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BOUNDED HEIGHT IN PENCILS OF FINITELY

GENERATED SUBGROUPS.

F. AMOROSO, D. MASSER AND U. ZANNIER

Abstract. We prove height bounds concerning intersections of finitely
generated subgroups in a torus with algebraic subvarieties, all varying
in a pencil. This vastly extends the previously treated constant case and
involves entirely different, and more delicate, techniques.

The paper complements and sharpens Mordell-Lang by replacing
finiteness by emptyness, for the intersection of varieties and subgroups,
all moving in a pencil, except for bounded height values of the parame-
ters (and excluding identical relations).

More precisely, an instance of the results is as follows. Consider
the torus scheme Grm/C over a curve C defined over Q, and let Γ be a

subgroup-scheme generated by finitely many sections (satisfying some
necessary conditions). Further, let V be any subscheme. Then there is

a bound for the height of the points P ∈ C(Q) such that, for some γ ∈ Γ
which does not generically lie in V , γ(P ) lies in the fiber VP .

The context studied in previous papers concerned only the highly
special case when V is the origin of Grm/C; on the contrary, here V (or

VP ) is not assumed to have any kind of additional structure; this feature
heavily prevents the previously known proof pattern to apply.

We offer also more precise quantitative bounds, which in particular
show that certain linear successive minima are almost equal.

We further offer some direct diophantine applications, to illustrate
once again that the results implicitly contain information absent from
the previous bounds in this context.

1. Introduction

Let C be a projective smooth curve defined over Q, with function field
denoted F := Q(C). We choose once and for all a height h on C(Q).1

Let now g1, . . . , gκ ∈ Gm(F) be non-zero rational functions on C, supposed
to be multiplicatively independent modulo constants. By this we mean as
usual that, for integers a1, . . . , aκ, we may have ga11 · · · gaκκ ∈ Q∗ only if all ai
vanish. This is equivalent to suppose that, for any point P0 ∈ C not a zero
or pole of any gi, the functions gi/gi(P0) are multiplicatively independent
in the usual sense.

An issue which appears natural is to study the set of points P ∈ C such
that the values g1(P ), . . . , gκ(P ) become multiplicatively dependent, thus
destroying the generic independence property of the functions.

Date: February 11, 2016.
1For instance, we may choose a system of Weil’s functions associated to a divisor of
degree 1 and a corresponding height, as explained e.g. in [6].
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The generic independence implies that all such points P lie in C(Q), and
it is a result of [7] that their height is bounded above (in terms only of
g1, . . . , gκ). Here is a formulation of Theorem 1’ therein:

Theorem 1.1 ([7], Theorem 1’). Let Γ ⊂ Gm(F) be a finitely generated
subgroup of non-zero rational functions on C such that the only constants in
Γ are roots of unity. Then the set of P ∈ C(Q) such that for some x ∈ Γ\{1}
we have x(P ) = 1 is a set of bounded height.

A simple example is with C the affine line, F = Q(t) and Γ the subgroup
generated by t and 1− t. It implies that if t is algebraic with

tn(1− t)m = 1

(for integers n,m not both zero) then its height is bounded (independently
of n,m).

It is easily seen that the condition on Γ is necessary: take a non-torsion
constant c ∈ Γ and a non-constant γ ∈ Γ and consider the equation cnγ(P ) =
1, whose solutions have unbounded height.

Theorem 1.1 was then used in the same paper [7] as a crucial tool to
obtain a finiteness result over the whole Q (valid when we impose an addi-
tional multiplicative relation). As in several other circumstances, this pro-
vides evidence that bounded-height conclusions, in addition to their possible
relevance in themselves, may be quite useful for applications.

Here we prove a more general bounded-height result for specializations in
finitely generated subgroups, this time varying in families.

Before stating this, note that Theorem 1.1 may be also phrased as a
kind of toric analogue of (a corollary of) Silverman’s Specialization Theorem
([22], Theorem C). To illustrate this link, let us consider the ‘trivial’ (or
‘constant’) family Gm/C := Gm × C and the sections γi : C → Gm × C, given
by P 7→ (gi(P ), P ), where gi are generators for Γ, independent modulo
constants. The above conclusion then means that the set of points P where
the values of the sections are multiplicatively dependent has bounded height.

Remark 1.2. Silverman’s specialization results in fact concern mainly abelian
families, actually non-isotrivial, whereas algebraic tori have only (iso)trivial2

families; this introduces some differences in the assumptions (as in results by
Manin and Demjanenko, see [21]); for instance the assumption of mere in-
dependence has to be strengthened, as above, in the sense modulo constants,
in order to obtain bounded height.

Further differences with respect to the abelian case are due to the fact that
heights in abelian varieties behave like quadratic forms, so somewhat more
‘regularly’ than in the toric case, when this lack may introduce difficulties
in some parts of the proofs for the toric case.

Now, multiplicative dependence (at P ) means that some nontrivial mono-
mial attains the value 1 at P . Then, rather more generally, given a constant
family (scheme) π : Gr

m/C := Gr
m × C → C, a subvariety V ⊂ Gr

m × C and

2By ‘isotrivial’ we mean that the family becomes trivial, i. e. a product, after suitable
extension of the base.
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sections γi : C → Gr
m/C generating a group Γ, we may ask the following

(somewhat vague)

Question: What can be said about those points P such that some nontrivial
element of the group Γ when specialized at P lies on the fiber VP = π−1(P ) ⊂
Gr

m.

The previous situation is obtained in the very special case when VP is
constantly equal to the origin, i. e. V = origin×C. By contrast, we stress that
here neither V nor the VP are assumed to have any kind of group structure;
especially this feature heavily prevents the previously known proof-pattern
to apply.

As a further motivation for such question, note that for a fixed subvariety
V0 ⊂ Gr

m, the intersection of V0 with a finitely generated subgroup Γ0 has
a very special structure (its Zariski closure is a finite union of translates of
algebraic subgroups contained in V0), due to theorems tracing back to Lang,
Evertse, van der Poorten-Schlickewei, Laurent, which represent (the toric
case of) Lang’s celebrated conjectures; in particular, we may say that for
‘general’ V0 this intersection is finite, and hence, in a sense, unlikely. Thus
it looks sensible to ask about the intersection when both V0 and Γ0 vary in
an algebraic family, and for instance ask: when is the intersection nonempty
? In the case of a pencil of varieties, this amounts to the above question.

The present paper offers in a sense a complete solution to this issue, prov-
ing that on the appropriate assumptions we have generally bounded height
for any proper family of subvarieties. In particular, the said intersection is
empty except for a ‘sparse’ set of points.

For simplicity, we phrase this conclusion in the language of Theorem 1.1.
Namely, we consider a power Gr

m of the multiplicative algebraic group and
we let V be a subvariety of Gr

m defined over F; so we may view V as a
family of varieties parameterised by C. Then we denote by VP , for almost
all P ∈ C, a specialized variety defined e.g. by specializing at P a given
system of defining equations for V . We also need a simple

Definition Given a subgroup Γ of Gr
m defined over F we say that Γ is

constant-free if its image Γ′ by any surjective homomorphism Gr
m → Gm

satisfies the assumption Γ′ ∩Q∗ = Γ′tors of Theorem 1.1.

With such notation, we have the following uniform complement to (the
toric case of) Lang’s conjecture:

Theorem 1.3. Let Γ ⊂ Gr
m(F) be a finitely generated constant-free subgroup

and let V be a subvariety of Gr
m defined over F. Then the set of P ∈ C(Q)

such that for some x ∈ Γ \ V the value x(P ) is defined and lies in VP is a
set of bounded height.

Remark 1.4. Consider a “generic” situation when Γ ∩ V is empty and
VP does not contain coset of positive dimension. Mordell-Lang tell us that
ΓP ∩VP is finite for all P . Theorem 1.3 gives the following complement: for
P of large height ΓP ∩ VP is empty.

A simple example is again with C the affine line as above, now with
Γ ⊂ G2

m the subgroup generated by (t, 1) and (1, 1 − t). Let V be the
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hypersurface of G2
m defined by the equation x + y = 1; here we obtain

bounded height for the equation

tn + (1− t)m = 1

(this time with n,m not both 1). But the method applies much more gen-
erally to equations like

tn + (1− t)m + (1 + t)l = 1

and even

tn(1− t)m + α(1 + t)l(2− t)k = β

for any algebraic α, β (which for α = 0, β = 1 reduces to the equation above
and for α = 0, β = 2 is the new tn(1− t)m = 2 now for any n,m).

Remark 1.5. For a subvariety V defined over the constant field Q (i. e. we
have a ‘trivial’ family with VP = V for all P ), the conclusion of Theorem 1.3
still holds for a subgroup Γ which is not necessarily constant-free, but such
that Γ/Γ ∩Gr

m(Q) is of rank 1.

Note that some assumption on Γ is needed, since Theorem 1.3 contains
Theorem 1.1 as a special case. As a non-trivial example, we may take as C
the affine line as above, and Γ ⊂ G2

m the subgroup generated by γ1 = (t, 1)
and γ2 = (1, 2t) (note that these vectors are multiplicatively independent
modulo constants). Let V be the hypersurface of G2

m defined by the equa-

tion x + y = 0. Then for n ∈ N the element x(n) = x(n)(t) = γn+1
1 γn2 =

(tn+1, 2ntn) ∈ Γ is not generically in V but its specialization at t = −2n is.
Of course the image of Γ under the isogeny sending (x, y) to xy contains 2.

Choosing Γ = 〈(g1, . . . , gr)〉, where g1, . . . , gr are coordinate functions
on C, and V a subvariety defined over the constant field Q, we obtain a
bounded height result for certain ‘(semi)unlikely intersections’. To state
this, we denote as usual by [n] : Gr

m → Gr
m the morphism x 7→ [n]x := xn of

multiplication by n ∈ Z.

Corollary 1.6. Let C ⊆ Gr
m be a curve and let V ⊆ Gr

m be a subvariety,
both defined over Q. Then the height of the points P ∈ C(Q) such that there
exists an integer n with [n]C 6⊆ V and [n]P ∈ V (Q) is bounded.

Corollary 1.6 immediately follows from Theorem 1.3 and Remark 1.5.
Indeed, let n be an integer such that [n]C 6⊆ V . Then γ := (gn1 , . . . , g

n
r ) ∈

Γ \ V . By Theorem 1.3, and since now VP = V for all P , the height of the
points P ∈ C(Q) such that [n]P ∈ V (Q) is bounded independently of n.

Note that by the Skolem-Mahler-Lech theorem, for a fixed point P0 ∈ Gr
m

the set of integers n with [n]P0 ∈ V is a union of a finite number of points
and arithmetic progressions, and is ‘usually’ finite.3 As in a comment above,
the corollary says that when we move P0 along a curve C the corresponding
set is ‘usually’ empty, except for points P0 ∈ C(Q) of bounded height.

3If the set is not finite, V must contain the Zariski-closure of a set [nq + s]P0, n ∈ N, for
suitable integers q 6= 0, s, and in particular must contain a coset of an algebraic subgroup
of positive dimension unless P0 is torsion.
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A relevant issue is to detect the set of integers n such that [n]C ⊆ V . Now,
this amounts to [n]x ∈ V where the coordinates of x are the restrictions to
C of the coordinate functions on Gr

m. Classical results describe the Zariski
closure of these [n]x as a finite union of cosets of algebraic subgroups. Thus,
if C is not contained in any translate of a proper subtorus, no proper algebraic
subgroup can contain a multiple [m]x for m 6= 0, proving that the said set is
finite unless V is the whole space. (See also the paper [23] by Silverman and
Voloch for more general finiteness results in this direction.) Actually, using
for instance results in [10], it is not difficult to reach directly this finiteness
conclusion, moreover determining effectively the set.

A similar remark holds for Theorem 1.3: we may compute ‘effectively’
the intersection x ∈ Γ ∩ V , which however may be infinite in general.4

1.1. Two simple applications. We show by means of two simple exam-
ples that our results, actually already very special cases of them, are ca-
pable of applications to diophantine issues, recovering certain finiteness
statements. The result achieved in the first example is known and may
be obtained by a variety of techniques, but here we reach it directly as a
consequence of the above corollary. The second example appears to be new.
Probably it can be sharpened, but our aim here is merely to illustrate pos-
sible applications, not to develop them in depth. For this same reason we
shall be sketchy in the arguments.

Example 1: A family of Thue’s equations. Consider the Thue’s equation

x3 − (t3 − 1)y3 = 1,

where t > 1 is an integer, to be solved in integers x, y.
Our results easily imply that there are only finitely many integers t such

that the equation has an integer solution with y 6= 0, 1.

In fact, let u = 3
√
t3 − 1, e.g. the real determination. It is very easy to

see that the group of units of the ring Z[u] is generated by ±1 and the unit
t− u.

Let (x, y) ∈ Z2 be a solution, so x−uy ∈ Z[u] is a unit of norm 1, whence
= (t− u)n for some integer n, and on taking conjugates over Q we have

(t− u)n + ω(t− ωu)n + ω2(t− ω2u)n = 0,

where ω is a primitive cube root of 1.
If n > 1, one may easily show that the left side does not vanish identically.

(Even without abc over function fields, note that on dividing by the first
term we would find an equation 1 + ωρn + ω2(−ω − ω2ρ)n = 0, where
ρ = (t − ωu)/(t − u) is nonconstant, which is impossible.) Hence, by the

corollary (with C a curve with function field Q(z, 3
√
z3 − 1) and r = 3), the

height of t is bounded and finiteness follows.
This particular result (even that there are no t) has been known for nearly

a century, but our method allows substantial generalizations; for example

4We do not pause here to give proofs of these statements, which fall in well-known treat-
ments, not otherwise related to the present context.
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it may be applied to a conjecture of Thomas about Thue equations, and
extended to non-Thue equations such as

x3 − (t3 − 1)y3 + 3(t3 − 1)xy + (t3 − 1)2 = 1

(which cannot be obtained from a Thue equation by an inhomogeneous linear
transformation), and even to more variables such as

x4 + (4t4 − 1)y4 + (4t4 − 1)2z4 + 2(4t4 − 1)x2z2 − 4(4t4 − 1)xy2z = 1.

Example 2: Zeros of polynomial recurrences. Consider a linear recurrence
sequence (un(t))n∈N of polynomials in t, defined by prescribing polynomial
initial data (not all zero) u0(t), . . . , ur−1(t) ∈ Q[t] and imposing

un+r = c1(t)un+r−1 + . . .+ cr(t)un, n = 0, 1, . . . ,

where ci(t) are polynomials with coefficients say in Q. We assume for sim-
plicity that the characteristic polynomial Zr− c1(t)Zr−1− . . .− cr(t) has no
multiple roots in an algebraic closure of Q(t).

We assert that: The set of algebraic numbers ξ such that for some n we
have un(t) 6= 0 but un(ξ) = 0 has bounded height. In particular, there are
only finitely many such ξ having bounded degree over Q.

Again, this follows rather immediately from the corollary and Northcott’s
theorem (see [6]), after expressing un(t) as a linear combination of n-th
powers of the roots of the recurrence (i. e. the roots of the characteristic
polynomial).

A rephrasing of the last conclusion is that for every given D there are
only finitely many monic polynomials in Q[t] of degree ≤ D which may
divide some un(t).

In several cases we may further sharpen this conclusion. Assume for
instance that r ≥ 3 and that the characteristic polynomial has Galois group
Sr over Q̄(t) (which is the ‘generic’ case).5

Then, in particular, the recurrence is non-degenerate, meaning that no
ratio of its roots is a root of unity. Under this assumption, and by the
Skolem-Mahler-Lech theorem, only finitely many un may vanish identically.

Suppose now that an algebraic number ξ0 is a root of un for infinitely
many n. Then, again by the Skolem-Mahler-Lech theorem ‘several’ ratios of
the specialised roots become roots of unity, so the n-th powers of the roots of
the recurrence collapse and vanishing of un(ξ0) gives rise to linear relations
among these roots of 1. If the order of these roots of unity is eventually
unbounded, then known theorems on torsion points on curves in Gr

m (see
[24]) imply that the roots of the recurrence may be grouped in subsets of
cardinality ≥ 2 such that all the ratios of two roots in the same subset are
multiplicatively dependent as algebraic functions; but the assumption on
the Galois group then easily yields a contradiction. On the other hand, if
the order of the relevant roots of unity is bounded, then we find only finitely
many ξ0.

Combining this with the previous conclusion, we have:

5A doubly transitive Galois group would suffice for the conclusion below. However, as
stressed above, it is beyond the scope of these examples to push the analysis further.
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On the above assumptions, apart from a finite set of polynomial factors,
the degrees of the irreducible factors (over Q) of the polynomials un tends
to infinity with n.

Note that some assumption as above is needed for this conclusion; an
example in this direction is given by the Chebishev polynomials Tn defined
by T0(t) = 2, T1(t) = t and Tn+2(t) = tTn+1(t) − Tn(t) for n ≥ 0. It turns
out that, for odd m, Tq divides Tmq for all odd q, providing an example
when the last conclusion is not true. Similarly for polynomials like un(t) :=
Tn(t)Tn+h(t), where r = 4 but the Galois group is too small.

There are also other applications to common zeros of polynomials in two
linear recurrences (e.g. as outlined in Remark 1.11 below). We plan to
develop this in a subsequent paper.

1.2. A relation with Unlikely Intersections. The boundedness of the
height in the set of P ∈ C(Q) such that [n]P ∈ V (Q) is related also
to the context of Unlikely Intersections, and more precisely to degenerate
cases of the Bounded Height Conjecture6 of Bombieri-Masser-Zannier [8]
(nowadays a theorem of Habegger [12]), as in Example 1.3 of [24]. To
describe this, let X = C × V ⊂ Gr

m × Gr
m. If P ∈ C(Q) is such that

[n]P ∈ V (Q), then (P, [n]P ) is in the intersection of X with the algebraic
subgroup Hn = {(x,xn), x ∈ Gr

m} of dimension dimHn = r ≤ codimX.
Thus it would be tempting to apply the former Bounded Height Conjec-

ture = Habegger’s theorem. Nevertheless, such result gives us no informa-
tion here, since X is degenerate: in the notation of [8] we have Xoa = ∅.

This failure is not surprising, because in the degenerate cases we cannot
hope to have in general bounded height in the whole union ∪n(X ∩ Hn).
However, our Corollary shows that, at least, bounded height is recovered in
the projection of the whole union to the first factor.

In the special case V = C, this kind of problem has been intensively stud-
ied by Bays and Habegger in [1], who show (under suitable assumptions)
the finiteness of the set of P ∈ C such that [n]P ∈ C for some n ≥ 2.7 As
an important tool they first observe that the height in this set is bounded,
except in the trivial case when C is a translate of a subtorus (op.cit., Lemma
6). This last result is a rather direct consequence of a generalized Vojta’s
inequality due to Rémond [18]. This finiteness result provides further evi-
dence of the usefulness of height bounds as in this paper (see Remark 1.11
at the the end of this introduction to more on finiteness).

6Let X ⊆ Grm be a subvariety. Define Xoa as the complement in X of the union of unlikely
intersections of positive dimension, namely the components of some positive dimension
δ > 0 of some intersection X ∩ B, where B is a translate of an algebraic subgroup and
dimB ≤ δ + codimX − 1. By the former Bounded Height Conjecture, the Weil height is
bounded in the intersection of Xoa with the union of algebraic subgroups of dimension
≤ codimX.
7This question was originated by A. Levin; see [24].
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1.3. A special case. As another special case, let us consider a simple in-
stance of Corollary 1.6. Let C be the line in the plane defined by y − x = 1
and let V = C. Corollary 1.6 for these data asserts that the height of the
roots of (t + 1)n − tn − 1 is uniformly bounded for n ≥ 2. All of these
polynomials have the simple root t = 0 and may have cyclotomic factors
t+ 1, t2 + t+ 1 (depending on the congruence class of n mod 2 and 3). For
n ≥ 2, the n-th Mirimanov polynomial ([16]) Fn is defined as (t+1)n−tn−1
deprived of these factors. Beukers [2] proved that the polynomials Fn and
Fm do not have non-trivial common factors for n 6= m. As a crucial inter-
mediate result (see op.cit., Lemma 3.5), he shows that for a root t of Fn the
(non-logarithmic, projective) height of (1 : t : t+ 1) ∈ P2(Q) is at most 216,
thus giving a positive answer to our bounded-height question in this special
case.

Remark 1.7. Heights and Mahler’s measure. For these polynomials
(t+1)n−tn−1 studied by Beukers, and similarly for polynomials of the shape∑r

i=1 ciPi(t)
n, n ∈ N, the Mahler’s measure (see [6]) is easily estimated as

being � Cn. By standard comparison results, this would imply bounded
height for the roots, as soon as we knew irreducibility of the polynomial,
or at least a lower bound � n for the degrees of irreducible factors (apart
from fixed factors). However this (quasi)irreducibility, if at all holding for
all large n, seems very hard to prove, and indeed in Beukers’ case is a crucial
feature behind and beyond his main issue.8

Remark 1.8. A pleasant exercise. The mentioned proof of Beukers
as it stands does not apply to substantially more general cases, e.g. on
replacing 1, t, 1 + t with higher degree polynomials and/or working with a
larger number of polynomials, or even rational or algebraic functions. We
shall further comment on this point below, now let us observe that in such
extended cases we would very soon meet for instance equations of the shape

c1P1(t)n + . . .+ crPr(t)
n = 0,

where the ci are given algebraic numbers, the Pi are given polynomials over
Q and n varies through all integers such that the left side is not identically
zero. It does not appear easy to analyse the union U of the sets of solutions,
for varying n; it does not seem obvious to us even to prove that U has infinite
complement in Q (or at least to exclude that U equals the whole Q). At
least when no ratio Pi/Pj , i 6= j, is constant, this can be indeed proved9

by looking at the absolute values of the terms, a pleasant exercise for the
interested reader; but we do not see other easy methods, still less how to
prove in some standard direct way more stringent properties of U .

8See [2] also for the distribution of the zeros of Fn; in particular, one finds that there
are several zeros with unbounded complex absolute value, which would imply unbounded
height if these large zeros were somewhat ‘densely distributed’ in a possible factor over Q.
9For certain abelian analogues, even to establish this mere fact does not seem even effec-
tively decidable with known methods; see the appendix by Victor Flynn in [15], where an
example is given (discussed also in 1.10 below) for which one can exclude certain infinite
sets of values of the parameter. However that method, a modern version of Chabauty’s,
is not guaranteed to apply generally.
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Our present results imply in particular that U in fact has bounded height
except in well classified cases.

Let us now comment further on Beukers’ proof. The starting point is an
explicit construction of Padé approximants to powers of the linear polyno-
mial 1− t, which goes back to [3] and involves hypergeometric polynomials.
This leads to identities of the form A(t)tn + B(t)(1 − t)n = C(t) (suitable
for x + y = 1). In our general situation we cannot hope to use such an ex-
plicit construction; just to mention one indication in this respect, results of
Bombieri-P.B. Cohen (see [5]) suggest that in general the coefficients of these
Padé approximants have a height growing much faster (i. e. like exp(cn2))
than in the case of Beukers (when it grows like exp(cn)), and this would
destroy the basic estimates necessary for the method to go through.

We use instead Thue’s Method for avoiding such explicit constructions;
this involves divided derivatives, Siegel’s Lemma and a zero estimate based
on Wronskians. However, to deal with certain unexpected vanishings we
have to introduce a quite intricate descent (whose structure is different with
respect to other investigations using Wronskians). This allows us to prove
the following explicit version of a special case of Theorem 1.3.

Theorem 1.9. Let r ≥ 2 and f1, . . . , fr ∈ F be non-zero rational functions
such that fi/fj is non-constant for some i and j. Then there exist positive
real numbers C depending only on f1, . . . , fr, having the following properties.
Let α = (α1 : · · · : αr) ∈ Pr−1(Q). Consider, for a natural number n, a
solution P ∈ C(Q) of the equation

α1f1(P )n + · · ·+ αrfr(P )n = 0.

Then, if n ≥ C and if there are no proper vanishing subsums, we have

(1.1) h(P ) ≤ rh(α)

n
+ C.

Our method provides even more explicit bounds: see Theorem 3.1 in
Section 3.

We remark that the dependence in α in equation (1.1) above is essentially
sharp, as we can easily see using Siegel’s Lemma (cf remark 3.2, iii)).

We finally remark that the assumption that n is sufficiently large is nec-
essary: we may have α1f

n
1 + · · ·+αrf

n
r = 0 identically for some small values

of n.
Reciprocally, our results implies that α1f

n
1 + · · ·+αrf

n
r cannot in fact be

zero for infinitely many n. This last fact may be also derived directly on
using the main result of [10] (i. e. a general form of the abc-inequality over
function fields).10

Of course the use of Thue’s Method in classical diophantine approxi-
mation is well-known to lead to results which are usually not effective.
By contrast all the results of this paper are effective. For example with
tn + (1 − t)n = 1 (and n ≥ 2) they lead quickly with hardly any effort for
precision to H(t) ≤ 10120 for the (non-logarithmic) height (in fact Beukers’s

10It is no coincidence that the proof of this uses Wronskians, which also appear in our
arguments; on the other hand, no consideration of heights appears in [10].
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result implies the bound 216).

We shall prove Theorem 1.9 in Section 3, and we shall deduce Theorem 1.3
from it in Section 4.

Remark 1.10. Abelian analogues? In this paper we limit ourselves
to the toric case, but analogous questions and statements can be naturally
formulated in the abelian context, thus extending Silverman’s very setting.

A specific example of what would be the analogue of our main issue for
that case appears in the paper [15], where we find the pencil J of Jacobians
Jt of the curves Ht : y2 = x6 + x + t, of generic genus 2, parametrized by
t ∈ A1; we also find the section σ : A1 → J , obtained by defining σ(t) ∈ Jt
as the class of the divisor ∞+ −∞−, difference of the two poles of x on Ht

(let us forget here about the values for which Ht has genus < 2). One can
now consider the subvariety V of J obtained as the union of Ht (embedding
Ht in Jt e.g. through ∞+).

The question now is: What can be said about the points t0 ∈ A1 such
that [n]σ(t0) ∈ Ht0, for some n = n(t0) > 3?11 Now, similarly to Re-
mark 1.8, even to prove that this set of t0 (necessarily algebraic) has infinite
complement in Q is far from being evident; the Appendix by Flynn to [15]
in particular achieves this, and much more, providing nontrivial congru-
ence conditions on the suitable t0. However Flynn’s method (a version of
Chabauty’s) is not guaranteed to work generally, and moreover the question
of whether the set of these numbers has or not bounded height remains open.
In fact, we do not know if and how the present methods can be adapted to
the abelian context. It seems to us a rather interesting issue to obtain such
an abelian analogue.

Remark 1.11. Finiteness? As already explained at the beginning of this
introduction, Theorem 1.1 was a main ingredient to prove the finiteness
result of [7]. We expect to prove more general statements as natural com-
plements to our Theorem 1.3. Let us discuss only two special and relevant
issues.

Let C be a curve of GN
m , not contained in any translate of a proper

subtorus, and V ( GN
m be a proper subvariety. Consider, as in in Corol-

lary 1.6, the set of P ∈ C(Q) such that there exists an integer n with
[n]C 6⊆ V and [n]P ∈ V . If codim(V ) > 1 we expect not only bounded
height but moreover finiteness. A special instance is a conjecture stated by
Levin, which predict finiteness if V is a curve (and N ≥ 3). As already men-
tioned at the end of § 1.2, Bays and Habegger [1] prove (with an additional
technical assumption) Levin’s conjecture in the further special case V = C.
The ingredients of their proof was a bounded height result of Rémond, Baker
lower bound for linear forms in logarithms and Pila-Wilkie Theorem on inte-
gral points. It is our intention to apply our main theorem in order to extend
this kind of result to a more general setting.

In a direction similar to example 2 of § 1.1, consider now two linear re-
current sequences (um(t)), (vn(t)) of polynomials, e.g. over Q. ‘Generically’

11We exclude here n = 3 because [3]σ(t) ∈ Ht identically.
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one should expect um, vn to be usually coprime, except in special circum-
stances. Now, our results indeed open the way to a complete classification
of the cases when um and vn have instead a common root, by bounding the
height of such possible roots; this allows other arguments to go through.
The above mentioned result of Beukers (§ 1.3) would appear as the very
special case when um = vm = the m-th Mirimanov polynomial.

Naturally, a number of details are necessary to obtain precise statements
and proofs, and these are the object of work in preparation.

2. Notation and Auxiliary Results.

2.1. Rational functions. Given f1, . . . , fr ∈ F not all zero, we put12

div(f1, . . . , fr) :=
∑
P

min
j

ordP (fj)P.

Note that deg(div(f1, . . . , fr)) = deg(div(gf1, . . . , gfr)) for any nonzero g ∈
F.

Let us denote d := −deg(div(f1, . . . , fr)). We remark that d ≥ 0, since for
example if f1 6= 0 we have

∑
P minj ordP (fj) ≤

∑
P ordP (f1) = 0. Moreover

d > 0 if and only if some fi/fj is non-constant.
As a special case, let f be a non-zero rational function on C. We define

as usual its degree d(f) as the the degree of the polar divisor div(f)∞ =
−div(1, f). This is the geometric height of (1 : f) ∈ P1(F).

An arithmetic height on F. We define an arithmetic height h(·) of
a rational function f on C as follows. We choose once and for all a non-
constant t ∈ F\Q. Let F (X,Y ) ∈ Q[X,Y ] be the irreducible polynomial
such that F (t, f) = 0 (note that F has degree at most d(f) in X and at
most d(t) in Y ).

Definition 2.1. For a function f ∈ F, we define the height h(f) as the
projective Weil height of the vector of the coefficients of F .

Clearly h(1/f) = h(f). Also, this coincides with the affine height on
Q[t] (if C is the affine line and f = P (t) is a polynomial then F (X,Y ) =
P (X)− Y .)

We shall need the following elementary estimates for this height.

Lemma 2.2. There is a constant c depending only on C and t with the
following properties. Let f ∈ F. Then we have

(i) h(fn) ≤ nh(f) + cnd(f) for any positive integer n,
(ii) h(f ′) ≤ c(h(f) + d(f)), d(f ′) ≤ cd(f) for f ′ = df/dt,

(iii) h(trf) ≤ h(f) + log d(t), d(trf) ≤ d(t)d(f) for the trace tr from F to
Q(t),

(iv) for g ∈ F we have

max{h(f + g), h(fg)} ≤ c(h(f) + h(g) + d(f) + d(g)),

(v) for any non-constant s ∈ F\Q there is C depending on s (and C, t)
such that the height of f with respect to s is at most C(h(f) +d(f)).

12Since we have chosen a smooth projective model of C, the closed points over Q of the
curve correspond to the places of its function field F = Q(C).
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Proof. We use resultants. Let F (X,Y ) be the irreducible polynomial for
f over Q(t): F (t, f) = 0. For (i) we can assume d(f) ≥ 1, and we take
the resultant of F (X,Y ) and Y n − Z with respect to Y to get a non-zero
polynomial Fn(X,Z) with Fn(t, fn) = 0. Its degrees in X,Z are at most
nd(f), d(t) respectively. And its height is at most n(h(f)+c); here one must
be careful to avoid a factorial in the number N of terms in the Sylvester
determinant, but it is easy to see that N ≤ (d(t) + 1)n2d(t) ≤ cn. Now
Fn might not be irreducible, but by well-known estimates the height of any
factor is at most

n(h(f) + c) + c(nd(f) + d(t)) ≤ nh(f) + cnd(f);

and (i) follows.
A similar argument works with (v), now taking the resultant of F (X,Y )

and S(X,Z) with respect to X, where S(t, s) = 0. Also with (iv): now
say G(t, g) = 0 and then for f + g we take the resultant of F (X,Y ) and
G(X,Z−Y ) with respect to Y ; then we do g/f with F (X,Y ) and G(X,ZY )
and deduce fg using h(1/f) = h(f).

And (iii) is rather easy: if

F (X,Y ) = F0(X)Y e + F1(X)Y e−1 + · · ·+ Fe(X)

then trf = −d(t)
e

F1(t)
F0(t) . Finally for (ii) we can also assume d(f) ≥ 1 and then

we note that

f ′ = − F ′0(t)fe + · · ·+ F ′e(t)

eF0(t)fe−1 + · · ·+ Fe−1(t)

so that we can use (iv).

�

As at the beginning, we choose once and for all a system of Weil’s func-
tions associated to a divisor of degree 1 and a corresponding height h on
C(Q). By a well-known result of Néron (see [17]), the height of P ∈ C(Q)
differs from h(t(P ))/d(t) by an error term bounded by a constant multiple

of 1 + h(P )1/2.

We need the following functorial bound for the arithmetic height associ-
ated to values of (f1, . . . , fr), which is an easy consequence of “Weil’s Height
Machine”:

Lemma 2.3. For r ≥ 2 let f1, . . . , fr ∈ F and P ∈ C(Q), not a pole or
a common zero of f1, . . . , fr. Put d := −deg div(f1, . . . , fr). Then the
projective Weil height

h(f1(P ) : · · · : fr(P )) = dh(P ) +O(1 + h(P )1/2)

where the implicit constant in the big-O may depend on f1, . . . , fr but not
on P .

Proof. Let E′ = −div(f1, . . . , fr). We may assume f1, . . . , fr linearly inde-
pendent over Q; indeed, we may select a basis, say f1, . . . , fs (s ≥ 2), of the
Q-vector space generated by f1, . . . , fr and observe that div(f1, . . . , fs) =
div(f1, . . . , fr) and h(f1(P ) : · · · : fr(P )) = h(f1(P ) : · · · : fs(P )) +O(1).
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Given a divisor D, we denote by hD the height on C(Q) associated to it,
which is defined up the addition of a bounded term: see [13], Part B for
details.

Let φ : C → Pr−1 be the morphism P 7→ (f1(P ) : . . . : fr(P )) and H be an
hyperplane of Pr−1. Then φ∗H is linearly equivalent to E′ (indeed, for i =
1, . . . , r − 1, set gi = fi/fr; then φ∗{xr = 0} = −div(g1, . . . , gr−1, 1) ∼ E′).

Thus h(f1(P ) : · · · : fr(P )) = hE′(P ) +O(1). Here and in the rest of this
proof, the big-O depend on the divisors.

We now apply Theorem B.5.9 of [13]) (which goes back to Néron), taking
as the ample divisor the divisor D of degree 1 such that h = hD + O(1)
and as the divisor equivalent to zero the divisor E = dD − E′. We obtain
hE(P ) ≤ c(1 + hD(P )1/2). Moreover, by Theorem B.3.2 (d) of [13], hE =
dh− hE′ +O(1). Thus

h(f1(P ) : · · · : fr(P )) = hE′(P ) +O(1)

= dh(P )− dhE(P ) +O(1)

= dh(P ) +O(1 + h(P )1/2).

�

Uniformity. The question of how the implicit constants in the O-terms
in the lemma depend on the functions is a subtle one, and has been treated
in number of papers, which control this dependence in data as the degree
and heights of the functions. Here we can prove (at the expense of extra
complication) the upper bound

dh(P ) +O
(
(d+ maxh(fi))(1 + h(P )1/2)

)
with an implicit constant in the big-O which depends only on C and t. If
some sort of refined Height Machine could deliver the analogous lower bound,
even for r = 2, then it would imply at once some significant cases of our
Theorem 1.9. For example with fixed different F1, . . . , Fr in Q[t] of degree
p ≥ 1 and fixed sufficiently general α1, . . . , αr in Q we would have d = np
for

f(t) =
α1F1(t)n + · · ·+ αr−1Fr−1(t)n

αrFr(t)n
.

Thus when f(t) = −1 we would deduce

0 = h(f(t)) ≥ dh(t)−O
(
n(1 + h(t)1/2)

)
so h(t) = O(1).

However such a lower bound is false in general, as the example f(t) =
(t− 2d)td−1 − 1 with f(2d) = −1 shows; the lower bound would be

dh(2d)−O
(
d(1 + h(2d)1/2)

)
= d2 log 2−O(d3/2),

a contradiction for sufficiently large d.

We shall need also some good bounds for the values of higher derivatives
f (l) = (d/dt)lf ; or rather those of the divided derivatives δlf = f (l)/l!
essential to the success of Thue’s Method. Iterating part (ii) of Lemma 2.2
does not suffice. In fact we have to consider certain monomial expressions
whose curious weighting will soon be justified.
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Lemma 2.4. For any f ∈ F there is c, depending only on f and t, with
the following property. Suppose f and t are regular at some P ∈ C(Q)
with dt(P ) 6= 0. For any non-negative integer L let δ be any vector with
components

δ0f(P )a0δ1f(P )a1 · · · δlf(P )al

for non-negative exponents satisfying

a0 + a1 + · · ·+ al ≤ L, a1 + · · ·+ lal ≤ L.

Then the affine Weil height h(δ) is at most cL(h(P ) + 1).

Proof. This falls into the circle of Eisenstein-related ideas. We can assume
that f is not constant. With F (t, f) = 0 as above and αj = δjf(P ) the power
series y =

∑∞
j=0 αjx

j satisfies F0(x, y) = 0 with F0(X,Y ) = F (t(P )+X,Y ).

We may therefore apply Theorem 1 (p.162) of Schmidt’s paper [19]. He
needs a number field k over which F0 is defined. As he notes, the αj lie in
an extension K of k of relative degree at most the degree e ≥ 1 of F0 in Y ;
thus [K : k] ≤ d(t). We find for each valuation v on k some Av ≥ 1, with
Av = 1 for all but finitely many v, such that

|αj |w ≤ Am+j
v (j = 0, 1, 2, . . .)

for any valuation w on K over v, where m ≥ 1 is the degree of F0 in X; thus
m ≤ d(f). Thus

|αa00 α
a1
1 · · ·α

al
l |w ≤ A

m(a0+a1+···+al)+(a1+···+lal)
v ≤ A2mL

v .

It follows for the non-logarithmic height

H(δ)[K:Q] ≤
∏
v

A2mL[K:k]
v .

The v are split into two sets S∞1, S2 with∏
v∈S∞1

Av ≤ ((m+ 1)(e+ 1)
√
e)(2e+1)[k:Q]H(F0)2e[k:Q] ≤ (2H(F0))c[k:Q],

∏
v∈S2

Av ≤ (16m)11e3[k:Q]H(F0)(2e3+2e)[k:Q] ≤ (2H(F0))c[k:Q],

where H(F0) is still projective (and absolute). Thanks to the crucial (but
nowadays natural) linear dependence on [k : Q] in the exponents we deduce
H(δ) ≤ (2H(F0))4cmL. Finally H(F0) ≤ cH(t(P ))m, and the result we want
follows by relating h(t(P )) to h(P ) as described above.

We remark that the extra precision of [19] (especially concerning the set
S2) is not really necessary for us; thus by putting harmless additional re-
strictions on the point P we could have got ourselves into the “non-singular”
situation (apparently all that was originally considered by Eisenstein), where
the proofs are much easier (as for example in [6] p.360).

�



BOUNDED HEIGHT IN PENCILS OF FINITELY GENERATED SUBGROUPS. 15

Given a divisor D we denote by L(D) the finite-dimensional Q-vector
space

L(D) = {f ∈ F∗, div(f) +D ≥ 0} ∪ {0}.
and by l(D) its dimension. We shall need a good basis of L(NQ) for fixed
Q and large N . It is convenient to talk also of L(∞Q) =

∑∞
N=1 L(NQ) the

vector space of f ∈ F which are regular outside Q.

Lemma 2.5. For any Q ∈ C(Q) there is a positive integer ∆ and real c
together with g, g0, g1, . . . , g∆−1 in L(∞Q), depending only on Q and t, such
that the following hold for any N ≥ 1.

(i) We have d(g) = ∆, and the elements

gjg
k (j = 0, 1, . . . ,∆− 1, d(gj) + kd(g) ≤ N)

form a basis for L(NQ), with

N − c ≤ l(NQ) ≤ N + 1.

(ii) For any f in L(NQ) we have

f =
∑

αjkgjg
k

with affine height

h(. . . αjk . . .) ≤ c(h(f) +N),

as well as

h(f) ≤ c(h(. . . αjk . . .) +N).

Proof. It is well known (for example by Riemann-Roch) that as f 6= 0
varies over L(∞Q) the −ordQ(f) (which are none other than the degrees
d(f)) take all sufficiently large values. Let ∆ ≥ 1 be the smallest positive
value, attained by some g in L(∞Q). If ∆ = 1 we are done, as a standard
argument of killing poles shows (which will be repeated below).

So we may and shall assume ∆ ≥ 2. For j = 1, . . . ,∆ − 1 pick gj in
L(∞Q) with nj = −ordQ(gj) ≡ j modulo ∆ and also as small as possible;
here nj > 0 is automatic and even nj > ∆. We define g0 = 1 and n0 = 0.
We show by induction on N that these do the trick in (i).

Pick any f 6= 0 in L(NQ), so that n = −ordQ(f) ≤ N . If n ≡ j

modulo ∆ (j = 0, 1, . . . ,∆ − 1) then n ≥ nj and we can find α in Q with

f − αgjg(n−nj)/∆ in L((N − 1)Q). As

d(gj) +
n− nj

∆
d(g) = n ≤ N

this shows by induction that the elements in (i) span L(NQ). They are
certainly linearly independent, as the

−ordQ(gjg
k) = nj + k∆

(
j = 0, 1, . . . ,∆− 1, k = 0, 1, . . . ,

[
N − nj

∆

])
are all different (even for all k). In particular

l(NQ) =

∆−1∑
j=0

(
1 +

[
N − nj

∆

])
,
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which leads easily to the required estimates using nj ≥ ∆ for j > 0. So (i) is
proved. Incidentally it is not difficult to estimate the constants so far solely
in terms of the genus of C.

For (ii) we note that this last argument even shows that g0, g1, . . . , g∆−1

are linearly independent over Q(g). As ∆ = d(g) = [F : Q(g)] it follows that
they form a basis of F over Q(g). Now we can write

f =
∆−1∑
j=0

gjGj

withGj =
∑

k αjkg
k in Q[g]. In the standard way we multiply by g0, g1, . . . , g∆−1

and take the trace from F to Q(g). The resulting equations can be solved
for G0, G1, . . . , G∆−1. It follows easily from Lemma 2.2 (iii) (with g not
t),(iv),(v) that

∆−1∑
j=0

h(Gj) ≤ c(h(f) +N).

But the affine height in (ii) is at most the analogous sum with heights taken
with respect to g. So the first of the two required inequalities follows with
another appeal to Lemma 2.2 (v). The second is similar but easier.

�

Before we go further we record the following identity for divided deriva-
tives. Namely

δl(f
n) = fn−l

∑
a

C(a)δ0(f)a0δ1(f)a1 · · · δl(f)al

where the sum is taken over all a = (a0, a1, . . . , al) with non-negative coor-
dinates satisfying

|a| = a0 + a1 + · · ·+ al = l, a1 + · · ·+ lal = l

(see earlier) and the C(a) are non-negative integers. Some version for undi-
vided derivatives is attributed to the Blessed Francesco Faà di Bruno (who
even has φ(f) instead of fn), but in this divided form we get an immedi-

ate proof by formally writing f̃ =
∑∞

m=0 δm(f)Tm. Note that, formally,

f̃(x) = f(x+ T ).
Taking this into account one may then go ahead by picking out the coeffi-

cient of T l in f̃n. We take δ0(f) = f in a′0 of the factors f̃ , and then δ1(f) in
a1 of the factors, and so on. Then a′0 +a1 + · · ·+al = n and a1 + · · ·+ lal = l
making it clear that a0 = a′0 − (n − l) ≥ 0. We need also good estimates
for the C(a), but it is similarly clear that their sum is majorized by the
coefficient of T l in (1 + T + T 2 + · · · )n = (1− T )−n, which is

(−1)l
(
−n
l

)
=

(
n+ l − 1

l

)
≤ 2n+l

and in particular factorial-free.
Now comes our basic “auxiliary polynomial”.

Lemma 2.6. Let f1, . . . , fr be in Q(C), let Q in C(Q) be not a pole or zero of
f1, . . . , fr also with dt(Q) 6= 0, and write as before d = −deg div(f1, . . . , fr) ≥



BOUNDED HEIGHT IN PENCILS OF FINITELY GENERATED SUBGROUPS. 17

0. Then there are c0, c depending only on C, f1, . . . , fr, t and Q with the fol-
lowing property. For any non-negative integers n,M1, . . . ,Mr with S >
M + nd+ c0 for

S = M1 + · · ·+Mr, M = max{M1, . . . ,Mr}
define the “Dirichlet exponent”

% =
M + dn

S −M − dn− c0
.

Then there are A1 ∈ L(M1Q), . . . , Ar ∈ L(MrQ), not all zero and with
heights at most c(%+ 1)(M + n), such that A1f

n
1 + · · ·+Arf

n
r = 0.

Proof. By Lemma 2.5 (i) we can take

(2.1) Ai =
∑

αijkgjg
k (i = 1, . . . , r)

with j, k satisfying

j = 0, 1, . . . ,∆− 1, d(gj) + kd(g) ≤Mi

and algebraic numbers αijk to be determined. We first find them such that
if φ =

∑r
i=1Aif

n
i 6= 0 then

(2.2) ordQφ > T

where the integer T is nearly as large as linear algebra allows.
If U is the number of unknowns αijk then their vector α must lie in a

certain subspace V of QU
. Here U =

∑r
i=1 l(MiQ) so Lemma 2.5(i) gives

(2.3) S − c ≤ U ≤ S + r.

We have E = T + 1 equations, so the dimension D of V satisfies

(2.4) D ≥ U − E ≥ S − T − c0.

Thus we assume T < S− c0 for solvability. But if T is too near S then as in
Thue’s Method we would lose control of the heights. To regain this we use
the version of the Absolute Siegel Lemma proved by David and Philippon
[11]; for example taking ε = 1 in the estimate at the bottom of page 523 we
find non-zero α ∈ V with

(2.5) h(α) ≤ h(V )

D
+

1

2
logD + 1

where h(V ) is the euclidean height.
To estimate h(V ) we note that it is defined by certain equations, and by

Hadamard (here the factorials don’t matter) we get

(2.6) h(V ) ≤ cE(logE + heq)

where heq is an upper bound for the logarithmic euclidean height of each
equation. These are δlφ(Q) = 0 or more explicitly

r∑
i=1

∑
j,k

αijkβijkl = 0 (l = 0, 1, . . . , T )

with βijkl = δl(gjg
kfni )(Q). Now

δl(gjg
kfni ) =

∑
δs(gj)δp(g

k)δq(f
n
i )
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taken over all non-negative integers s, p, q with s + p + q = l. By Faà di
Bruno

δp(g
k) = gk−p

∑
a

C(a)δ0(g)a0δ1(g)a1 · · · δp(g)ap ,

δq(f
n
i ) = fn−qi

∑
b

C(b)δ0(fi)
b0δ1(fi)

b1 · · · δq(fi)bq .

Now we see without difficulty thanks to Lemma 2.4 that heq ≤ c(T+M+n).
Then (2.5) and (2.6) lead to

h(α) ≤ c(T +M + n)(T + 1)

S − T − c
+ log(S + c)

because S − T − c0 ≤ D ≤ U ≤ S + r by (2.3) and (2.4).
We now choose T so large that the condition (2.2) forces after all φ = 0

in the sense that ordQφ =∞. In fact (2.2) holds also for φ̃ = φ/fnr because

fr(Q) 6= 0, and since A1, . . . , Ar are in L(MQ) it is easy to see that d(φ̃) ≤
M + dn. So T = M + dn will do, leading to

h(α) ≤ c%(M + dn) + log(S + c).

Finally Lemma 2.5 (ii) gets us to h(Ai) by (2.1); and then we use S ≤ rM .

�

2.2. Orthogonal spaces and key lemma.
Let w be a fixed vector of Cn with all entries non-zero. Given a subset Λ of
{1, . . . , r} we consider the vector space

VΛ = VΛ,w = {v ∈ w⊥ | ∀j 6∈ Λ, vj = 0}.

Thus V∅ = {0} and dimVΛ = |Λ| − 1 if Λ 6= ∅. We clearly have VΛ1 ∩ VΛ2 =
VΛ1∩Λ2 .

Remark 2.7. Let Λ1, Λ2 be non-empty subsets of {1, . . . , r}. If Λ1∩Λ2 6= ∅
we have

VΛ1 + VΛ2 = VΛ1∪Λ2

while VΛ1 + VΛ2 is a subspace of VΛ1∪Λ2 of codimension 1 if Λ1 ∩ Λ2 = ∅.

Proof. Let us assume Λ1 ∩ Λ2 6= ∅. The displayed formula follows from
the trivial inclusions VΛi ⊆ VΛ1∪Λ2 and from the equality of dimensions:

dim(VΛ1 + VΛ2) = dim(VΛ1) + dim(VΛ2)− dim(VΛ1 ∩ VΛ2)

= dim(VΛ1) + dim(VΛ2)− dim(VΛ1∩Λ2)

= (|Λ1| − 1) + (|Λ2| − 1)− (|Λ1 ∩ Λ2| − 1)

= |Λ1 ∪ Λ2| − 1 = dim(VΛ1∪Λ2).

The last assertion follows similarly.

�
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In order to generalise this simple remark, we introduce the following def-
inition.

Definition 2.8. Let Γ = {Λ1, . . . ,Λs} be a collection of subsets of {1, . . . , r}.
We say that a subset C of {1, . . . , r} is a connected component of Γ, if, after
renumbering Λ1, . . . ,Λs if necessary, there exists an integer k with 1 ≤ k ≤ s
such that

i) C = Λ1 ∪ · · · ∪ Λk;
ii) for j = 1, . . . , k − 1 we have Λj+1 ∩ (Λ1 ∪ · · · ∪ Λj) 6= ∅;
iii) for j = k + 1, . . . , s we have C ∩ Λj = ∅.

We say that Γ is connected, if it has only one connected component.

We may also rephrase this definition, as follows: consider first the graph
on {1, . . . , s} defined by joining i, j if and only if Λi ∩ Λj 6= ∅. Then a
connected component in our sense is a union C =

⋃
i∈U Λi, where U is a

connected component, in the usual sense, of the graph just defined.

As an example, Γ = {{1, 2}, {3, 4, 5}, {2, 5}, {6, 7, 8}, {7, 8, 9}} has two
connected components, {1, 2, 3, 4, 5} and {6, 7, 8, 9}.

By Remark 2.7 we easily see that:

Remark 2.9. Let Γ = {Λ1, . . . ,Λs} be a collection of subsets of {1, . . . , r}
and let C1, . . . , Cp be the connected components of Γ. Then,

i) VΛ1 + · · ·+ VΛs = VC1 + · · ·+ VCp .
ii) dim(VΛ1 + · · ·+ VΛs) = |Λ1 ∪ · · · · ∪Λs| − p.

The following definition is crucial for our purposes.

Definition 2.10. Let V be a Q-vector space, v1, . . . , vs be s ≥ 2 vectors of
V . Let a1v1 + · · · + asvs = 0 be a non-trivial linear relation. We say that
this relation is minimal if there are no non-trivial relations

∑
bivi = 0 over

a proper non-empty subset of {1, . . . , s}.

We remark that the relation a1v1 + · · ·+ asvs = 0 is minimal if and only
if a1, . . . , as ∈ Q∗ and dim〈v1, . . . , vs〉 = s− 1.

We also remark that, given v1, . . . , vs ∈ V linearly dependent and not all
zero, there exists a subset Λ ⊆ {1, . . . , r} such that {vi}i∈Λ satisfy a minimal
linear relation.

We now agree on some conventions which will be followed in the rest of
this section and in the next section.

We fix as above r ≥ 2 rational functions f1, . . . , fr ∈ F\{0} and a non-
constant t ∈ F. We define S0 as the finite set consisting of all zeros
and poles of f1, . . . , fr, dt. We fix a point Q ∈ C(Q)\S0 and we define
S = S0 ∪ {Q}. We choose once and for all a positive integer ∆, a real c
and g, g0, g1, . . . , g∆−1 ∈ L(∞Q) depending only on Q and t and satisfying
the statement of Lemma 2.5. The implicit constants in the big-O below will
depend only on these data.

The next lemma is the main tool in our construction.
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Lemma 2.11. Let Λ ⊆ {1, . . . , r} be of cardinality ≥ 2 and (M ′i)i∈Λ be
positive integers with maximum M ′. Define

dΛ = −deg div(fi)i∈Λ, Θ = max
(

1,
∑
i∈Λ

M ′i − (M ′ + ndΛ)
)
.

Let also P ∈ C(Q)\S, n ∈ N and put

w = (f1(P )n, . . . , fr(P )n).

Let finally {Ai}i∈Λ ⊂ F not all zero, such that Ai ∈ L(M ′iQ). Let us assume
that {Aifni }i∈Λ satisfy a minimal linear relation. Then there exists a basis
of algebraic vectors v1, . . . ,v|Λ|−1 of VΛ,w which satisfies

h(vj) ≤M ′h(P )+O
(

Θ(h(P ) + 1) + (n+M ′)(1 + h(P )1/2) + maxh(Ai)
)
.

Proof. In the proof we use a Wronskian argument. Let us first recall some
basic facts on it. The derivative d

dt on Q(t) can be uniquely extended to F.

For F ∈ F and R ∈ C(Q) we have

(2.7)

{
ordR(dF/dt) = ordR(F )− 1− ordR(dt), if ordR(F ) 6= 0;

ordR(dF/dt) ≥ −ordR(dt), if ordR(F ) = 0.

The (normalized) Wronskian of F1, . . . , Fk ∈ F with respect to t is the
determinant

W (F1, . . . , Fk) = det

(
1

j!

djFi
dtj

)
i=1,...,k

j=0,...,k−1

.

It is well known that W = 0 if and only if the Fi’s are linearly dependent
over Q.

Let us now go on with the proof of our lemma. We may assume Λ =
{1, . . . , s}. For short we put Fi = Aif

n
i andWi = W (F1, . . . , Fi−1, Fi+1, . . . , Fs)

for i = 1, . . . , s.
For later reference, we remark that F1, . . . , Fs are S-integers (as elements

of the function field F): indeed the div(fi) are supported in S and the Ai
are also S-integers since Ai ∈ L(M ′Q). Moreover the zeros and the poles of
dt are in S as well. Thus dlFi/dt

l are S-integers (cf (2.7)), and so also Ws.

By assumption, we have a minimal linear relation a1F1 + · · ·+ asFs = 0.
Thus F1, . . . , Fs−1 are linearly independent and a1, . . . , as 6= 0. This proves
that Ws 6= 0.

Let 1 ≤ i ≤ s− 1. Since ai 6= 0 we can replace Fi by

−a1

ai
F1 − · · · −

ai−1

ai
Fi−1 −

ai+1

ai
Fi+1 − · · · −

as
ai
Fs

in Ws. This shows that Ws = ±(as/ai)Wi.

We want to obtain a suitable upper bound for m0 := ordP (Ws). For this,
we shall use the fact that Ws has already a big multiplicity at the zeros of
Fi, since these functions are essentially n-th powers.

For i = 1, . . . , s and for l = 0, . . . , s− 1 we have (cf (2.7))

ordR

(
dlFi
dtl

)
≥ ordR(Fi)− l(1 + ordR(dt)) = ordR(Ai) + n ordR(fi) +O(1)
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for any R ∈ C(Q). Thus, for i = 1, . . . , s,

ordR(Ws) = ordR(Wi) ≥
∑
j 6=i

(
ordR(Aj) + n ordR(fj) +O(1)

)
=

s∑
j=1

n ordR(fj)− λR,i +O(1).

where λR,i := n ordR(fi)−
∑

j 6=i ordR(Aj). We deduce:

ordR(Ws) ≥ max
i=1,...,s

 s∑
j=1

n ordR(fj)− λR,i +O(1)


=

s∑
j=1

n ordR(fj)− λR +O(1)

where we have defined, for R ∈ S,

λR := min
i=1,...,s

λR,i = min
i=1,...,s

{
n ordR(fi)−

∑
j 6=i

ordR(Aj)
}
.

We shall use this inequality, for R ∈ S, in the functional (i. e. in F) product
formula, applied to Ws, namely the formula

∑
R ordR(Ws) = 0.

In this formula, for R = P 6∈ S we find the quantity ordP (Ws) that we
have to estimate, whereas for R outside S ∪ {P} we use the trivial bound
ordR(Ws) ≥ 0. Also, since the div(fi) are supported in S0 ⊆ S, we have13∑

R∈S ordR(fi) = deg(div(fi)) = 0. Moreover P 6∈ S. Thus

0 =
∑
all R

ordR(Ws) ≥ ordP (Ws)+
∑
R∈S

ordR(Ws) ≥ ordP (Ws)−
∑
R∈S

λR+O(1).

We now recall that Ai ∈ L(M ′iQ) and that the fi are supported in S0. Thus

λQ = min
j

{
−
∑
i 6=j

ordQ(Ai)
}
≤ min

j

∑
i 6=j

M ′i =
s∑
i=1

M ′i −M ′

and, for R ∈ S0,
λR ≤ min

i
{n ordR(fi)} = ndΛ.

Collecting together these last three inequalities, we get the following sought
upper bound for m0 = ordP (Ws):

(2.8) m0 ≤
∑
R∈S

λR +O(1) ≤
∑
i∈Λ

M ′i − (M ′ + ndΛ) +O(1) = Θ +O(1).

We can now construct the desired basis v1, . . . ,v|Λ|−1 of VΛ = VΛ,w. For
a non-negative integer ρ we put as before

δρ =
1

ρ!

dρ

dtρ

Given a vector of non-negative integers ρ = (ρ1, . . . , ρs−1) we let

Wρ = det(δρjFi)i,j=1,...,s−1.

13We use the fact that S contains not only the poles but also the zeros of the fi’s.
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Thus Ws = W(0,1,...,s−1). It is also easily seen that

(2.9) δm0Ws ∈
∑
|ρ|=e

ZWρ

where |ρ| = ρ1 + · · ·+ ρs−1 and e = m0 + 1 + · · ·+ (s− 2). By (2.8) we have

(2.10) e ≤ Θ +O(1).

Since P 6∈ S and the zeros of dt are in S, we have ordP (dt) = 0. By
definition of m0 and by (2.7) we have ordP (δm0Ws) = 0. Again by (2.7)
and since Fi are S-integers, for all ρ we have ordP (δm0Wρ) ≥ 0. By (2.9),
this implies that there exists ρ′ with |ρ′| = e such that ordP (Wρ′) = 0. For
i = 1, . . . , s and j = 1, . . . , s− 1, let

(2.11) Bij = aif
−n
i δρ′jFi.

Recall that: P 6∈ S, the fi’s are supported in S, the Fi have all their poles
in S, the zeros of dt are in S. By (2.7) we see that ordP (Bij) ≥ 0. Thus

Bij(P ) ∈ Q.
Since a1F1 + · · · + asFs = 0, we have B1jf

n
1 + · · · + Bsjf

n
s = 0 for j =

1, . . . , s− 1. Thus, for i = 1, . . . , s,

vj = (B1j(P ), . . . , Bsj(P ), 0, . . . , 0) ∈ V{1,...,s}.

The important fact that we have achieved is that. since P is not a zero
of Wρ′ the vectors v1, . . . ,vs−1 are linearly independent and form a basis of
V{1,...,s}.

By Lemma 2.2, h(Fi) = O(n+M ′i + h(Ai)). In order to deduce an upper
bound for the height of Bij we still need a bound for the height of the
coefficients a1, . . . , as of the minimal linear relation a1F1 + · · · + asFs = 0.
Obviously, we may assume as = −1. We differentiate the relation up to order
s − 2. Since the rational functions F1, . . . , Fs−1 are linearly independent
over Q, their Wronskian is not zero and so we can solve the resulting system
for a1, . . . , as−1. Using Cramér’s Rule and h(Fi) = O(n + M ′i + h(Ai))
together with Lemma 2.2 especially (i) and (ii) we find without difficulty
that h(ai) = O(n+M ′ + maxh(Ai)).

Now to simplify the notation we write vj as (B1(P ), . . . , Bs(P ), 0, . . . , 0)
for Bi = aif

−n
i δρ(Aif

n
i ) as in (2.11); here ρ ≤ e ≤ Θ + O(1) by (2.10). As

before

f−ni δρ(Aif
n
i ) = f−ni

∑
l+m=ρ

δl(Ai)δm(fni )

which by Faà di Bruno is∑
l+m=ρ

δl(Ai)f
−m
i

∑
a

C(a)δ0(fi)
a0δ1(fi)

a1 · · · δm(fi)
am

(note the changed power of fi). As in Lemma 2.5(ii) we write

Ai =
∑
j,k

αijkgjg
k (i = 1, . . . , s)
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and it suffices here to take k ≤ M ′i/∆ ≤ M ′/∆. Again Faà di Bruno on
δq(g

k) gives

f−ni δρ(Aif
n
i ) =

∑
l+m=ρ

f−mi
∑
p+q=l

∑
j,k

αijkδp(gj)g
k−qEqm,

where

(2.12) Eqm =∑
b

C(b)δ0(g)b0δ1(g)b1 · · · δq(g)bq
∑
a

C(a)δ0(fi)
a0δ1(fi)

a1 · · · δm(fi)
am .

We evaluate all this at P and we want a main term M ′h(P ) “uniformly
in i”, so that when we bundle the coordinates into the vector we don’t get
sM ′h(P ).

In fact the terms gk−q with k ≥ q already give

h
(
gk−q(P )

)
= (k−q)h(g(P )) ≤ M ′

∆
h(g(P )) ≤ M ′

∆

(
∆h(P )+O(1+

√
h(P ))

)
by the upper bound in Lemma 2.3 with just two functions. The right-hand
side is

M ′h(P ) +O
(
M ′(1 +

√
h(P ))

)
so we already have the main term, clearly uniformly. Thus the rest had
better be small. The point here is

b0 + b1 + · · ·+ bq = b1 + · · ·+ qbq = q ≤ l ≤ ρ ≤ Θ +O(1),

a0 + a1 + · · ·+ am = a1 + · · ·+mam = m ≤ ρ ≤ Θ +O(1).

So if k < q in gk−q then |k − q| ≤ q so we get

h
(
gk−q(P )

)
= |k − q|h(g(P )) ≤ qh(g(P )) = O (Θ(h(P ) + 1)) .

And by Lemma 2.4 we get for the δ-terms in (2.12), as well as the fi-term,
a height of order at most

(q +m)(h(P ) + 1) ≤ ρ(h(P ) + 1) ≤ (Θ +O(1))(h(P ) + 1),

also uniformly. The C-terms contribute logarithmically to order at most

k + q + n+m ≤ k + n+ ρ ≤M ′ + n+ Θ +O(1).

So this deals uniformly with the Eqm. As p ≤ ρ the δp(gj) (j = 0, 1, . . . ,∆)
give nothing new, and by Lemma 2.5(ii) the α-terms contribute O(M ′ +
maxh(Ai)).

Collecting everything up, we get

h(vj) ≤M ′h(P ) +O
(

Θ(h(P ) + 1) + n+ maxh(Ai) +M ′(1 + h(P )1/2)
)

for j = 1, . . . , s− 1, slightly better than required.

�
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3. Proof of Theorem 1.9.

In this section we prove the main technical result of this paper, which
immediately implies Theorem 1.9 stated in the introduction.

Theorem 3.1. Let r ≥ 2 and f1, . . . , fr ∈ F be non-zero rational functions
such that fi/fj is non-constant for some i 6= j. Let d = −deg div(f1, . . . , fr),
K > 0 be sufficiently large with respect to f1, . . . , fr and α = (α1 : · · · :
αr) ∈ Pr−1(Q). Consider, for a natural number n, a solution P ∈ C(Q) of
the equation

α1f1(P )n + · · ·+ αrfr(P )n = 0.

Then, if n ≥ K and if there are no proper vanishing subsums, we have

(3.1) h(P ) ≤
(
r − 1

d
+O(1/K)

)
h(α)

n
+O(K2)

where the implicit constant in the big-O depends only on f1, . . . , fr.

Theorem 1.9 easily follows from Theorem 3.1. Indeed, choosing K suffi-
ciently large, we have (r − 1)/d+O(1/K) ≤ (r − 1)/d+ 1 ≤ r.

Remark 3.2.
i) In the proof we shall show:

(3.2)
h(α)

n
≥ dh(P )

r − 1
+O

(
1

K
h(P ) + h(P )1/2 +K

)
.

which immediately implies (3.1), since either h(P ) ≤ K2 or h(P )1/2 +K ≤
2h(P )/K.

Note that here we do not assert uniformity in K. Note also that we will
not use the assumption fi/fj 6= constant in the proof of (3.2). This assump-
tion is equivalent to d 6= 0 and (3.2) is trivially satisfied if d = 0.

ii) Let β = (f1(P ) : · · · : fr(P )) ∈ Pr−1(Q). By Weil’s Height Machine
Lemma 2.3 (and since d > 0), inequality (3.2) is equivalent to

(3.3)
h(α)

n
≥ h(β)

r − 1
+O

(
1

K
h(β) + h(β)1/2 +K

)
(which in turn implies h(β) ≤ (r − 1 +O(1/K))h(α)

n +O(K2)).

iii) A standard application of Siegel’s lemma to the linear equation

(3.4) α1β
n
1 + · · ·+ αrβ

n
r = 0

in the unknowns α1, . . . , αr, shows that there exists a solution with

h(α)

n
≤ h(β)

r − 1
+O(1).

Thus inequality (3.3) is essentially sharp. More precisely, Theorem 3.1 gives
a lower bound for the first minimum (with respect to the height) of the
linear equation (4.1), and hence shows that the successive minima are close
to each other for large n.
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iv) If we ask that fi/fj is non-constant for all i 6= j, the assumption on
vanishing subsums can be easily removed (by induction on r).

v) We finally remark that we have a result even if d = 0 (i. e. fi/fj constant
for all i, j), but now the lower bound n ≥ K must depend also on α.
Indeed, if fi = cif1 with ci constants, our equation becomes (α1c

n
1 + · · · +

αrc
n
r )f1(P )n = 0. By the Skolem-Mahler-Lech, if f1(P ) 6= 0 then n is

bounded by a constant depending on α1, . . . , αr and on c1, . . . , cr.

Proof of Theorem 3.1. Let f1, . . . , fr ∈ F be as in the statement
of the theorem. We recall that we have chosen a non-constant rational
function t ∈ F and that S is the finite set consisting of all zeros and poles
of f1, . . . , fr, dt and of an extra point Q (which is neither a zero nor a pole
of f1, . . . , fr, dt).

We fix algebraic numbers α1, . . . , αr, not all zero. In order to prove (3.1)
we may suppose that P does not lie in any prescribed finite set of points.
We thus choose P ∈ C(Q)\S satisfying our equation

α1f1(P )n + · · ·+ αrfr(P )n = 0

for some n ≥ K. We shall also assume h(P ) ≥ 1.

Put now w = (fn1 (P ), . . . , fnr (P )). Thus α ∈ w⊥, the orthogonal space
of w. Our strategy is the following:

We shall first construct a basis of function-vectors (with controlled heights)
for the orthogonal of the vector (fn1 , . . . , f

n
r ) ∈ Fr. Then we shall specialise

at P , in order to obtain a basis of w⊥, again with controlled heights. All
of this shall involve an induction, necessary to take into account certain
unexpected linear relations, i. e. relations with certain special properties in
addition to those imposed by the construction.

At this stage we shall get a new basis, on replacing one of the vectors of
the previous basis with α. By well-known facts, w and w⊥ have the same
height. Lemma 2.3 gives a lower bound for the height of w. The height
of w⊥ is bounded from above by the sum of the heights of the vectors of
our new basis. Comparing these bounds, we shall get the desired conclusion.

Let us now perform this programme in detail.
Let N1 be the minimum of the set of integers m ≥ 0 such that there exist

a non-empty Λ ⊆ {1, . . . , r} and rational functions Ai ∈ F (i ∈ Λ) not all
zero, satisfying

(3.5)


Ai ∈ L(mQ), for i ∈ Λ;

h(Ai) ≤ nK, for i ∈ Λ;

(Aif
n
i )i∈Λ are linearly dependent over Q.

We provide an upper bound for N1 using Lemma 2.6, as we are going to
illustrate. Let 0 < ε < 1/2 and for this argument define N as the smallest
integer such that

(3.6) (r − 1− ε)N ≥ (1 + ε)nd+ c0.
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Then N = O(n) and, with M1 = · · · = Mr = N , the Dirichlet exponent %
of Lemma 2.6 satisfies

% =
N + dn

(r − 1)N − dn− c0
≤ 1

ε
.

Thus, by that lemma, there exist A1, . . . , Ar ∈ L(NQ) not all zero such that

(3.7) A1f
n
1 + . . .+Arf

n
r = 0

and
h(Ai) = O(n/ε+N/ε) = O(n/ε).

Choosing ε = c/K, where c is a sufficiently large constant to kill the implicit
constant in the last O(), we see that there exists a non-trivial solution of (3.7)
with Ai ∈ L(NQ) and h(Ai) ≤ nK. Not all A1, . . . , Ar are zero, and we see
that the non-zero ones among A1f

n
1 , . . . , Arf

n
r sum up to zero, and so they

are linearly dependent, as required by (3.5) (on choosing Λ simply as the
set of i such that Ai 6= 0).

This shows that N1 ≤ N . Since N is the smallest integer satisfying (3.6)
and since ε = c/K, we have (r − 1)N = nd+O(n/K). Thus

(3.8) (r − 1)N1 ≤ nd+O(n/K).

Among all subsets Λ which realize the minimum defining N1 in (3.5), we
choose a subset which is minimal. We denote by Λ1 such a set, by l1 = |Λ1|
its cardinality (necessarily l1 ≥ 2) and by {A(1)

i }i∈Λ1 the corresponding

rational functions. This implies in particular that {A(1)
i fni }i∈Λ1 satisfy a

minimal linear relation.

To go ahead we want to apply Lemma 2.11 to find a suitable basis of VΛ1 .
In that lemma, let us putM ′i = N1 for i ∈ Λ1, soM ′ = maxM ′i = N1 = O(n)
and

Θ = max
(

1,
∑
i∈Λ1

M ′i − (M ′ + nd1)
)

= max
(

1, (l1 − 1)N1 − nd1

)
with d1 = dΛ1 = −deg div(fi)i∈Λ1 .

We contend that Θ = O(n/K). To prove this, we use again Lemma 2.6,
this time on the fi (i ∈ Λ1), with Mi = N1 − 1 for i ∈ Λ1. The Dirichlet
exponent % is then

% =
N1 − 1 + nd1

(l1 − 1)(N1 − 1)− nd1 − c0
.

By Lemma 2.6, there exist rational functions Bi not all zero such that Bi ∈
L((N1 − 1)Q) for i ∈ Λ1,

∑
i∈Λ1

Bif
n
i = 0 and

h(Bi) = O((%+ 1)n).

By the minimality of N1, we cannot have maxi h(Bi) ≤ nK. Thus % ≥
K/c, where c is a sufficiently large constant to kill the implicit constant in
the last O(). This implies

(l1 − 1)N1 − nd1 ≤
c

K
(N1 + nd1) +O(1) = O(n/K)
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as required. This concludes the proof of the contention.

Using Lemma 2.11 and the inequalities

h(P ) ≥ 1, h(Ai) ≤ nK, M ′i = N1 = O(n), Θ = O(n/K),

we find a basis v
(1)
1 , . . . ,v

(1)
l1−1 of VΛ1 satisfying

(3.9)

h(v
(1)
i ) ≤M ′h(P )

+O
(

Θ(h(P ) + 1) + (n+M ′)(1 + h(P )1/2) + maxh(Ai)
)

= N1h(P ) +O
( n
K
h(P ) + nh(P )1/2 + nK

)
.

We are going to start a certain induction which shall be made explicit
very soon. To outline the general strategy behind such a step, let us assume
for the moment Λ1 = {1, . . . , r} (which is the generic case). Then we shall
obtain directly the desired conclusion of Theorem 1.9. Recall that w =
(fn1 (P ), . . . , fnr (P )). Since α is a non-zero vector in w⊥ we may assume

(reordering v
(1)
1 , . . . ,v

(1)
r−1 if necessary) that

α,v
(1)
1 , . . . ,v

(1)
r−2

is a basis of w⊥. Let us denote by h2 the logarithmic euclidean height
(defined on choosing the L2-norm at the infinite places). By well-known
facts on the height of subspaces (see [9] and [20]) and by the previous upper
bounds for the height of these vectors.

h(w) ≤ h2(w) = h2(w⊥) ≤ h2(α) +

r−2∑
i=1

h2(v
(1)
i ) + log(r − 1)

≤ (r − 2)N1h(P ) + h(α) +O
( n
K
h(P ) + nh(P )1/2 + nK

)
.

Moreover, by the functorial lower bound for the height Lemma 2.3, we have:

h(w) ≥
(
h(P ) +O(h(P )1/2)

)
nd.

Thus

0 ≤ λh(P ) +
h(α)

n
+O

(
1

K
h(P ) + h(P )1/2 +K

)
with

λ = (r − 2)N1/n− d.
By (3.8) we have

λ ≤ (r − 2)
d

r − 1
− d+O(1/K) = − d

r − 1
+O(1/K).

Inequality (3.2) follows.

The main obstacle in this approach is that Λ1 may be smaller than
{1, . . . , r}. In this case we can somewhat take advantage of the fact that we
have an ‘unexpected’ dependence relation. To use this, let us sketch how we
intend to argue, by an induction procedure.
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We shall freely use notation and remarks from Section 2.2, choosing for w
the vector (fn1 (P ), . . . , fnr (P )). Since P is not a zero of the fi’s, the vector
w has non-zero entries.

We construct an integer s with 1 ≤ s ≤ r, positive integers N1, . . . Ns

and non-empty subsets Λ1,Λ2, . . . ,Λs of {1, . . . , r} of cardinalities resp.
l1, l2 . . . , ls satisfying:

Claim 3.3.

i) N1 ≤ N2 ≤ · · · ≤ Ns

ii) For j = 2, . . . , s the set Λj is contained in no connected component
of {Λ1, . . . ,Λj−1}

iii) The collection {Λ1, . . . ,Λs} is connected and its union is the full set
{1, . . . , r}.

iv) Let t1 = dim(VΛ1) and, for j = 2, . . . , s let

tj = dim(VΛ1 + · · ·+ VΛj )− dim(VΛ1 + · · ·+ VΛj−1).

Then for j = 1, . . . , s we have

t1N1 + · · ·+ tj−1Nj−1 +
(
r − 1−

j−1∑
i=1

ti

)
Nj ≤ nd+O(n/K).

v) For j = 1, . . . , s there exists a basis v
(j)
1 , . . . ,v

(j)
lj−1 of VΛj satisfying

max
i
h(v

(j)
i ) ≤ Njh(P ) +O

( n
K
h(P ) + nh(P )1/2 + nK

)
.

Before explaining how to perform this construction, we shall show how it
allows us to conclude the proof of Theorem 1.9.

We remark that

(3.10) VΛ1 + · · ·+ VΛs = w⊥. In particular, t1 + · · ·+ ts = r − 1,

by Claim 3.3 iii) and by Remark 2.9 i). Thus, taking into account i) of Claim

3.3, we may assume, after reordering for each j the vectors v
(j)
1 , . . . ,v

(j)
lj−1

and possibly omitting some of them, that

v
(1)
1 , . . . ,v

(1)
t1
, . . . ,v

(s−1)
1 , . . . ,v

(s−1)
ts−1

,v
(s)
1 , . . . ,v

(s)
ts

is a basis of w⊥.
We also remark that ts ≥ 1. Otherwise dim(VΛ1 + · · ·+VΛs−1) = t1 + · · ·+

ts−1 = r−1 by (3.10). By Remark 2.9 ii), this implies that {Λ1, . . . ,Λs−1} is
connected and its union is the full set {1, . . . , r}, which contradicts Claim 3.3
ii) with j = s.

By assumption there are no proper vanishing subsums in α1f1(P )n+ · · ·+
αrfr(P )n = 0. This implies that α 6∈ VΛ1 +· · ·+VΛs−1 . Thus we may assume
that

v
(1)
1 , . . . ,v

(1)
t1
, . . . ,v

(s−1)
1 , . . . ,v

(s−1)
ts−1

,α,v
(s)
1 , . . . ,v

(s)
ts−1

is a basis of w⊥. Arguing as we did before, we deduce that

(3.11) 0 ≤ λh(P ) +
h(α)

n
+O

(
1

K
h(P ) + h(P )1/2 +K

)
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with

λ = t1
N1

n
+ · · ·+ ts−1

Ns−1

n
+ (ts − 1)

Ns

n
− d.

We now pause for the following computation:

Lemma 3.4. Let τ , ρ, a1, . . . , as be positive real numbers such that as ≥ 1
and a1 + . . .+ as = ρ. Let also x1 ≤ . . . ≤ xs be positive real numbers such
that

s∑
i=1

aixi ≤ τ.

Then
s−1∑
j=1

ajxj + (as − 1)xs − τ ≤ −τ/ρ.

Proof. Set σ :=
∑s

i=1 aixi, so σ ≤ τ and also σ ≤ ρxs. Hence σ − xs ≤
σ(1− 1

ρ) ≤ τ(1− 1
ρ), since ρ ≥ as ≥ 1.

Now, on subtracting τ from both sides we obtain σ − xs − τ ≤ − τ
ρ , as

required.

�

To go ahead, we recall that t1 + · · · + ts = r − 1 (see (3.10)). Thus,
Claim 3.3 iv) for j = s reads

t1
N1

n
+ · · ·+ ts−1

Ns−1

n
+ ts

Ns

n
≤ d+O(1/K).

We apply the last lemma with

aj = tj , ρ = r − 1, xj = Nj/n and τ = d+O(1/K).

We find

λ = t1
N1

n
+ · · ·+ ts−1

Ns−1

n
+ (ts − 1)

Ns

n
− d ≤ −d/(r − 1) +O(1/K).

Thus, by (3.11),

0 ≤ − d

r − 1
h(P ) +

h(α)

n
+O

(
1

K
h(P ) + h(P )1/2 +K

)
.

Inequality (3.2) follows. This concludes the proof of Theorem 1.9, assuming
the truth of Claim 3.3.

Now, as promised, we detail the inductive process, verifying all the asser-
tions of Claim 3.3.
We construct by induction an integer s with 1 ≤ s ≤ r and, for each
j = 1, . . . , s,

- a positive integer Nj ;
- a subset Λj of {1, . . . , r} of cardinality denoted lj := |Λj |;
- a subset Jj of Λ1 ∪ · · · ∪ Λj−1 such that:

– |Jj ∩ C| = 1 for each connected component of {Λ1, . . . ,Λj−1}
– Jj is disjoint from Λ1 ∪ · · · ∪ Λj−2 \ Jj−1 if j ≥ 2.

- rational functions {A(j)
i }i∈Λj .

- a function ϕj : {1, . . . , r} → {1, . . . , j};
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The role of the functions ϕj shall appear along the discussion.

For j = 1, we let N1 be the minimum of the set of integers N ≥ 0 such
that there exist Λ ⊆ {1, . . . , r} and rational functions Ai ∈ F (i ∈ Λ) not all
zero, of height ≤ nK, with (Aif

n
i )i∈Λ linearly dependent and such that

Ai ∈ L(NQ), for i ∈ Λ.

Among all subsets Λ which realize the minimum defining N1, we choose a
subset which is minimal. We denote Λ1 such set, l1 = |Λ1| its cardinality and

{A(1)
i }i∈Λ1 the corresponding rational functions. This implies in particular

that {A(1)
i fni }i∈Λ1 satisfy a minimal linear relation. As we have already

shown earlier (see (3.8) and (3.9)), we have

(r − 1)N1 ≤ nd+O(n/K)

and there exists a basis v
(1)
1 , . . . ,v

(1)
l1−1 of VΛ1 satisfying

h(v
(1)
i ) ≤ N1h(P ) +O

( n
K
h(P ) + nh(P )1/2 + nK

)
.

We also set J1 = ∅ and ϕ1(i) = 1 for i = 1, . . . , r.

For j ≥ 2 we go ahead similarly, but modifying somewhat the require-
ments for the Aj , taking into account the previous steps. More precisely, let
j ≥ 2 and assume to have already constructed N1, . . . , Nj−1, Λ1, . . . ,Λj−1

and Jj−1, ϕj−1. If {Λ1, . . . ,Λj−1} is connected and Λ1 ∪ · · · ∪ Λj−1 =
{1, . . . , r} we put s = j − 1 and we stop here the process.

Otherwise, we choose a subset Jj of Λ1∪ · · ·∪Λj−1 such that |Jj ∩C| = 1
for each connected component of {Λ1, . . . ,Λj−1}. We need to show that we
can choose Jj disjoint from Λ1 ∪ · · · ∪ Λj−2 \ Jj−1. If the set Λj−1 does not
intersect Λ1 ∪ · · · ∪ Λj−2, the connected components of {Λ1, . . . ,Λj−1} are
the connected components of {Λ1, . . . ,Λj−2} plus the set Λj−1 itself. Thus
we may choose Jj = Jj−1∪{i0} where i0 is any element of Λj−1. If otherwise
Λj−1 intersects Λ1∪· · ·∪Λj−2, each connected component of {Λ1, . . . ,Λj−1}
contains at least one connected component of {Λ1, . . . ,Λj−2}. Thus we may
choose Jj as a suitable subset of Jj−1.

Then we let Nj be the minimum of the set of integers N ≥ 0 such that
there exist Λ ⊆ {1, . . . , r} and rational functions Ai ∈ F (i ∈ Λ) not all zero,
satisfying14

(3.12)
Ai ∈ L((Nϕj−1(i) − 1)Q), if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) ∩ Λ,

Ai ∈ L(NQ), if i ∈ Λ and i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj ,
h(Ai) ≤ nK, for i ∈ Λ,

(Aif
n
i )i∈Λ are linearly dependent.

We remark that the set of such N is indeed not empty, as we easily
see since {1, . . . , r}\(Λ1 ∪ · · · ∪ Λj−1\Jj) has cardinality ≥ 2 (for otherwise
{Λ1, . . . ,Λj−1} would be connected and Λ1 ∪ · · · ∪ Λj−1 = {1, . . . , r}).

14Note that we are prescribing somewhat more stringent conditions than before on the
indices inside the subsets previously defined.
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We select a minimal set Λj among all sets Λ which realize the minimum

defining Nj . We denote by {A(j)
i }i∈Λj the corresponding rational functions.

Thus {A(j)
i fni }i∈Λj satisfy a minimal linear relation.

We finally set

(3.13) ϕj(i) =

{
ϕj−1(i) if i ∈ Λ1 ∪ · · · ∪ Λj−1\Jj ,
j otherwise, i. e. if i 6∈ Λ1 ∪ · · · ∪ Λj−1 or i ∈ Jj .

Thus, by the minimality of Nj , there are no subsets Λ and rational func-
tions (Ai)i∈Λ not all zero such that

Ai ∈ L((Nϕj(i) − 1)Q), for i ∈ Λ,

h(Ai) ≤ nK, for i ∈ Λ,

(Aif
n
i )i∈Λ are linearly dependent.

We notice that for j = 2, . . . , s we have

(3.14) ϕj−1(i) = j − 1 for i ∈ Jj ,

since Jj is disjoint from Λ1 ∪ · · · ∪ Λj−2 \ Jj−1.

We also remark that

(3.15) N1 ≤ N2 ≤ · · · ≤ Ns

as asserted in Claim 3.3 i), since at each step we have added conditions.

We finally remark that for j = 2, . . . , s, the set Λj is contained in no
connected component of {Λ1, . . . ,Λj−1} as we are going to show. This shall
prove assertion ii) of Claim 3.3 and ensures that the inductive process ends
somewhere. Thus Claim 3.3 iii) also holds by inductive construction.

To verify this assertion, let us assume by contradiction that Λj is con-
tained in a connected component C of {Λ1, . . . ,Λj−1}. Let C ∩ Jj = {i0}.
Then for i ∈ Λj , i 6= i0, we have A

(j)
i ∈ L((Nϕj−1(i) − 1)Q). Using the

minimal linear relation
∑

i∈Λj
aiA

(j)
i fni = 0 and the fact that Q is not in

the support of any of the divisors div(fi) we see that A
(j)
i0
∈ L(N∗Q) with

N∗ = maxi(Nϕj−1(i) − 1). By (3.15) we have N∗ ≤ Nj−1 and, by (3.14),

j−1 = ϕj−1(i0). Thus A
(j)
i ∈ L((Nϕj−1(i)−1)Q) for all i ∈ Λj . This contra-

dicts the minimality in the definition of Nj−1 (see the remark after (3.13)).

We still have to check assertions iv) and v) of Claim 3.3. To prove as-
sertion iv) we first need the following lemma. Let, as in Claim 3.3 iv),
t1 = dim(VΛ1) and

tj = dim(VΛ1 + · · ·+ VΛj )− dim(VΛ1 + · · ·+ VΛj−1).

for j = 2, . . . , s.

Lemma 3.5.
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i) For j = 2, . . . , s we have:

|Λ1 ∪ · · · ∪ Λj−1| − |Jj | = dim(VΛ1 + · · ·+ VΛj−1) =

j−1∑
j′=1

tj′

ii) Let j, j′ be two integers with j ≥ 2 and 1 ≤ j′ ≤ j − 1. Then the set
of i ∈ {1, . . . , r} such that ϕj(i) = j′ has cardinality tj′.

Proof. The first assertion follows from Remark 2.9 ii), since Jj has cardi-
nality equal to the number of connected components of Λ1 ∪ · · · ∪ Λj−1.

We prove the second assertion by induction on j. For j = 2 we have by
construction #{i | ϕ2(i) = 1} = |Λ1| − 1 = dim(VΛ1) = t1.

Let j > 2 and assume that #{i | ϕj−1(i) = j′} = tj′ for j′ = 1, . . . , j − 2.
We want to show that #{i | ϕj(i) = j′} = tj′ for j′ = 1, . . . , j − 1.

Assume first j′ ≤ j−2. Let i be such that ϕj(i) = j′. Then ϕj(i) 6= j, thus
by (3.13) ϕj(i) = ϕj−1(i). This shows that {i | ϕj(i) = j′} ⊆ {i | ϕj−1(i) =
j′}. On the other hand, let i such that ϕj−1(i) = j′. Then ϕj−1(i) 6= j − 1
and (3.13) (with j replaced by j − 1) shows that

i ∈ Λ1 ∪ · · · ∪ Λj−2\Jj−1 ⊆ Λ1 ∪ · · · ∪ Λj−1.

Moreover i 6∈ Jj by (3.14). Thus, by (3.13), ϕj(i) = ϕj−1(i). This proves
that {i | ϕj−1(i) = j′} ⊆ {i | ϕj(i) = j′}. Putting together the two
inclusions we see that

{i | ϕj(i) = j′} = {i | ϕj−1(i) = j′}.

Thus, by induction, #{i | ϕj(i) = j′} = #{i | ϕj−1(i) = j′} = tj′ .
Assume now j′ = j − 1. By (3.13)

{i | ϕj(i) = j − 1} = {i ∈ Λ1 ∪ · · · ∪ Λj−1\Jj | ϕj−1(i) = j − 1}

By (3.14) we have ϕj−1(i) = j − 1 on Jj . By (3.13) (again with j replaced
by j − 1) we still have ϕj−1(i) = j − 1 outside Λ1 ∪ · · · ∪ Λj−2 and thus, a
fortiori outside Λ1 ∪ · · · ∪ Λj−1. These facts and the first assertion of the
present lemma imply

#{i | ϕj(i) = j − 1} = #{i | ϕj−1(i) = j − 1} − (r − |Λ1 ∪ · · · ∪ Λj−1|)− |Jj |
= dim(VΛ1 + · · ·+ VΛj−1)− (r −#{i | ϕj−1(i) = j − 1}).

By induction,

r −#{i | ϕj−1(i) = j − 1} =

j−2∑
j′=1

#{i | ϕj−1(i) = j′} =

j−2∑
j′=1

tj′

= dim(VΛ1 + · · ·+ VΛj−2).

Putting together the last two displayed equations, we get

#{i | ϕj(i) = j−1} = dim(VΛ1 + · · ·+VΛj−1)−dim(VΛ1 + · · ·+VΛj−2) = tj−1

as desired.

�
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We are now ready to prove by induction assertion iv) of Claim 3.3. This
assertion was already proved in (3.8) for j = 1. Let j ≥ 2. In a similar
way as we have done for N1, we are going to provide an upper bound for Nj

using Lemma 2.6. Let ε = c/K for a sufficiently large constant c and choose
N as the smallest integer such that

(3.16)

j−1∑
j′=1

tj′(Nj′ − 1) +
(
r − 1−

j−1∑
j′=1

tj′ − ε
)
N ≥ (1 + ε)dn+ c0.

We notice that N = O(n).

Remark 3.6. We have

Nj−1 ≤ N.

Proof. By Claim 3.3 iv) with j replaced by j − 1 (which holds by the
present inductive assumption) we have

j−2∑
j′=1

tj′Nj′ +
(
r − 1−

j−2∑
j′=1

tj′
)
Nj−1 ≤ nd+O(n/K).

Thus(
r − 1−

j−1∑
j′=1

tj′ − ε
)

(Nj−1 −N)

=
(
r − 1−

j−2∑
j′=1

tj′
)
Nj−1 − tj−1Nj−1 − εNj−1 −

(
r − 1−

j−1∑
j′=1

tj′ − ε
)
N

≤
(
nd+O(n/K)

)
−

j−2∑
j′=1

tj′Nj′ − tj−1Nj−1 −
(
r − 1−

j−1∑
j′=1

tj′ − ε
)
N

≤
(
nd+O(n/K)

)
−
(

(1 + ε)dn+ c0)
)

=
(
− cd+O(1)

) n
K

< 0,

if c is a sufficiently large constant to kill the implicit constant in the O(1).

�

We are going to apply Lemma 2.6 with f1, . . . , fr and with

Mi =

{
Nϕj−1(i) − 1, if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj);
N, if i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj

(i = 1, . . . , r). Since Q is neither a zero nor a pole of f1, . . . , fr and since
N1 ≤ · · · ≤ Nj−1 ≤ N (by Claim 3.3 i) and by Remark 3.6), we have

(3.17) M = max
i
Mi = N.

We recall that, by Lemma 3.5 i),

|Λ1 ∪ · · · ∪ Λj−1| − |Jj | =
j−1∑
j′=1

tj′
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and, by (3.13) and by Lemma 3.5 ii),

#{i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) | ϕj−1(i) = j′} = #{i | ϕj(i) = j′} = tj′

for j′ = 1, . . . , j − 1. Thus

(3.18) S =
r∑
i=1

Mi =

j−1∑
j′=1

tj′(Nj′ − 1) +
(
r −

j−1∑
j′=1

tj′
)
N.

By (3.16), (3.17) and (3.18), S ≥ (1 + ε)(N + dn) + c0 and the Dirichlet
exponent % of Lemma 2.6 satisfies

% =
N + dn

S −N − dn− c0
≤ 1

ε
.

By that lemma (if c is a sufficiently large constant) there exist rational
functions A1, . . . , Ar not all zero and of height ≤ nK such that{

Ai ∈ L((Nϕj−1(i) − 1)Q), if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj);
Ai ∈ L(NQ), if i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj

satisfying

A1f
n
1 + . . .+Arf

n
r = 0.

Not all A1, . . . , Ar are zero, and we see that the non-zero ones among
A1f

n
1 , . . . , Arf

n
r sum up to zero, and so they are linearly dependent. Choos-

ing Λ as the set of i such that Ai 6= 0 we see that (3.12) is satisfied. By
minimality of Nj we have Nj ≤ N . Since N is the smallest integer satisfy-
ing (3.16) and since ε = c/K, we have

j−1∑
j′=1

tj′Nj′ +
(
r − 1−

j−1∑
j′=1

tj′
)
Nj ≤ nd+O(n/K).

as required.

We now prove assertion v) of Claim 3.3. For j = 1 this assertion was
already proved in (3.9). Let j ≥ 2. As we did for j = 1, we apply Lemma 2.11
to find a suitable basis of VΛj . Let, for i ∈ Λj ,

M ′i =

{
Nϕj−1(i) − 1, if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) ∩ Λj ,

Nj , if i ∈ Λj and i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj

and M ′ = maxi∈Λj M
′
i = Nj . Let also, as in Lemma 2.11,

Θ = max
(

1,
∑
i∈Λj

M ′i − (M ′ + ndj)
)

= max
(

1,
∑
i∈Λj

M ′i − (Nj + ndj)
)

with dj = dΛj = −deg div(fi)i∈Λj . We contend that Θ = O(n/K). As for
j = 1, we prove this assertion using Lemma 2.6, now for the fi (i ∈ Λj) with
Mi the same as M ′i except for Nj − 1 in place of Nj , i. e.

Mi =

{
Nϕj−1(i) − 1, if i ∈ (Λ1 ∪ · · · ∪ Λj−1\Jj) ∩ Λj ,

Nj − 1, if i ∈ Λj and i 6∈ Λ1 ∪ · · · ∪ Λj−1\Jj .
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Let S =
∑

i∈Λj
Mi =

∑
i∈Λj

M ′i + O(1) and M = maxi∈Λj Mi = Nj − 1 =

O(n). The Dirichlet exponent % is then

% =
Nj − 1 + ndj

S −Nj − ndj − c0 + 1
.

By Lemma 2.6, there exist rational functions Bi not all zero such that Bi ∈
L(MiQ) for i ∈ Λj ,

∑
i∈Λj

Bif
n
i = 0 and

h(Bi) = O((%+ 1)n).

By the minimality of Nj , we cannot have maxi h(Bi) ≤ nK. Thus % ≥ K/c,
where c is a sufficiently large constant to kill the implicit constant in the
last O(). This implies∑

i∈Λj

M ′i − (Nj + ndj) ≤
c

K
(Nj + ndj) +O(1) = O(n/K)

as required.

We apply Lemma 2.11 to the rational functions {A(j)
i }i∈Λj , taking into

account:

h(P ) ≥ 1, h(Ai) ≤ nK, M ′i = Nj = O(n), Θ = O(n/K).

By this lemma, there exists a basis v
(j)
1 , . . . ,v

(j)
lj−1 of VΛj satisfying

h(v
(j)
i ) ≤M ′h(P ) +O

(
Θ(h(P ) + 1) + (n+M ′)(1 + h(P )1/2) + maxh(Ai)

)
= Njh(P ) +O

( n
K
h(P ) + nh(P )1/2 + nK

)
.

This proves assertion v) of Claim 3.3. The proof of Theorem 1.9 is now
complete.

�

4. Proof of Theorem 1.3

Let Γ ⊂ Gr
m(F) be a finitely generated constant-free subgroup, and let

V be an algebraic subvariety of Gr
m, defined over F. By writing V as an

intersection of hypersurfaces, we see that it is enough to prove Theorem 1.3
for a hypersurface V . We may further assume that V is a hyperplane. The
case of a general hypersurface can indeed be easily deduced using an isogeny.
For technical reasons, it is convenient to homogenize the statement in the
linear case:

Proposition 4.1. Let Γ ⊂ Gr
m(F) be a finitely generated subgroup such that

(4.1) ∀f ∈ Γ, ∀i, j = 1, . . . , r, fi/fj ∈ Q =⇒ fi/fj ∈ Q∗tors.

Let γ = (γ1, . . . , γr) ∈ Γ and θ1, . . . , θr ∈ F such that θ1γ1 + · · ·+ θrγr 6= 0.
Then the height of P ∈ C(Q) such that

(4.2) θ1(P )γ1(P ) + · · ·+ θr(P )γr(P ) = 0

is bounded from above in terms only on Γ and θ1, . . . , θr, independently
of γ1, . . . , γr. The same conclusion holds without the assumption (4.1), if
θ1, . . . , θr ∈ Q and Γ/Γ ∩Gr

m(Q) is of rank 1.
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Proof. Replacing {1, . . . , r} by a subset (and Γ by its projection on the
coordinates in the subset) we may assume that there are no proper van-
ishing subsums in (4.2). Dividing (4.2) by γ1(P ) (and replacing Γ by
{(1, f2/f1, . . . , fr/f1) | f ∈ Γ}) we may also assume γ1 = 1 and

(4.3) Γ ⊆ {x1 = 1} .

Assume first that Γ/Γ ∩ Gr
m(Q) is of rank 1 and θi ∈ Q. Thus there

exists f = (1, f2, . . . , fr) ∈ Γ such that Γ = Γ ∩ Gr
m(Q) ⊕ 〈f〉. Then

γ = (1, c2f
n
2 , . . . , crf

n
r ) for some ci ∈ Q. We may assume that there ex-

ists some i > 1 such that fi is non constant, since otherwise θ1γ1 + · · ·+θrγr
is a non zero constant and equation (4.2) does not have solutions. Thus we
can apply Theorem 1.9, and we find that the solutions of (4.2) have bounded
height.

Assume now that Γ satisfies (4.1). Then Γ = Γtors ⊕ Γ′ where Γ′ is freely
generated by, say, g1, . . . ,gκ. We now use Dirichlet’s Theorem in a way
which is inspired by a method appearing already in Bombieri’s paper [4],
especially Lemma 4 therein. There exist ω ∈ Γtors and integers λ1, . . . , λκ
such that

γ = ωgλ11 · · ·g
λκ
κ .

Let A = max |λj |. Since the equation (4.2) is not trivial (and since Γtors is
finite), we can obviously assume A unbounded. Let Q ≥ 1 be an integer
which will be fixed later, independently of A. By Dirichlet’s Theorem on
simultaneous approximation, there exists a positive integer q ≤ Qκ and
integers pj such that ∣∣∣∣qλjA − pj

∣∣∣∣ < 1

Q
.

Let n be the integral part of A/q. We write λj = npj + rj and we set, for
i = 1, . . . , r,

ρ =
κ∏
j=1

g
rj
j ∈ Γ, f =

κ∏
j=1

g
pj
j ∈ Γ, αi = ωiθi(P )ρi(P ).

Since γi = ωiρif
n
i , equation (4.2) can be rewritten as α1f1(P )n + · · · +

αrfr(P )n = 0 (without proper vanishing subsums).
We have

|pj | ≤
∣∣∣∣qλjA

∣∣∣∣+
1

Q
≤ q +Q−1 ≤ 2Qκ.

Thus, f belongs to a finite set, depending only on the generators g1, . . . ,gκ
and on Q, as the exponents λj vary. Moreover

|rj | =
∣∣∣∣Aq
(
q
λj
A
− pj

)
−
(
n− A

q

)
pj

∣∣∣∣ ≤ (n+ 1)Q−1 + 2Qκ.

Thus d(θiρi) = O(n/Q + Qrκ), where the implicit constant in the big-O
depends only on θ1, . . . , θr and on g1, . . . ,gκ.
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We recall that αi = ωiθi(P )ρi(P ), with ωi root of unity. Using Lemma 2.3
(for the two functions 1 and θiρi), we see easily that

h(α) ≤ h(α1) + · · ·+ h(αr) ≤ C1(n/Q+Qκ)h(P )

where the constant C1 depends only on θ1, . . . , θr and on g1, . . . ,gκ (and
neither on Q nor on A). We now choose Q = [4rC1] + 1.

There is a j such that λj = ±A and thus some of the pj are not zero.
Since g1, . . . , gκ is a basis of Γ′ we have f 6∈ Γtors. By (4.3) we have f1 = 1.
Thus, by (4.1), fi = fi/f1 is non-constant for some i > 1 and we can apply
Theorem 1.9.

Let C be the constant appearing in this theorem, which depends on
f1, . . . , fr and thus only on θ1, . . . , θr and on g1, . . . ,gκ (since the ratio-
nal functions fi belong to a finite set, depending only on the generators
g1, . . . ,gκ and on Q and Q has already been fixed as Q = [4rC1] + 1).
Since A is unbounded and Q does not depend on A, we may assume n =
[A/q] ≥ C and n ≥ 4rC1Q

κ. By Theorem 1.9 and by the inequalities
h(α) ≤ C1(n/Q+Qκ)h(P ), Q ≥ 4rC1 and n ≥ 4rC1Q

κ,

h(P ) ≤ rh(α)

n
+ C ≤ rC1(1/Q+Qκ/n)h(P ) + C ≤ h(P )/2 + C .

We deduce that h(P ) is bounded, as claimed.

�
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Math. (2) 82 (1965), 249–331.
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