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Abstract. Tissue engineering is of major importance in biomedical transplantation techniques. However, some questions subsist as 
for example the mass transport between each phase (cells, fluid and solid). In a previous paper, a one-equation model was 
developed in order to model mass transport during in vitro tissue growth using the volume averaging method. Using a 
dimensionless form of the model and a convenient formulation of the effective dispersion tensor, a numerical resolution of the 
closure problem is proposed. Some results allowing to validate the numerical tool are presented. This validation is carried out 
using results available in the literature for 2-D unit cells and under-classes of our model (namely, diffusion, diffusion/reaction and 
diffusion/advection problems). Finally, we provide some results for the complete model taking into account diffusion, reaction and 
advection in the three phase system. 
 
Keywords. tissue engineering, volume averaging method, diffusion, advection, reaction 

 
1. Introduction 

 
In this study, we worked in the framework of biotechnologies and more precisely of cartilage tissue engineering. 

This biomedical technique is relatively recent and has been studied from theoretical (Wood et al., 2001; Wood et al., 
2002a; Lasseux et al., 2004), numerical (Ochoa et al., 1986; Galban and Locke, 1999; Wood et al., 2002b) and 
experimental (Elias et al., 1995; Vunjak-Novakovic et al., 1996; Riesle et al., 1998; Obradovic et al., 1999; Gooch et 
al., 2001) points of view. Moreover, coupling these different studies, more realistic models describing the complete 
process of tissue engineering can be derived and allow to predict, for example, the evolution of the cell-mass, or the 
evolution of the concentration of nutrients (or metabolic products). The aim of the present paper is contribute to this 
task.  

In previous works (Galban and Locke, 1999), the solid phase was neglected or integrated within the cell-phase. 
However, at least at some stage of the tissue growth, the length-scale of the solid-phase is of the same order of 
magnitude as the cell colonies. Starting from a microscopic description of the diffusive-advective-reactive problem, 
Lasseux et al. (2004) derived a one-equation model of mass transport of nutrient in a biodegradable porous medium 
composed of a polymer scaffold. The originality of this study based on up-scaling using a volume averaging procedure 
is that the model involves diffusion, advection and reaction terms for a three-phase system (Cells (γ-phase), Fluid (β-
phase) and Solid (α-phase)). Figure (1) shows the macroscopic region and the averaging volume, V, used for this study, 
as well as the length-scales of each phase. 

 

 
 

Figure 1. Macroscopic region and averaging volume. 
 

To develop the volume averaged form, the superficial and the intrinsic averages are used (Whitaker, 1999). For a 
quantity ϕκ associated to the κ-phase, these averages are respectively given by 
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These two quantities are related with the simple relationship 
 

κ
κκκ ϕεϕ =            (2) 

 
where εκ is the volume fraction of the κ-phase 
 

V
Vκ

κε =             (3) 

Vκ being the volume of the κ-phase contained within V. Using L, the length of the unit cell, as the characteristic length, 
||<vβ>β|| as the reference velocity and L2/DAβ as the characteristic time, the dimensionless version of the macroscopic 
one-equation model takes the form:  
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where {CA} represents the macroscopic average concentration of nutrients A within the averaging volume, <vβ>β, is the 
dimensionless intrinsic average velocity in the β-phase, KAeq the partition coefficient between the γ-phase and the β-
phase at equilibrium for species A, and Pe is the cell Peclet number. These last two coefficients are defined below in 
Eq. (15). The dimensionless effective reaction rate coefficient, kAeff, and the dimensionless effective dispersion tensor, 
DAeff, are respectively given by: 
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Here, nκχ is the unit normal vector directed from the κ-phase toward the χ-phase, I is the unit tensor, βv~  is the 

dimensionless local spatial deviation of the velocity defined by the classical decomposition β

βββ vvv −=~  and κ is a 

weighted diffusion coefficient ratio given in Eq. (15). 
The effective dispersion tensor involves two closure variables bγ and bβ that are defined by the following 

(dimensionless) closure problem: 
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As in the averaged form of the mass conservation equation, the dimensionless quantities appearing in this closure 

problem are defined by the following expressions (these definitions are consistent with those used in Ochoa (1988), 
Quintard and Whitaker (1994) and Neculae et al. (2002)): 
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where DAγ is the diffusion tensor of species A within the γ-phase (m2.s-1) resulting from another up-scaling, DAβ the 
diffusion coefficient of species A in the β-phase, αA the interfacial mass transfer coefficient for species A (m.s-1), kA the 
reaction rate coefficient of species A (s-1). Note that DAγ (and DA) are considered as diagonal ones here. 

To test this macroscopic model, comparisons with experimental data on the evolution of the macroscopic 
concentration would be necessary. However, the macroscopic dispersion tensor must be known for a given 
configuration. The present work provides a solution algorithm of the closure problem in order to compute DAeff. Section 
2 of this paper deals with the reformulation of the closure problem in a more tractable form, providing an alternative 
convenient expression of the dispersion tensor. The numerical method and algorithm used to solve this problem are also 
detailed, the validation of which is reported in section 3. To do so, data extracted from the literature are used 
corresponding to cases that can be considered as under-classes of the present model, namely the pure diffusion 
problem, the reaction-diffusion problem and the advection-diffusion problem, all being considered in a two-phase (or 
region) system. Finally, in section 4, results obtained for the full process in a three-phase system are presented. 

 
2. Numerical solution of the closure problem 
 
2.1. Reformulation of the closure problem and the effective dispersion tensor 
 
In order to simplify the expression of the dimensionless dispersion tensor (Eq. (6)), we introduce two variables 
expressed by 
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Moreover, according to the boundary condition (11) and the definition of κ (Eq. (15)), uβ and uγ can be related by the 
following relationship 
 

γβ uu .AeqK−=            (18) 
 
Finally, we decompose the closure variables according to 
 

γβ=η+= η ,βηη udb B           (19) 
 
Using such a decomposition, two problems independent of uβ and uγ are obtained. These problems must be solved on a 
unit cell representative of a periodic porous medium. The issue concerning periodic boundary conditions has been 
thoroughly discussed elsewhere (Whitaker, 1999). 
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Once the two above problems are solved, one can compute bη according to  

 

γβηβ

β

β

β
η ,=−=

B
B

d
db ηη

          (36) 

 
To obtain this last relationship, we have made use of the first of Eq. (14). Moreover, to simplify the computation of the 
dispersion tensor, another form of Eq. (6) is derived. To do so, the averaging theorem, relating the average of a gradient 
to the gradient of the average (Howes and Whitaker, 1985), is used. 
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In addition, according to Eq. (14), <bη>=0 eliminating its gradient in Eq. (37). The effective dispersion tensor can 

therefore be rewritten as: 
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βββγAeff bvbbκIκD ~Pe+∇+∇⋅+ε+ε= βγ        (38) 

 
2.2. Algorithm 
 

Our numerical approach developed in this work makes use of the finite volume discretisation method over a 
Cartesian structured grid. In order to solve closure problems (Eqs. (20) to (35)), the local (or microscopic) velocity field 
must be known. The computation of the velocity can be considered independently and can be performed on the basis of 
the Stokes or Navier-Stokes model. In this work, the Navier-Stokes problem is solved using an artificial compressibility 
algorithm and a modified QUICK scheme to treat the non-linear term. The closure problems to be solved have 
essentially a diffusion/convection/reaction structure. A staggered grid is employed (Bη and dη are located at cell centres 
while velocities are given on cell faces) and convective terms are treated with a first order upstream scheme while the 
diffusive ones are discretized using a standard second order centred scheme. Appropriate discretization of the boundary 
conditions is used to ensure a second order approximation at the Aβγ, Aαγ Aαβ interfaces. Because of the structure of the 
problem, the linear system obtained is not necessarily symmetric and is solved by a Stabilized Bi-Conjugate Gradient 
(Bi-CGSTAB) method. 
 
3. Validation 
 

Before using the program in its complete configuration (namely, three phases implying diffusion, reaction and 
advection), we compared results for simpler cases available in the literature. These configurations can all be considered 
as particular cases of our general formulation. 
 
3.1. Diffusion problem 
 

First, the pure diffusion problem was studied in order to validate the code. To do so, we used results given by 
Quintard and Whitaker (1987). In their work, a model for the determination of the macroscopic permeability tensor for 
a single phase flow in a heterogeneous medium composed of two regions was developed. This problem is equivalent to 
ours while setting Ki=0, αγ=0, and Pe=0 in the initial problem given by Eqs. (7) to (14) where integral terms can be 
easily discarded and in which circumstances bη=dη. The expression of our dimensionless effective dispersion tensor 
(introducing the parameters above and considering a fluid-phase and a “cell”-phase) is also equivalent to the one of the 
permeability tensor derived by Quintard and Whitaker. Figure (2) shows the configuration of the unit cell used for 
comparison as well as the results plotted for different values of εβ.  
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Quintard & Whitaker (1987) This work
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εβ=0.36

γ
β

 
 

Figure 2. Configuration of the unit cell used for the pure diffusion problem and comparison between results given 
by Quintard and Whitaker (1987) and ours. The grid was of 40×40. 

 
According to Figure (2), we can notice that our results are in excellent agreement with those in the cited reference. 

Moreover, as indicated by Quintard and Whitaker, the longitudinal component of DAeff tends to a limit value for a given 
volume fraction for large values of DA

xx. 
 
3.2. Diffusion-reaction problem 
 

A problem identical to the one considered in this work without convection and with no solid phase was treated by 
Ochoa (1988). The closure problem obtained by this author was solved in this reference on the unit cell of Fig. (3) for 
εβ=0.64; 0.51; 0.36 using a Finite Difference Method (FDM) and a Boundary Element Method (BEM) for εβ=0.64; 
0.36.  
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Figure 3. Comparison of results given by Ochoa and ours. Ki=2.78 10-3, DA=2I, αγ=10I, κ=I, KAeq=0.5. 
 
In Figure (3), we have reported the x component of DAeff as a function of the number of grid blocks in each 

direction. We have also represented by a line Ochoa’s results obtained with the BEM and 200 elements. Again, 
agreement between our results and data available in the above mentioned reference is very satisfactory. For instance, 
there is less than 1% error between our results for a grid of 200×200 and Ochoa’s ones obtained with the BEM. 

 
3.3. Diffusion-advection problem 
 

Here, we treat the classical problem of dispersion of a tracer within a fluid saturating a homogeneous porous 
medium. Results to this problem were provided by Quintard and Whitaker (1994) on a model system for which the unit 
cell is represented in the inset of Fig. (4). In such a case, it is sufficient to set εγ=0. As shown in Fig. (4), the xx 
component of the dimensionless effective dispersion tensor follows a classical trend as a function of the cell Peclet 
number. Moreover, one can note that our results are in perfect agreement with those of this reference. 
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Figure 4. Longitudinal component of DAeff as a function of the cell Peclet number, Pe. 100x100 grid blocks 
 
4. Results 

 
In this section, we present numerical results obtained from the solution of closure problems given by Eqs. (20) to 

(35) computed on a two-dimensional periodic unit-cell shown in the inset of Fig. (6a). In each case, the solid (α)-phase 
is surrounded by the cell (γ)-phase, and limit cases correspond to the presence of either the solid- or the cell-phase only. 
 
4.1. Influence of the cell Peclet number and of the reaction term 
 

The influence of both Pe and Ki is investigated keeping εα+εγ constant and equal to 0.64. First, as shown in Fig. 
(6), one can see that the longitudinal component of the effective dispersion tensor follows a classical trend as a function 
of the cell Peclet number. Moreover, the three sets of simulations performed with εα=0, εα =0.64 and εα=0.16, indicate 
that, for the values of the parameters used here and a given Peclet number, the macro-scale dispersion weakly depends 
on the respective values of εα and εγ when the fluid volume fraction remains constant. The slight increase of xx

AeffD  
with εγ at low Peclet numbers can be attributed to diffusion occurring in this phase. 
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Figure 6. Macroscopic longitudinal dispersion coefficient as a function of Pe a) for three different values of εα (0, 
0.64 and 0.16) Ki=2.78 10-3, DA=2I, αγ=10I, κ=I, KAeq=0.5 b) for four values of Ki (0, 2.78 10-3, 27.8 and 278) and 

εα=0.16. 40×40 grid blocks. 
 

The dependency of xx
AeffD  upon the kinetic number while varying Pe is more complex as indicated in Fig. (6b). For 

Pe smaller than 10, xx
AeffD  increases when Ki increases whereas for Pe larger than about 100, on can observe that this 

effective dispersion coefficient decreases, although less significantly, when Ki increases.  
 

4.2. Influence of volume fractions on the dispersion tensor 
 

In this part of the work, the influence of the volume fraction of each phase on the macroscopic longitudinal 
dispersion is studied. This is performed for three different Peclet numbers (10-2, 1 and 102) and results of xx

AeffD  are 
represented versus cell and solid volume fractions in Fig. (7). 
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Figure 7. xx
AeffD  represented as a function of the solid (εα) and cell (ε γ) phase volume fractions. (a) Pe=0.01, (b) Pe=1 

and (c) Pe=100. (d) Values of the longitudinal hydrodynamic dispersion term as a function of εγ and Pe. Ki=2.78 10-3, 
DAγ=2I, αγ=10I, κ=I, KAeq=0.5. 200x200 grid blocks 

 
For Pe=0.01 and 1 (Figs. (7a) and (7b)), the longitudinal dispersion coefficient decreases, as expected, when the 

fluid volume fraction decreases. However, for Pe=100 (Fig. (7c)), one can clearly observe that xx
AeffD  exhibits an 

a) b)

c) d)

a) b)



Eurotherm  Seminar N° 81   Reactive Heat Transfer in Porous Media, Albi, France June 4 – 6, 2007  ET81-XXXX 

 
extremum which occurs for εβ close to 0.5. This trend is due to the contribution of the hydrodynamic dispersion 
represented by the term Pe<vβbβ> in the macroscopic dispersion tensor. In (Fig (7d)), we have represented the 
longitudinal part of the hydrodynamic dispersion as a function of εα (εγ was kept equal to 0) for the three values of Pe 
considered here. While this term always exhibits a “bell-shape” dependence upon εα with an extremum at εβ≈0.5, it 
remains small compared to the effective diffusion (including molecular diffusion and tortuosity effects) part of the 
macro-scale dispersion tensor when Pe remains smaller than or of the order of unity. However, for larger values of Pe 
(100 for instance), convection is dominant and the hydrodynamic part is the major contribution in the macroscopic 
dispersion explaining the behaviour reported in Fig. (7c).  
 
5. Conclusion 
 

In this work, we developed a numerical tool to solve the closure problem associated to the macroscopic one-
equation model derived earlier (Lasseux et al., 2004) describing an advection/diffusion/reaction problem in 
homogeneous porous media involving three distinct phases (a solid phase, a fluid phase and a cell-growing phase) as 
encountered during in vitro tissue growth. After reformulating both the closure problems and the expression of the 
effective dispersion tensor in more tractable dimensionless forms, the numerical procedure was presented. It was first 
successfully validated on the basis of three different problems documented in the literature and representing special 
cases of a more general one envisaged here. In a second step, the numerical procedure was used to compute the 
effective dispersion tensor for the complete three-phase problem and illustrative results were provided for simple model 
2D periodic unit cells. The dependence of the longitudinal effective dispersion tensor upon some of the physical 
dimensionless parameters like the cell Peclet number, the kinetic number and volume fractions was investigated. Future 
work will consist in the association of the present effective dispersion coefficient estimation to numerical growth 
simulations providing a complete set of numerical analysis of the whole process that could be further compared to 
direct observations of laboratory experiments. 
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