basic properties of residue curves are still a matter of
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discussion. Indeed, it turns out that the global intrinsic struc­

ture of  RCM is not yet well  established.

Several authors observed that many features of residue

curves make think that they are integral curves of a gradi­

ent flow associated to the boiling temperature Tb. Indeed, the

critical points of Tb are singular points of v,  which generi­

cally can be stable/unstable nodes or saddles. Tb is increasing

along residue curves, moreover, Tb is a Lyapunov function for

dynamical system (1). These are typical properties of gradi­

ent systems (Hirsch et  al., 2004), but they are contradicted

by the fact that in real mixtures v is not orthogonal to  the

isotherm surfaces of Tb.  For instance, the non­orthogonality

was shown by  van Dongen and  Doherty (1984), who dis­

played the boiling temperature surface isotherms and the

steepest descent lines along with the corresponding RCM

for four azeotropic mixtures. They also proved that sys­

tem (1) cannot be written as  a  gradient system of Tb. This

result was later confirmed in Rev (1992). It is natural to

ask what  is  then the true intrinsic structure of equations

(1)?

The  next question, closely related to the previous one, con­

cerns the nature of the  distillation boundaries of RCM. Recall

that in the case of ternary mixtures, distillation boundaries

are remarkable residue curves connecting nodes and  sad­

dles, which divide the distillation domain in  distinct regions.

By their nature, the boundaries cannot be crossed by other

residue curves and  they must start and  end at the singu­

lar points of  the  RCM. Usually the distillation boundaries are

computed numerically as separactrices of system (1)  with

some loss in precision due to the numerical integration. A

different approach based on the variational viewpoint was

recently proposed by Lucia and Taylor (2006, 2007). In the

case of  ternary mixtures, defining distillation boundaries as

the concatenation of residue curves going from an unstable

node to a  stable node passing through a  saddle, they showed

that distillation boundaries maximize the length among all

other residue curves joining the same points. In the  case

n =  4 they claim that distillation boundaries are minimal sur­

faces (Bellows and Lucia, 2007). The interesting and still open

question is whether distillation boundaries can be detected

without numerical integration, for instance, by computing

some scalar parameter that distinguishes them among other

residue curves.

For many years it was a  common belief that distillation

boundaries are projections on the RCM plane of the  flexures

of the boiling temperature surface, the so­called ridge/valley

curves. But it  turns out that this picture contradicts with the

experimental data, and numerical computations (Rev, 1992;

van Dongen and Doherty, 1984), so that today most of the

authors agree that the ridge/valley curves of the boiling tem­

perature surface are  not distillation boundaries since they can

be crossed by some residue curves. In this context we want to

stress out that there is no one commonly accepted definition

of the ridge/valley curves of the boiling temperature (see in

Kiva et al., 2003 and references therein). So,  many of published

results are based on rather wrong geometrical constructions,

sometimes leading to  paradoxical results, like the valleys pre­

sented in van Dongen and  Doherty (1984) that do not even pass

through azeotropes. However, the notion of a  ridge or a valley

on a surface has a  clear mathematical meaning in Differen­

tial Geometry, and in particular in 3D Image Process domain

(Bruce et  al.,  1996; Peikert and Sadlo, 2008). It seems important

to analyze the consistency of this notion with the definition

of distillation boundaries.

In this paper, we  try  to answer the following natural ques­

tions:

Q1: What is  the relation between isotherm hyper­surfaces

and residue curves? More generally, what is the  true

intrinsic structure of equations (1)?

Q2: How fast the boiling temperature grows along residue

curves?

Q3: What are  the  ridge/valley curves of the boiling tempera­

ture surface and is  there any relation between them and

the distillation boundaries?

The key tools of our analysis are the van der

Waals–Storonkin equations of phase coexistence, which

express the thermodynamic equilibrium condition dG = 0 and

generalize the classical van der Waals equations for binary

mixtures to the multicomponent case (see in Storonkin,

1967; Zharov and Serafimov, 1975; Toikka and Jenkins, 2002).

In the RCM theory these equations imply the remarkable

relation between the boiling temperature gradient and  the

equilibrium vector field

∇Tb =
1

1s
D2

xglv,  (2)

which can be found, for instance, in Doherty and Malone (2001)

and  Doherty and Perkins (1978). Here 1s is some positive scalar

function depending on the molar entropies and concentra­

tions of each component in both phases, while gl is  the Gibbs

free energy of the liquid phase. Already in 1970’s, Filippov

remarked that the Hessian of the  Gibbs free energy appearing

in the couple of van der Waals–Stronkin equations for both

phases defines a  metric in the mathematical sense (Filippov,

1977). He used this fact for the local analysis of the behavior

of the residue curves in the vicinity of the internal azeotropes.

Though in  a  different way, we come  to a similar result and

introduce a  metric (different from the Filippov’s one) asso­

ciated to the Hessian of the Gibbs free energy of the liquid

phase, which leads us  to  a  rather far­going conclusion about

the global gradient nature of RCM equations (1).

This paper is organized as  follows. After a  short  review

of some basic facts from Riemannian geometry in Section 2,

in Section 3, using the van der Waals–Storonkin equation, we

show that the RCM of open evaporation carries on a  non­trivial

Riemannian metric that we call the Gibbs metric. Recall that a

metric in the space defines the way to compute scalar prod­

ucts,  and hence norms and angles between vectors, as well

as the length of curves and the gradients of functions. In gen­

eral, the standard Euclidean metric used “by default” gives just

the local approximation of the true geometrical structure of the

space, like, for instance, the city plan that represents a  small

piece of the Earth globe. The presence of the non­trivial Gibbs

metric allows us to prove that system (1) is a gradient system of

Tb,  where the gradient should be computed in the  Riemann­

ian sense. This fact explains the aforementioned qualitative

properties of RCM, and in  addition, it  implies that residue

curves are indeed orthogonal to the isotherm hyper­surfaces

in the sense of the  Gibbs metric. In  Section 4 we  analyze in

greater detail the ternary mixtures case. In particular, we con­

sider a rigorous mathematical definition of ridge/valley curves

of the boiling temperature and show that there is no reason

for these curves to coincide with distillation boundaries. We

illustrate our computations for ternary mixtures combining



analytical and numerical computations using Mathematica 9

package.

2.  Riemannian  structures

In  this paper, we consider the state space of a  physical sys­

tem as a  differential manifold M, whose dimension is equal to

the number of degrees of freedom of the system. The evolution

of the system is usually measured with respect to some non­

decreasing scalar parameter, for instance, time t. At a  given

moment of  time the state of the system with n  degrees of

freedom is a  point x ∈ M, which can be described by the set of

local coordinates x = (x1,  .  .  .,  xn), whose derivatives ẋ = (ẋ1, . . ., ẋn)

form a  velocity vector ẋ ∈ TxM  in the tangent space to M

at x. M is  called a Riemannian manifold if its tangent bundle

TM =
⋃

x∈MTxM  is endowed with a  scalar product. In other

words, there is a positive definite quadratic form called metric,

which in local coordinates is described by a  symmetric matrix

G(x) =  {gij(x)}, so that for any two vectors v, w ∈ TxM

〈v|w〉G =
n∑

i,j=1

gij(x)viwj = vTG(x)w.

The  metric defines a  norm of vectors by ‖v‖G =
√

〈v|v〉G, and

hence the length of curves in M: given a  curve 
  joining points

x0 and x1 in time �,  and such that 
̇(t) = v,  the length of 
  is

given by ℓ(
) =
∫ �

0
‖v(
(t))‖Gdt.

The simplest example of a Riemannian manifold is  the

standard Euclidean space R
n:  the local coordinates are

the usual Cartesian coordinates, and  the scalar product

is defined by  the identity matrix G(x) = Id. In particular,

the distance between two points p and q is d(q, p)  =√
(q1 −  p1)2 + · ·  ·  +  (qn − pn)2, and more generally, the shortest

path between two points is a  straight line. These facts are no

more true in Riemannian manifolds with non­trivial, i.e., non­

Euclidean, metric structure. In fact, the shortest path between

two points is  the geodesic curve of the metric, i.e., the curve of

minimal length, like for instance, the  meridian circles on a

sphere. Intrinsic topological properties of Riemannian mani­

folds can be characterized in terms of their curvature tensor,

but we will not discuss it here. In what follows, in order to avoid

any ambiguity, we use ‖ · ‖ G and 〈 ·|·  〉G to  denote the scalar

products and norms computed with respect to the Riemann­

ian metric G, while ‖· ‖ and 〈 ·|· 〉 will denote their Euclidean

equivalents.

We conclude this short review of Riemannian geometry by

recalling the meaning of a  gradient of a function (Dubrovin

et  al. (1991)). Let  f be a smooth function in  the Riemann­

ian manifold M equipped with some metric G. Its differential

dxf  =
∑n

i=1
∂xi

f (x)dxi is a  linear operator in TxM, also called a

differential 1­form.

Definition 1. A  vector w  ∈ TxM is called the gradient of the func­

tion f at a  point x ∈ M if its  scalar product with any other vector

v ∈  TxM is equal to the directional derivative of f with respect

to v  computed at x:

vf (x)  = dxf (v)  = vT∇f (x)  = 〈v|w〉G.

In  the  rest of this paper ∇Gf(x) denotes the gradient of f in M

defined in  the sense of the metric G,  i.e.,

vf (x)  = 〈v|∇Gf (x)〉G.

It is easy to verify that in  local coordinates ∇Gf(x) is  related to

the usual Euclidean gradient ∇f(x) as follows:

∇Gf  (x) = G−1(x)∇f (x).  (3)

3.  Open  evaporation  of  homogeneous
multicomponent  mixtures

Let  us consider an  open evaporation process of a  n­component

homogeneous mixture. We assume that the process is isobaric

(P = const) and that the thermodynamic equilibrium between

liquid and  vapour phases is preserved.

3.1.  The  state  space

For i  = 1, .  . ., n  denote by xi, yi the partial mole fractions of

the ith component in the liquid and vapour phases respec­

tively. Since
∑n

i=1
xi =  1, the n − 1 independent mole fractions

of the liquid phase x = (x1,  . . ., xn−1) belong to the Gibbs simplex

�  =  {xi ∈ [0, 1] :
∑n−1

i=1
xi ≤  1}.  In what follows ∂� will denote

the boundary of �. According to the Gibbs phase rule,  the

system under consideration has n  degrees of freedom, and

its thermodynamical state can be described in terms of n − 1

independent mole fractions of the liquid phase x and the  tem­

perature T. So,  the state space of the system is  the differential

manifold M  = {q = (x, T) :  x ∈ �, T ∈ R}.

3.2.  Partial  mass  balance  and  boiling  temperature

In  the  standard equilibrium model of open evaporation a mul­

ticomponent liquid mixture is vaporized in a still in such a  way

that the  vapour is  continuously evacuated from the contact

with the liquid (Doherty and Perkins, 1978). The partial mass

balance of such a system can be written in the form

dxi

d�
= xi −  yi(x, T) =  vi(x, T), i =  1, .  .  .,  n  −  1. (4)

Here � ∈ [0, 1] is a  non­decreasing parameter describing the

change in  the overall molar quantity of the  liquid phase nl

in time t: � = ln(nl(0)/nl(t)). Solutions to system of differential

equations (4) are called residue curves, and  their graphical rep­

resentation in the simplex �  forms the residue curve map

(RCM). The right hand side of (4) defines a  vector field v =
(v1,  .  .  .,  vn−1) ∈ TM called the equilibrium vector field. Its singu­

lar points, i.e., the points q ∈ M  such that v(q) = 0 describe the

pure components and the azeotropes of a given mixture.

By definition of mole fractions,

n∑

i=1

yi(x, T) = 1. (5)

This constraint defines a  hyper­surface W  in the state space

M, called the boiling temperature surface, which is invariant with

respect to (4). Since in  a homogeneous mixture each compo­

sition of the liquid phase x is characterized by  a  unique value

of T,  in principle equation (5) can be solved in  order to express

T = Tb(x),  where the function Tb defines the boiling temperature



of a given mixture.1 In  other words, the boiling temperature

surface can be represented as a  graph of function Tb:

W  =  {q  ∈ M :  q = (x1, .  .  .,  xn−1, Tb(x1, .  . ., xn−1))}.

It  is worth to underline that in practice, due to  the high

complexity of thermodynamical models of real mixtures, the

function Tb(x) cannot be written explicitly. Nevertheless, if the

mole fractions yi(x, T) are known, equations (4), (5) form a

closed system of differential algebraic equations, which can be

solved numerically. This is the standard chemical engineering

approach for practical computations.

Despite its  practical utility, the model made of equations

(4) and (5) is  not suitable for the qualitative analysis of RCM.

In particular, it  gives not answer to the questions posed in  the

Introduction. For this we  have to look closer at the thermody­

namic equilibrium condition.

3.3.  The  van  der  Waals–Storonkin  equation

A  different way to  express the thermodynamic equilibrium is

provided by the van der Waals–Storonkin equations of phase

co­existence. Their rigorous mathematical derivation from the

equilibrium condition dG = 0, where G  is  the total Gibbs free

energy of  the system, can be  found in Storonkin (1967), Zharov

and Serafimov (1975) and in the review paper (Toikka and

Jenkins, 2002). The equation for the  liquid phase reads

(
sv − sl +

n−1∑

i=1

(xi − yi)
∂sl

∂xi

)
dT −

n−1∑

i,j=1

∂2gl

∂xi∂xj
(xi −  yi)dxj =  0. (6)

Here sl and  sv are  the entropies of the liquid and  vapour

phases, and gl is the Gibbs free energy of the liquid phase.

The terms containing dP  are neglected in (6) since only iso­

baric processes are considered. An analogous equation can be

also written for the vapour phase. In the case n = 1 equation

(6) implies the Clausius equation, whereas if n = 2 it  becomes

the classical van  der  Waals equation.

Let  us see under which condition the model (4), (5) based on

the mass balance arguments is consistent with state equation

(6).

3.4.  The  Gibbs  metric

Consider the following differential 1­form in  the state space

M:

� = 1s  dT +
n−1∑

i,j=1

∂2gl

∂xi∂xj
vidxj,

where

1s = sv − sl +
n−1∑

i=1

(xi − yi)
∂sl

∂xi
=

n∑

i=1

yi(s
v
i − sl

i),

sl
i
,  sv

i
being the partial molar entropies of the ith  component

in each phase. In what follows we  denote by D2
xgl =  {∂2

xixj
gl}n−1

i,j=1

the Hessian matrix of gl with respect to xi, i = 1,  .  .  .,  n  − 1. The

material stability condition implies that D2
xgl defines a  posi­

tive definite quadratic form, while 1s > 0 for all (x, T) ∈ M, in

particular, on the  boiling temperature surface W.

1 This fact follows from the  Implicit function theorem.

Geometrically speaking, equation (6) means that if ıx is

a  possible infinitesimal change in the system under thermo­

dynamic equilibrium, then �(ıx) = 0. All possible infinitesimal

changes in the system under thermodynamic equilibrium

form a vector distribution 6 = {ıx ∈ TM :  �(ıx) = 0}. Observe that

the form � places restrictions on the possible dynamics of

the system rather than on its state at a  given moment, while

the boiling temperature surface W  ⊂ M represents all  possi­

ble states of the system compatible with the thermodynamic

equilibrium. Therefore TW ⊂ 6. Since the tangent space to W  is

spanned by  vectors of the form ri = ∂xi
+ ∂xi

Tb∂T , we get �(ri) = 0

for i = 1, .  .  .,  n − 1, and hence

∇Tb(x) =
1

1s
D2

xgl|T=Tb(x) v(x), x ∈ �. (7)

The positive definiteness of 1
1s D2

xgl|T=Tb(x) in � allows us to

introduce a  Riemannian metric in � associated to the sym­

metric matrix

Ŵ(x) =
1

1s
D2

xgl|T=Tb(x),

which we will call the Gibbs metric. Comparison of formulae (7)

and  (3) yields

v(x) =  ∇ŴTb(x).

Calculating now the derivative of Tb along any residue curve

x(�), we  get

dTb(x(�))

d�
=  v(x(�))TŴ(x(�))v(x(�)) =  ‖v(x(�))‖2

Ŵ.  (8)

Remark. Although the 1­form � is  defined everywhere in M,

some of the second derivatives ∂2
xixj

gl blow up  at the pure com­

ponents (vertices of �) and on the edges of � (see examples

later). So,  strictly speaking, the  Gibbs metric Ŵ is a well defined

Riemannian metric only in the interior points of �.

The above computations can be summarized as  follows.

Theorem 1. The open set int � =  {xi ∈ (0, 1) :
∑n−1

i=1
xi <  1} of

partial mole fractions endowed with the Gibbs metric Ŵ is  a Riemann­

ian manifold. Residue curves are solutions to the gradient system

dx

d�
= ∇ŴTb(x),  x ∈ �,  (9)

where the boiling temperature Tb plays the role of the potential func­

tion. Moreover, along any residue curve x(�), the boiling  temperature

changes according to the equation

dTb(x(�))

d�
=  ‖v(x(�))‖2

Ŵ,

and thus it is a natural Lyapunov function for system (4).

Remark. Eqs. (8) and (9)  provide the explicit answers to  ques­

tions Q1 and Q2 formulated in Section 1. We also remark that

Eqs. (8) and  (7) are well known in  the residue curves the­

ory (see, for instance, in Zharov and  Serafimov, 1975, Doherty

and  Perkins, 1978, van Dongen and Doherty, 1984), though

their intrinsic gradient structure was denied (van  Dongen and

Doherty, 1984; Rev, 1992).

Looking at residue curves through the optic of the Gibbs met­

ric, one can derive all qualitative properties of RCM as the

trivial consequence of the gradient form of system (4). Indeed,



Fig. 1 –  Ideal mixture: methanol (x1), ethanol (x2) and 1­propanol. (a) The boiling temperature surface and its  isotherm level

sets on it; (b) the residue curves map.

properties of Riemannian gradient systems are well  known,

and they are analogous to the properties of the classical gra­

dient systems in  the Euclidean space R
n modulo the change of

the metric (see for instance in Hirsch et  al. (2004)). In particular:

– critical points of Tb are singular points of (4) in int  �;

– generically, they can be  stable/unstable nodes or saddles;

– if c is  a  regular value of Tb, i.e., if ∇Tb|
T−1

b
(c)

/= 0, then the

vector field v  is orthogonal to the level set T−1
b

(c) in  the sense

of  the Gibbs metric Ŵ.

The first  two properties are well known and widely used

in the RCM analysis. The third one is  true within the Rie­

mannian viewpoint, but it is not if  we use the Euclidean

metric. This explains the debate about isotherms and  residue

curves orthogonality in  the literature. However, the high  non­

triviality of the Gibbs metric Ŵ makes the topology of residue

curves maps much more sophisticated than the one of a  clas­

sical gradient flow.

One may ask what happens when a  residue curve x(�)

approaches the boundary ∂� of the Gibbs simplex �?  In this

case the Gibbs metric blows up and  ‖ · ‖ Ŵ is not defined, while

‖v ‖  →0 and  generically2 ∇Tb|∂� /=  0 and has bounded compo­

nents. So,  ‖v‖Ŵ =
√

〈Ŵ−1∇Tb|∇Tb〉 stays bounded on ∂�, and

hence as x(�) approaches a critical point x* ∈ ∂� (a pure com­

ponent or an azeotrope of order <n), ‖v(x(�))‖∼‖v(x(�))‖2
Ŵ as

x(�) → x*.  Observe that the situation is different if  x* ∈ int �

is an azeotrope of order n, in this case ‖v(x(�)) ‖ ∼ ‖ v(x(�)) ‖ Ŵ.

So, the border and internal singularities of the residue curves

maps in  � are of different nature: while internal azeotropes

are critical points of the boiling temperature, the singularities

at pure components and at azeotropes of order <n result from

the blow up of the metric Ŵ. Moreover, since the boiling tem­

perature is  not decreasing along residue curves, those can be

re­parametrized by taking Tb instead of �:

dx

dTb
=

v(x)

‖v(x)‖2
Ŵ

.  (10)

2 i.e. if there is no tangential azeotropes.

This transformation can be used to regularize the whole RCM

if it  contains no internal azeotropes. In particular, this  should

simplify the numerical integration of residue curves since the

new parameter is bounded: Tb ∈ [Tmin
b

, Tmax
b

], while � ∈ [0,  + ∞).

4.  Ternary  mixtures:  first  results

The first non­trivial situation, where the Gibbs metric appears,

concerns the simple evaporation of three­components mix­

tures. In addition, in this case we  can easily visualize the

concepts introduced above. The Riemannian viewpoint makes

clear structural properties of the RCM,  for instance, the rela­

tion between residue curves and isotherms, and  between

distillation boundaries and  ridge/valley curves of the boiling

temperature surface.

4.1.  Residue  curves  and  isotherms

We consider here only the generic situation of homogeneous

ternary mixture without tangential azeotropes. Choosing two

independent mole fractions x1, x2,  the boiling temperature sur­

face W over �  can be seen as  a 2D surface in a  3D  Euclidean

space with coordinates x1, x2, T. On the  x­plane, along with

the residue curves, we have another family of curves, the

isotherms, defined as the projections of the level sets T−1
b

(c)

of the boiling temperature. At any point x ∈ int �, the tangent

vector to the isotherm is  given by w = (−∂x2 Tb(x), ∂x1 Tb(x)) =
(∇Tb(x))⊥.  The Ŵ­orthogonality of vectors v  and  w can be veri­

fied directly:

〈v|w〉Ŵ =  〈Ŵv|w〉 = 〈ŴŴ−1∇Tb|(∇Tb)⊥〉 =  0.

Moreover, away from ternary azeotropes the  vectors ev =
v/‖v‖Ŵ and ew = w/‖w‖Ŵ form a well defined Ŵ­orthonormal

basis in int�.

Example 1. The ideal mixture methanol (x1)­ethanol (x2)

­1­propanol. Our computations are based on the 3­suffix Mar­

gules model for activity coefficients (Prausnitz et al.,  1998). In

Fig. 1b, we show the RCM, while Fig. 1a shows the boiling tem­

perature surface W  where the thin curves correspond to  the

isotherm lines. Any curve (x(�), T(x(�)) on W  projects on the



Fig. 2 – Components of Ŵ (thick curves) vs. components of Ŵ̃  (dashed curves).

residue curve x(�) (bold curve in Fig. 1b) on the plane (x1,  x2).

The vectors v  and w described above are not orthogonal along

x(�), as shown in Fig. 1a. On may think that their prototypes on

TW are orthogonal. To  check this property we have to compute

their scalar product, thus we need to choose a metric on W.

4.2.  3D  geometry  of  the  boiling  temperature  surface

Along with the Gibbs metric Ŵ, there is  another metric on W,

which describes the embedding of the graph of function Tb

into the 3D Euclidean space with coordinates x1,  x2, T. Indeed,

assume that W is endowed with some Riemannian metric Ŵ̃.

The length of any curve lying on W  can be computed in two

different ways: as a  length with respect to the  metric Ŵ̃  on W,

or as  a length of the same curve considered in the ambient 3D

Euclidean space. There exists a unique choice of Ŵ̃ that assures

that these two  lengths coincide (Dubrovin et al., 1991).

Definition 2. The Riemannian metric on the boiling tempera­

ture surface W = {q ∈ R
3 : q = (x1, x2, Tb(x1, x2))} associated to

the quadratic form with components

Ŵ̃11 =  1  +
(

∂Tb

∂x1

)2

, Ŵ̃22 = 1 +
(

∂Tb

∂x2

)2

, Ŵ̃12 =
∂Tb

∂x1

∂Tb

∂x2
.

is called the natural Riemannian metric Ŵ̃.

In Differential Geometry the natural metric is also called

the I­st fundamental form of a  surface. Roughly speaking, it

describes the visible shape of the surface in 3D. Unlikely the

Gibbs metric Ŵ, the natural metric Ŵ̃  is well defined and finite

everywhere in  �, in, particular, on its boundary. It  is important

to stress out that Ŵ  and Ŵ̃ define two  different geometries on

W.

Example 1 (Continuation). In Fig. 2 we compare the compo­

nents of the Gibbs metrics Ŵ with the components Ŵ̃ in the

section x1 =  0.2 for the ideal mixture of Fig. 1. Observe the  blow

up of the Gibbs metric (thick curves) in the neighborhood of

the boundary of �. Let us now come back to the last question

of the previous subsection. Denote by  �(�) the angle between

the equilibrium vector v and the tangent vector to isotherm w

along x(�). Remark that �  depends on the choice of the metric

g since cos � = 〈v|w〉g
‖v‖g‖w‖g

. Fig. 3 shows the variation of the cos  �

along the test  curve x(�) of Fig. 1b  according to three possible

metrics: the Euclidean metric g = Id  (dashed curve), the natu­

ral metric Ŵ̃  (thick dashed curve), and the Gibbs metric Ŵ (thick

curve). Only in the latter case cos  � < 10−2,  which means that

v and w are Ŵ  – orthogonal within the accuracy limits of the

model.

4.3.  Ridge/valleys  curves  of  the  boiling  temperature

As  we already mentioned, the relation between the distillation

boundaries and ridge/valley curves on the boiling temperature

surface W  is  still debated. Various definitions for ridge/valley

curves were proposed in the literature (Kiva et al., 2003), but

in our opinion none of them is  satisfactory. Let  us analyze the

rigorous definition of this object used in Differential Geometry

taking into account the non­trivial Riemannian metric Ŵ.

Consider a gradient dynamical system of form (9), and

denote by C the isotherm corresponding to the level set Tb = c.

A  point x on C  belongs to a  ridge or a valley of Tb if  ‖∇ŴTb(x)‖2
Ŵ =

‖v(x)‖2
Ŵ has a  maximum or a  minimum at this  point (Boscain

et al. (2013)). This leads to the following definition, which pro­

vides the answer to the  first part of question Q3.

Definition 3. The ridge/valley curves of the boiling tempera­

ture are loci of points x ∈ int � such that

〈∇Ŵ‖v‖2

 (x)|w〉Ŵ = w‖v‖2

Ŵ(x) =  0, (11)

where w‖v‖2
Ŵ denotes the directional derivative of ‖v‖2

Ŵ with

respect to w, w being any tangent vector to the isotherm pass­

ing through x.

According to Definition 3, the  ridge/valley curves of the

boiling temperature are  intrinsically related to  the Riemann­

ian gradient of Tb.  Eq. (11)  implies that azeotropes and pure

components belong to ridge/valley curves. Moreover, they are

tangent to the eigenvectors of the Jacobian Dxv  at azeotropes

and  pure components. Observe also that knowing just the

function Tb(x1,  x2) over �  is  not enough to compute the

ridge/valley curves: in addition one needs to  know the Gibbs

metric Ŵ. For this  reason the shape of the surface W in 3D

cannot be used to define the distillation boundaries as  the

Fig. 3  – Orthogonality test along the bold curve of Fig. 1 in

different metrics on �.



Fig. 4 –  Non­ideal mixture: benzene, acetone (x1), chloroform (x2).  (a) The boiling temperature surface and isotherm level

sets; (b) the residue curves map; (c) the height surface of ‖v‖2
Ŵ
; (d)  ew‖v‖2

Ŵ
along the distillation boundary.

projections its  flexures as some other authors did (van Dongen

and Doherty, 1984, Rev, 1992 and other references in  Kiva

et  al., 2003). In fact, it  follows that in order to visualize the

ridge/valley curves of the boiling temperature, we have to ana­

lyze the landscape of the height surface of ‖v(x)‖2
Ŵ rather than

the W itself.

Remark. Observe that if  both Tb and  Ŵ (and hence v) are known

for all x ∈ �, the ridge/valley curves can be detected by  finding

zeros of the scalar test function w‖v‖2
Ŵ without solving any

differential equation, which makes this notion particularly

interesting from the computational point of view.

The  next two examples illustrate our construction for ternary

mixtures with distillation boundaries. In both cases we used

the thermodynamic model based on the NRTL equations

(Prausnitz et  al.,  1998).

Example 2. Benzene– acetone (x1)–chloroform (x2)  (Serafi­

mov’s topological class 1.0−2 according to Kiva et al., 2003).

The main features of this mixture are shown in Fig. 4:  it  has a

binary azeotrope of saddle type at the point xaz ≈ (0.351, 0.649),

characterized by  the boiling temperature Taz
b

≈  65.11 ◦C. The

distillation boundary is the separatrix computed via numeri­

cal  integration of system (4) on W. It is  displayed by  the thick

black curve, which starts at xaz and goes to  the origin (ben­

zene pure component, Tb ≈  80.10 ◦C).  In Fig. 4c we  show the

height surface of ‖v‖2
Ŵ:  the thin curves are  the  isoclines, and

the thick black curve shows the position of the distillation

boundary on it.  We see  that the distillation boundary passes

very close to the  bottom of the valley of the height surface

of ‖v‖2
Ŵ. Nevertheless, the computation of the function ew‖v‖2

Ŵ

along it (Fig. 4d) shows that it diverges from the valley’s bot­

tom while approaching the point x = (0, 0)  corresponding to the

benzene pure component.

Example 3. Methanol–acetone (x1)–chloroform (x2)  (Serafi­

mov’s topological class 3.1­4 according to Kiva et al., 2003),

Fig. 5. The shape of the boiling temperature surface W is



Fig. 5 – Non­ideal mixture: methanol, acetone (x1), chloroform (x2). (a) The boiling temperature surface and isotherm level

sets; (b) the residue curves map; (c) the height surface of ‖v‖2
Ŵ
; (d) ew‖v‖2

Ŵ
along the distillation boundaries.

shown in  Fig. 5a.  As we can see, the topological struc­

ture of the RCM (Fig. 5b) of this mixture is more complex.

It has

– three binary azeotropes: 2 unstable nodes at the points

B12 ≈  (0.7928, 0) and B13 ≈ (0, 0.6536), and one stable node

at  B23 ≈ (0.3511, 0.6489) with maximum boling temperature

T23
b

≈  65.11 ◦C;

– one ternary azeotrope of saddle type at the point A ≈ (0.3676,

0.2107), characterized by the  boiling temperature Taz
b

≈
56.99 ◦C.

Four separatrices (thick black curves) form the distillation

boundaries, which divide the RCM into four distillation

regions. As in the previous example, they were computed by

numerical integration of system (4). Fig. 5.c shows the height

surface of ‖v‖2
Ŵ.  As before, the thin curves are isoclines, and

the thick black curves indicate the location of the distilla­

tion boundaries. While the distillation boundary connecting

the points B12,  B13 seems to  follow the bottom of the valley

of the height surface, the curve connecting B23 with x =  (0,

0) (methanol pure component) diverges significantly from

the ridge. In fact, this divergence become evident from the

computation of the test function ew‖v‖2
Ŵ (Fig. 5.d): the thick

curve corresponds to the curve connecting B23 with (0, 0), the

dashed curve corresponds to the curve connecting B12 with

B13.  We conclude this example by  showing the behavior of

the components of Gibbs metric over the composition space

� (Fig. 6). As  stated in Section 3.4, they blow up along the

boundary of Gibbs triangle �, but stay regular at the  ternary

azeotrope.

In both of the above examples we observed that distillation

boundaries do not coincide with the ridge/valley curves of the

boiling temperature. One may ask if the observed difference

between the two types of curves is related to  the accumulation

of the  numerical error, and Definition 3 is suitable to define

distillation boundaries. As we will show in the next  section

with a  simple academic example, the answer is negative: in

general there is  no reason for these two families of curves to

coincide.



Fig. 6 – Level surfaces of the components of Gibbs metric for the mixture methanol ­ acetone ­ chloroform

4.4.  Ridge/valleys  and  distillation  boundaries

Let  us  now  check if the notion of the ridge/valley curves

introduced in Definition 3 is consistent with the  notion of

a distillation boundary. We precise that distillation boundaries

are separatrices of RCM connecting stable/unstable nodes to

saddles.3 In particular, if a  curve 
(·) ∈ � is a  distillation bound­

ary, then:

(a) it  is a  residue curve, i.e., it is  an integral curve of system of

differential equations (4),  and  hence it  cannot be crossed

by any other residue curve;

(b) it  starts at  an unstable node and finishes at a  saddle, or

starts at a  saddle and finishes at a stable node;

(c) at its terminal points it is tangent to the eigenvectors of

the Jacobian Dxv, or, equivalently (Zharov and Serafimov

(1975)), of the Hessian D2
xTb.

As  we saw, properties (b) and (c)  are also verified by ridge/valley

curves defined by equation (11). This is  why it  seems natural

to expect that the two definitions are  equivalent. To conclude,

one must test  whether the ridge/valley curves verify property

(a). Let  us put this  question in  a more general mathematical

context. On a  plane (x1, x2) consider a gradient system asso­

ciated to some potential function F, and  assume that it  has at

least one node and  one saddle. Is it true that the ridge/valley

curve of  F  defined by equation (11) is  an an integral curve of

the gradient system ẋ =  ∇F(x) whatever is the metric of the

plane? In  general, the answer is negative, as it is shown by  the

following academic counterexample.

Example 4. For simplicity, we consider the Euclidean case

where all the computations can be done explicitly. Let  F =
x1 − x3

1 −  (x2 − x1)2.  The corresponding gradient system is

ẋ1 = 1 − 3x2
1 − 2(x1 − x2), ẋ2 = 2(x1 − x2), (12)

it  has a  saddle type singularity at the point A = (−1/
√

3, −1/
√

3)

and a  stable node at B = (1/
√

3, 1/
√

3). Its phase portrait is

shown in  Fig. 7, where thick black curves represent the sepa­

ratricies computed numerically. Equation (11) can be written

in the form

4
(
−9x4

1 − 4x1 +  1
)

+ 8
(

9x3
1 + 6x2

1 − 3x1 + 2
)

x2 −  48x1x2
2 = 0,

3 In the theory of dynamical systems such curves are called het­

eroclinic orbits of system (4).

which yields two families of ridge/valley curves (red dashed

curves in  Fig. 7):

x2 =
9x3

1 + 6x2
1 ±
√(

3x2
1 −  1

)2 (
9x2

1 + 4
)

−  3x1 +  2

12x1
.

As  Fig. 7 shows, the dashed curves do not coincide with the

black curves representing the  separactrices. In order to  avoid

any doubt concerning the  numerical error related to the inte­

gration of (12), observe that the point x0 = (0, − 1/4) belongs to

the ridge curve, which at this  point is tangent to the vector (16,

13).  On the other hand, ∇F(x0) = (1/2, 1/2), so the ridge/valley

curve passing through x0 is not a solution to (12), and hence it

can be  crossed by integral curves of (12).

Now we are able to complete the answer to question Q3

posed in the Introduction: the ridge/valley curves of Definition

3 connect the singular points of RCM and are tangent to the

distillation boundaries at these points, but in general, they

are not residue curves, and thus they cannot be distillation

boundaries. So, although we are  using a  different definition of

Fig. 7  – Phase portrait of the gradient flow of

F =  x1 − x
3
1 −  (x2 −  x1)2: separatrices (thick black curves) and

ridge/valley curves (dashed curves).



ridge/valley curves, we confirm the  general conclusion made

by van Dongen and Doherty (1984) and by other authors (Rev,

1992; Kiva et al., 2003).

5.  Conclusion

The thermodynamical equilibrium condition, described by  the

van der Waals–Storonkin equation (6) endows RCM of open

evaporation by a  non­trivial Riemannian metric: the Gibbs

metric Ŵ. Within this geometrical model, any RCM is the set

of the integral curves of the Riemannian gradient flow asso­

ciated to the boiling temperature Tb, which plays the role of

a potential function for RCM. This key fact explains all  well­

known properties of the residue curves maps and of the role

of Tb, and in addition, it implies that unlikely in  the classical

Euclidean case, the equilibrium vector field is Ŵ­orthogonal to

the isotherm fronts away from azeotropes.

We explored the first non­trivial consequences of this  geo­

metric viewpoint in the case of ternary mixtures. In particular,

we discussed the relation between distillation boundaries and

the ridge/valley curves of the boiling temperature Tb and

showed that they do not coincide in general since the  Tb

ridge/valley curves are not residue curves.
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