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sebastien.destercke@hds.utc.fr

3 LAMSADE, University of Paris Dauphine, Paris, France
brice.mayag@dauphine.fr

Abstract. In the context of decision under uncertainty, standard gambles are
classically used to elicit a utility function on a set X of consequences. The utility
of an element x in X is derived from the probability p for which a gamble giving
the best outcome in X with probability p and the worst outcome in X otherwise,
is indifferent to getting x for sure. In many situations, uncertainty that can be ob-
served on the true value ofX concerns only neighbour values. Uncertainty is then
represented by a probability distribution whose support is an interval. In this case,
standard gambles are unrealistic for the decision maker. We consider uncertainty
represented by an equi-probability over an interval of X . This paper addresses
the elicitation of a utility function on X by obtaining the certainty equivalent of
an equi-probability over an interval of X . We show that not all utility models are
suitable to accomplish this task.

1 Introduction

The elicitation of a utility function u over a set X is an important aspect of decision
theory. It can be performed in decision under uncertainty by observing the attitude of
the decision maker towards risk over gambles defined on X [18]. The most classical
way to elicit u is based on standard gambles. A standard gamble (or standard lottery)
denotes a vector 〈p, x>; 1−p, x⊥〉where the best outcome x> (resp. the worst outcome
x⊥) in X is realized with probability p (resp. 1 − p). For some x ∈ X , one gets from
the decision maker the probability p for which the standard gamble 〈p, x>; 1 − p, x⊥〉
is indifferent to the sure outcome x. Under the expected utility (EU) model, one obtains
u(x) = p, after fixing u(x>) = 1 and u(x⊥) = 0 [18, 19]. This elicitation approach has
been used for instance to construct the utility of the remaining years to live, for medical
decisions. Such a gamble can be a 50− 50 gamble resulting in either 20 years of good
health or immediate death [20].

The idea of the previous approach is to elicit u(x) by identifying an uncertain situ-
ation (a probability distribution over the set X of consequences) that has x as certainty
equivalent. The uncertain situation is then a standard gamble based on the extreme con-
sequences x> and x⊥. There are many applications where standard gambles do not
make sense to the decision maker. Let us consider the following example.



Example 1. In crisis management, if heavy rain is expected, the local authority would
like to forecast the peak flood level in a city. Before the flood arises, the decision maker
only has an uncertain estimate of the peak flood level X . The problem is then to define
a utility function on this variable, to be combined with other criteria to make a decision
on the evacuation of a residential area. The flood propagation models typically return
an extreme value distribution.

In the previous example, it might not be easy to elicit the utility function onX on the
basis of the distribution on the peak flood level provided by the models as it is relatively
complex. We note that this distribution has a support which is a closed interval of X .
Hence it would not be realistic to use standard gambles, like 〈p, 15m; 1−p, 0m〉, as the
decision maker will not face such a situation in a real crisis management. We propose
in this paper to use uniform distribution law on a close interval like [10m, 14m]. The
uniform law can be seen as an approximation of the extreme value distribution, which is
simple to grasp for a decision maker. We restrict ourselves to uniform probability laws
over intervals of X , such as a uniform probability on [10m, 14m] in Ex. 1.

We are interested in constructing a utility function on X from the certainty equiv-
alent x̂ of a uniform probability law on an interval [a, b] of X . Utility functions are
parameterized for elicitation purposes. The certainty equivalent x̂ can potentially be
any element in interval [a, b]. Then a family of parameterized utility functions is admis-
sible if, for any x̂ ∈ [a, b], there exists a value of the parameters for which the expected
value of the utility function over [a, b] is equal to x̂. We show that the most commonly
used models do not fulfilled this requirement. We propose some models that satisfy it.

In practice, one cannot expect to identify accurately the certainty equivalent of a
probability law over X . Hence we do not obtain a unique utility function but rather a
family of compatible utility functions, from which decisions are to be taken. We adopt
a cautious approach to recommend decisions [8, 16].

Section 2 presents the general elicitation approach. We address in Section 3 piece-
wise affine utility functions, which is a commonly used representation in multi-criteria
decision making. We then consider in Section 4 an analytical formula, as it is done in
decision under uncertainty. Section 5 presents the related works. Finally some conclu-
sions are drawn.

2 General approach for the elicitation of a utility function

Let X be an interval of R. Without loss of generality, we will consider in the whole
paper only strictly increasing utility functions over X . In an elicitation phase, one can-
not expect to uniquely identify the utility function. Hence we assume a family U of
compatible utility functions, where U is to be determined.

2.1 Decision model under uncertainty

We define a gamble on X as a probability density function on X . We wish to represent
a preference relation over these gambles, given the set U . Here two gambles describe
two different uncertainties on X , and we are interested in the attitude of the decision



maker toward such uncertainty. Note that this definition of a gamble is different from
that used in subjective probability [6, 22], where a gamble is a reward associated to each
state of nature.

The basic decision rule in decision under uncertainty is based on expected utility:

EUu(g) =

∫
X

u(x) p(x) dx,

where p is the probability density function associated to gamble g. There are many
different decision rules to compare gambles when the parameters of the model are im-
precise: [21] for imprecise probabilities, [8] for imprecise utilities, and [16] for both
imprecise probabilities and utilities. Lower and upper expectations are often used. We
use a cautious way to make a decision on the gambles, facing U (imprecise utilities),
where the relation holds if the preference is true for all utility functions in U :

g %U g′ (resp. g �U g′ or g ∼U g′) ⇐⇒ (1)
∀u ∈ U, EUu(g) ≥ EUu(g

′) (resp. EUu(g) > EUu(g
′) or EUu(g) = EUu(g

′))

Relation induced by %U is usually incomplete.

2.2 Elicitation process

Once the utility is known, the decision model %U can be applied to probability laws
p that are very complex (as for the flood peak level in Ex. 1). However, during the
elicitation process, we restrict ourselves to uniform probability laws over intervals of
X in order to reduce the cognitive load. We denote by 〈1, [a, b]〉 (with [a, b] ⊆ X
and b > a) the gamble described by the uniform probability density function p given
by p(x) = 1

b−a if x ∈ [a, b] and p(x) = 0 else. The sure outcome x ∈ X is also
noted 〈1, [x, x]〉. We set GX = {〈1, [a, b]〉 , [a, b] ⊆ X} including both cases. We have
EUu(〈1, [a, b]〉) = 1

b−a
∫ b
a
u(x) dx if b > a, and EUu(〈1, [a, b]〉) = u(a) if a = b.

In order to ease the elicitation process, we are interested in families of parameterized
utility functions. This is classically done in decision under uncertainty, with for instance
family uλ(x) = xλ [13, 17]. We denote by γ the vector of parameters, by Γ its range,
and by uγ the associated utility function. Let U = {uγ , γ ∈ Γ}. The set of admissible
utility functions corresponds to a subset ΓA of Γ , where U = {uγ , γ ∈ ΓA}.

Generalizing the elicitation process based on standard gambles, ΓA may be derived
by asking to the decision maker the certainty equivalent x̂ of a gamble 〈1, [a, b]〉, given
interval [a, b]. The certainty equivalent of gamble 〈1, [a, b]〉 is an element x̂ ∈ [a, b]
such that 〈1, [a, b]〉 is indifferent to 〈1, [x̂, x̂]〉. Then ΓA is the set of values γ satisfying
relation 1

b−a
∫ b
a
uγ(x) dx = uγ(x̂).

In practice, a decision maker is not expected to provide a value x̂ that is close to the
extreme values a and b. Hence one might often have

〈1, [a+ ε, a+ ε]〉 ≺U 〈1, [a, b]〉 ≺U 〈1, [b− ε, b− ε]〉 (2)

for some ε > 0 which depends on the attitude of the decision maker. Note that ε can be
very small if the decision maker is extremely risk averse or risk seeking. We will show



in Section 3.1, that a classical family of utility functions satisfies (2) with ε = b−a
4 .

This value is relatively large (only half of interval [a, b] is reachable), and we guess that
this family is not versatile enough.

As it is not easy to set some value for ε and we do not want to rule out some extreme
attitudes of decision makers, we would like to ideally to represent the case where the
certainty equivalent of gamble 〈1, [a, b]〉 can be any element in the open interval (a, b).

Condition Comp(a, b) – Completeness (with b > a): For every x ∈ (a, b),

∃γ ∈ Γ 1

b− a

∫ b

a

uγ(x) dx = uγ(x). (3)

Conversely, from the intermediate value theorem, we know that if function uγ is con-
tinuous, then for every γ ∈ Γ , there exists a point x ∈ [a, b] such that (3) holds.

One can readily see that if function uγ is constant, then condition Comp(a, b) is
trivially satisfied for every interval [a, b]. Hence we consider henceforth only strictly
increasing utility functions.

In practice, it is realistic to ask directly to the decision to provide the value of the
certainty equivalent of a gamble. The certainty equivalent x̂ can be approximated, by
asking questions of the following form (with 〈1, [a, b]〉 ∈ GX and x ∈ (a, b))

“Is 〈1, [a, b]〉 less preferred / preferred / indifferent / incomparable to 〈1, [x, x]〉?” (4)

for different values of x, proceeding by dichotomy on x. The so-obtained dichotomy
process for approximating x̂ given gamble 〈1, [a, b]〉 is called Certainty Equivalent
Estimate (CEE). If the answer is “less preferred” (resp. “preferred” or “indifferent”),
then for all γ ∈ ΓA, EUuγ (〈1, [a, b]〉)− uγ(x) < 0 (resp. > 0 or = 0). At the end, ΓA
is the set of all values γ satisfying these constraints. “Incomparability” answers are not
explicitly represented as constraints.

The remaining of this paper is devoted to finding models of utility that fulfil Comp.
We will see that condition Comp is not fulfilled with the most commonly used classes
of utility functions. This condition will be used to select suitable families U .

3 Case of piecewise affine utility functions

Piecewise affine utility functions are classically used in multi-criteria decision making
[1]. The decision maker provides a finite set of elements in X: x1 < x2 < · · · < xm.
We set

uγ(x1) = 0 and uγ(xm) = 1. (5)
The unknowns are the utility at the points x2, . . . , xm−1: γ = (u2, . . . , um−1), where
uk = uγ(xk), u1 = 0 and um = 1. As uγ is strictly increasing, we assume that
u1 < u2 < · · · < um−1 < um. The utility function which interpolates between the
points (x1, u1), . . . , (xm, um), is denoted uPAγ (where PA stands for Piecewise Affine):

uPAγ (x) =


0 if x ≤ x1
uk +

x−xk
xk+1−xk (uk+1 − uk) if x ∈ [xk, xk+1]

1 if x ≥ xm
(6)

We first show that form (6) does not fulfill condition Comp. Then we propose an-
other form of piecewise affine utility function.



3.1 Verification of condition Comp with uPA
γ

As the elements x1, . . . , xm have a special meaning to the decision maker, we can ask
questions of the form (4) with the value of a and b being elements in x1, . . . , xm.

Lemma 1. Condition Comp is not fulfilled with uPAγ . More precisely, for every p, q ∈
{1, . . . ,m} with q > p, there exists γ such that (3) holds with a = xp and b = xq iff

x ∈
[
xp + (xp+1 − xp)

xq − 1
2xp+1 − 1

2xp

xq − xp
, xq−1 + (xq − xq−1)

xq − xq−1
2(xq − xp)

]
(7)

Proofs are omitted due to space limitation. The idea is that, in order to allow having
x close to the lower bound a = xp (resp. upper bound b = xq), the utility function
should be close to the Heaviside function at xp (resp. xq) – see function u1 (resp. u2)
in the right part of Fig. 1. Lemma 1 shows that this is not the case with uPAγ . Interval in
(7) is strictly included in [xp, xq]. For instance for X = [0, 1], p = 1, q = m = 3 and
x1 = 0, x2 = 1

2 , x3 = 1, interval in (7) is [ 14 ,
3
4 ], to be compared with interval [0, 1]. It

follows that the expected utility EUuPA
γ
(〈1, [xp, xq]〉) cannot take any value in [xp, xq].

This comes from the fact that the points x1, . . . , xm are fixed. Hence we need to find
another representation.

3.2 Piecewise Affine function around a diagonal

Instead of fixing the value of x and letting the associated utility be a variable, the idea
is to allow both the value of x and its utility to be variable (but not independently).

We start by defining a utility function, depending on only one parameter γ, in an
interval [a, b] and with fixed values of the utility at the boundary: uγ(a) = c and
uγ(b) = d. The values of a, b ∈ X and c, d ∈ R are fixed. We consider a piecewise
affine function with an intermediate point in the diagonal line between (a, d) and (b, c)
(see the left part of Figure 1). Let γ ∈ [0, 1]; the intermediate point has coordinates
(a+ γ(b− a), c+ (1− γ)(d− c)). On the whole, uγ performs an affine interpolation
between the points (a, c), (a+ γ(b− a), c+ (1− γ)(d− c)) and (b, d). We denote this
utility function uAD

γ (where AD stands for Affine around a Diagonal).
In order to elicit γ, we use the Dichotomy method CEE based on Question (4) with

interval [a, b]. The next result shows that it completely makes sense.

Lemma 2. Condition Comp(a, b) is fulfilled with uAD
γ . Moreover, if 〈1, [a, b]〉 is less

preferred (resp. preferred or indifferent) to x ∈ (a, b), then γ < x−a
b−a (resp. γ > x−a

b−a
or γ = x−a

b−a ).

The main advantage of this approach is that whatever the answer x of the decision
maker in the interval [a, b], one can find the value of parameter γ ∈ [0, 1]. Moreover the
correspondence between x and γ is very simple, as the mean value of uAD

γ is attained
precisely at the breaking point (a + γ(b − a), c + (1 − γ)(d − c)) on the diagonal.
In particular, the value of γ is independent of the values of c and d. We will use this
property in the next section, where c and d may be unknown.

The previous pattern can be applied only once to a = x1, b = x2, c = 0 and d = 1.
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Fig. 1. Piecewise affine utility function around the diagonal (a, d)− (b, c).

3.3 Proposal with more parameters

If we want more intermediate points, we can apply the previous patterns several times.
In figure 2, we apply the pattern two times, where the three values x1, x2, x3 are fixed.
More precisely, we use the pattern a first time on the input interval [x1, x2] and output
interval [0, u2], and a second time on the input interval [x2, x3] and output interval
[u2, 1].
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x2

r

r
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�
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0
x1 + γ1(x2 − x1)

(1− γ1)u2

�
�
�
r���r

x3

1

u2 + (1− γ2)(1− u2)

x2 + γ2(x3 − x2)

Fig. 2. Parametric piecewise affine utility function using two patterns.

We have three unknowns: γ = (γ1, γ2, u2). We use three times the process Di-
chotomy method CEE.

The first use of Dichotomy method CEE is on interval [x1, x2]. If 〈1, [x1, x2]〉 is
less preferred (resp. preferred or indifferent) to x1,2 ∈ [x1, x2], then, by Lemma 2

γ1 <
x1,2 − x1
x2 − x1

(
resp. γ1 >

x1,2 − x1
x2 − x1

or γ1 =
x1,2 − x1
x2 − x1

)
. (8)

The identification of γ1 is independent of unknown u2.



The second use of Dichotomy method CEE is on interval [x2, x3]. If 〈1, [x2, x3]〉 is
less preferred (resp. preferred or indifferent) to x2,3 ∈ [x2, x3], then

γ2 <
x2,3 − x2
x3 − x2

(
resp. γ2 >

x2,3 − x2
x3 − x2

or γ2 =
x2,3 − x2
x3 − x2

)
. (9)

The identification of γ2 is independent of unknown u2.
Finally, the last use of Dichotomy method CEE is on the interval [x1, x3]. The

decision maker is asked to compare 〈1, [x1, x3]〉 with the sure outcome x1,3 ∈ [x1, x3].
As

EUuγ (〈1, [x1, x3]〉) =
x2 − x1
x3 − x1

(1− γ1)u2 +
x3 − x2
x3 − x1

(u2 + (1− γ2)(1− u2)) ,

(10)

One can derive from (10) constraints on u2, given the answer of the comparison of
〈1, [x1, x3]〉 with the sure outcome x1,3, and upper and lower bounds on γ1 and γ2.

4 Parametric utility functions

We consider in this section parametric utility functions. We restrict ourselves to X =
[0, 1]. We start with family upowγ (x) = xγ , with γ > 0, already mentioned previously
[13, 17] (see also [7] for a quadratic model). Another family will then be considered.

4.1 Power function

Lemma 3. Condition Comp(0, 1) is not fulfilled with upowγ . More precisely, there exists
γ such that (3) holds with a = 0 and b = 1 iff x ∈

(
1
e , 1
)
.

With model upowγ , the decision maker is not allowed to provide a value of x outside
interval

(
1
e , 1
)
. Utility function upowγ tends to the Heaviside function at 0 when γ tends

to 0. However it does not imply that condition Comp(0, 1) is not necessarily satisfied
with x arbitrarily close to 0. The shape of upowγ is such that its mean value vγ tends to
1 when γ → 1, but (upowγ )−1(vγ) does not tend to 0.

4.2 MinMaxVar parametric function

As Lemma 3 shows that the power utility function upowγ is not suitable, we consider
another parametric function called MinMaxVar [5] taking the following expression:

uMMV
γ (x) = 1−

(
1− x

1
γ

)γ
(11)

where uMMV
γ (0) = 0 and uMMV

γ (1) = 1 (see conditions (5)). Parameter γ belongs to
Γ = (0,∞), where function uMMV

γ is convex for γ < 1 and is concave for γ > 1.
Function uMMV

γ has an useful symmetry property. Indeed one can readily check that

y = uMMV
γ (x) ⇐⇒ 1− x = uMMV

γ (1− y). (12)



Hence points (x, y) and (1 − y, 1 − x) are symmetric w.r.t. the diagonal connecting
points (1, 0) and (0, 1) (see Figure 3). As a result, curve uMMV

γ is symmetric w.r.t. this
diagonal. Note that uAD

γ (Section 3.2) satisfies a similar property as it is also symmetric
w.r.t. diagonal (a, d)− (b, c).

Moreover, curve uMMV
γ intersects the diagonal (1, 0) − (0, 1) at a point with coor-

dinates (β, 1− β), with 1− β = uMMV
γ (β). Hence

(
1− β

1
γ

)γ
= β, i.e. β =

(
1
2

)γ
.

- X

6
uMMV
γ

0
0

1

1

r

r
r

β

1− β

x

ry

1− y

r1− x

Fig. 3. Parametric function uMMV
γ .

The next result shows that Dichotomy method CEE can be used on interval [0, 1].

Lemma 4. Condition Comp(0, 1) is fulfilled with uMMV
γ .

Given any x ∈ (0, 1), one can easily find by dichotomy or a Gradient method the
value γ such that

∫ 1

0
uMMV
γ (x) dx = uMMV

γ (x). Moreover, the next lemma provides
bounds on γ given the comparison of the decision maker.

Lemma 5. For any x ∈ (0, 1), there exists a unique γ > 0 such that
∫ 1

0
uMMV
γ (x)dx =

uMMV
γ (x). Moreover, 〈1, [0, 1]〉 is less preferred (resp. preferred or indifferent) to x ∈

[0, 1], iff γ > γ (resp. γ < γ or γ = γ).

5 Related works

The elicitation process based on standard gambles has been enriched in different ways.
It has been used in AI as a baseline technique to elicit elaborate models such as the
Generalized Additive Independence (GAI) model [9, 3]. If the set of possible utilities is
U , the decision rule can be the expected expected utility where the expectation is taken
over the set of outcomes but also over the space U of possible utility functions [2]. The
probability over utilities is updated during elicitation using Bayes’ rule in [4]. Standard
gambles are used to elicit an imprecise utility in the framework of multi-attribute utility
theory in [7].

It has been noticed in the litterature that the elicitation of the utility using stan-
dard gambles may result in wrong assessments of u or in inconsistencies. Experiments
indeed indicate that human beings as subject to a number of biases that distort their



judgment about the perception of uncertainty. A canonical list of biases can be found in
[12]. For further references, see also [14, 11]. The most commonly encountered biases
are: (1) probability weighting (individuals do not treat probabilities linearly, and tend to
overestimate small objective probabilities, and under-estimate large ones [20]); (2) loss
aversion (individuals are more sensible to losses than to gains) [13, 17].

Under the Expected Utility model, risk averse individuals (they prefer for instance
a sure outcome x to the gamble 〈 12 , 0;

1
2 , 2x〉) are represented by concave utility func-

tions. However, it has been noticed that the standard gamble method tends to exaggerate
the concavity of the utility function to capture risk aversion [10]. Rank dependent ex-
pected utility treats the probability weighting bias by transforming the probability with
a distortion function [15]. This model is generalized in the prospect theory, where gains
and losses (demarcating a neutral level) are handled differently [13, 17]. Prospect theory
models the two biases.

6 Conclusion

We have proposed in this paper the elicitation of a utility function over a set X by
comparing a gamble proposing x in an interval [a, b] ⊆ X with equiprobability, to
a sure outcome x ∈ X . This is a generalization of the elicitation process based on
standard gambles. A consistency condition called Comp has been defined: it tells that
for any x ∈ [a, b], there shall exist a value γ of the parameters such that 〈1, [a, b]〉 is
indifferent to sure outcome x. The piecewise affine model uPAγ and power model upowλ

do not fulfill this condition. We propose the use of two models that fulfill this condition.
The first one uAD

γ is piecewise affine with an intermediate point where both the abscissa
and ordinate numbers varies at the same time on a diagonal. This pattern can be repeated
several times in adjacent intervals (for instance, in [x1, x2], [x2, x3], etc). The second
one is the MinMaxVar function uMMV

γ , which shares a symmetry property with uAD
γ .

In both cases, we can derive constraints on the parameters of the utility model from
any comparison of gamble 〈1, [a, b]〉 to the sure outcome x. Risk aversion occurs when
〈1, [a, b]〉 is strictly less preferred to sure outcome a+b

2 . Under our models, this implies
concavity of utility functions. Similar results are obtained with standard gambles.

We can extend this work in several directions. We can extend the expected utility
model that we used to represent some cognitive bias. One can think of rank dependent
expected utility which is based on the Choquet integral. One can also think of other
types of uncertainties, such as the reliability of sources. One would then compare mak-
ing a decision from a source with low reliability providing a value x ∈ X to another
source with high reliability providing another value x′ ∈ X . We can also think of other
models for information [a, b], such as the set of probabilities having this support.
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