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Abstract

The repetition of elements in a free-form structisr@n important topic for the cost rationalization
process of complex projects. Although nodes aratified as a major cost factor is steel grid shells
little research has been done on node repetitidtis Ppaper proposes a family of shapes, called
isogonal moulding surfaces, having high node cosea, flat panels and torsion-free nodes. It is
shown that their generalization, called Monge'sfazgs, can be approximated by surfaces of
revolution, yielding high congruence of nodes, perend members. These shapes are therefore
interesting tools for geometrically-constrainedigespproach.

Keywords: conceptual design, structural morphology, faltitceaware design, moulding surfaces,
rationalization

1. Introduction

Complex shapes play an increasing role in contearga@rchitecture. Recent developments in digital
fabrication and modeling or representation techeéghave allowed new formal possibilities. The
rationalization of these new shapes is an impoitsute, which has led to a significant researcbreff
in the field of discrete differential geometry.

Geometrical optimization generally considers twpemss: geometry of panels and the geometry of
structures. Flat quadrangular panels have beentifiegdnas a very efficient solution to the
panelization problem by (Schlaich and Schober [&ymphet al.[3]). Another typical geometrical
optimization task is to find discrete normal to aedsuch as the one displayed on Figure 1, and to
have planar beams spanning between them. Mesiieadmit such offsets are called conical meshes
and were introduced in (Liat al. [5]). Optimization towards planar conical meshepossible only
when the mesh is aligned with the lines of cunatirthe surface to cover. Current methods require
integration of vector fields, which lacks flexilyliin the early steps of design, as it cannot ladized

in real-time and can yield unpredictable resultstl@ topology of curvature lines (Wallner and
Pottmann [14]). The objective of optimization todmrplanar conical meshes can be restricted to
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constant-edge offset: in this case, constant héighins are perfectly aligned on the top and bottbm
each node. Meshes satisfying this property aredBlige Offset Mesheand they are related to very
specific surfaces (Pottmamt al.[11]). The modeling of complex shapes as Edgeedfféesh is still

a challenge for designers.

Repetition of elements is also of importance in tst-reduction process. Repetition of members
length in free-form structures has been exploredfplications to elastic grid shells very earkyd s

still and active reseach topic (Otto [10], Bouhagtaal. [2]). The topic of repetition has also been
studied for the repetition of panels, for examplghvelustering techniques (Eigensadt al. [4]).
However, although connections are identified asagoncost factor in steel grid shells, little resda
has been done on node-repetition in free-form sires.

Figure 1: A torsion-free node: planes of symmefrg@ams meet along a common line

This paper proposes a family of shapes that cauralbt be described as planar conical meshes, with
high node congruence, and possible optimizatioratdes Edge Offset Meshes. This restriction of the
formal possibilities guarantees that the final ghapn easily be constructed. This paper also studie
Monge’s surfaces, and shows that the number dcdréifft nodes, panels or members can be optimized.

Main contributions of this paper include:

« Description of a new family of surfaces with highde congruence and planar quadrilateral
conical mesh: isogonal moulding surfaces.

e Practical tools to mesh isogonal moulding surfagitis perfect nodes.

< Approximation of Monge’s surfaces with patches wfface of revolution, which yields high
repetition of members, panels, and nodes.

This paper is organised as follows: Section 2 dises the generation and properties of isogonal
moulding surfaces and of Monge’s surfaces. The migaleimplementation together with some case

studies is presented in Section 3. An extensioh@fresults obtained for isogonal moulding surfaces
is proposed for Monge’s surfaces in Section 4.
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2. Isogonal moulding surfaces

2.1. Monge’s surfaces

Monge’s surfaces, or generalized moulding surfaaesa subset of sweeping sufaces first studied by
Gaspard Monge in (Monge [8]). They are generatedhkysweeping of curve, called generatrix (in
orange orFigure 2 along a rail curve also called parallel (in blue Figure 2. The restriction to
apply is that the swept curve has to lie initiadlighin the normal plane of the rail curve, andasho
follow therotation-minimizing frame

Figure 2: Stadium as a Monge's surface

2.2. Isogonal moulding surfaces

Moulding surfaces were introduced by Gaspard Moagea restriction of Monge’s surfaces: the
parallels of moulding surfaces are necessarily grlaAn interesting subset of moulding is made of
surfaces where the rail is subdivided with a camsi@ngle. Such surfaces are called isogonal
moulding surfaces (Mesndt al. [6]).

These surfaces have interesting congruence prepddi nodes. Namely, all the nodes belonging to
the same parallel of a moulding surface are comgriie the barrel vault displayed on Figure 3, ¢her
are 700 nodes but only 8 types of nodes becaussutifi@éce is an isogonal moulding surface. Other
symmetries can be used to decrease the total nuwhibedes.

It has been demonstrated in (Mesetl al. [6]) that discrete Monge’s surfaces are covereth wi
trapezoids, and that isogonal moulding surfacescavered with isosceles trapezoids. This has two
conseguences:

« All the members between two parallels are identis@me length, same angle with the
discrete normal). Isogonal moulding surfaces hagh member congruence in addition to
high node congruence.

« Isogonal moulding surfaces naturally form circutaeshes, they can be used as base mesh
for generalized cyclidic nets and can be deformethbersions (Mesnikt al. [7]).
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Figure 3: Barrel vault as isogonal moulding surface

2.3. Relation with surfaces of revolution

The high node congruence in isogonal moulding sedaan be linked to the symmetries observed in
surfaces of revolution with one tool: mesh pargdfal A definition of this notion is recalled in {Let

al. [5]): “two meshes are parallel if all their edgas parallel to each other”. A transformation of a
given mesh to a parallel mesh is calledCambescure transformAs angles between edges are
preserved by parallelism, a simple corollary ig fierallel meshes have identical nodes.

It can be noticed that mesh parallels to discretelding surface are discrete moulding surfaces: the
parallels remain obviously parallels after a Congles transform. Even more specifically, mesh
parallels to isogonal moulding surfaces are isogoraulding surfaces because the angle subdivision
of parallels is preserved by mesh parallelism.

A surface of revolution is a specific case of mauddsurface, where rails are circles. A canonical
surface of revolution (with a uniform subdivisiorfi the rail) is therefore an isogonal moulding
surface. This demonstrates an important statermdmnth is illustrated irFigure 4 ‘All the possible
shapes parallels to discrete surfaces of revoluéiomisogonal moulding surfaces’
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Figure 4: A surface of revolution and two paraiéelgonal moulding surfaces
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3. Numerical implementation

3.1. Isogonal curve

The main challenge in the design of isogonal magidiurfaces is the isogonal subdivision of the rail
curve. A generic algorithm is proposed and desdribe(Mesnil et al. [6]), it has a simple graphical
counterpart illustrated in Figure 5. The algoritbam be described as follows:

1. Find the tangent vectofis, andTg at the ends of the curve, and measure their angldf
the curve is closed and convex, chage = 2x.

2. Divide osg by the numben of inner nodes. Create the vectorg (with i in [1, n-1] , where
eachT; is obtained by a rotation @f, by an angle of (iaag /n).

3. Find the points corresponding to the tangency eéq(tt) on the initial curve.

4. Intersect the corresponding lines with each other.

The algorithm has been implemented within Grassaoppd requires less than 200ms for a hundred
subdivisions. This guarantees a real-time visuatinsand generation of isogonal moulding surfaces.

Steps 1&2

Step 3 A B \

/ N\
A

Step 4 B AN

Figure 5: Graphical method for an isogonal subdivief a planar curve

3.2. Edge Offset Meshes and moulding surfaces

Edge Offset Meshes on moulding surfaces are retat&debe Meshes with a rotational symmetry. In
order to cover moulding surfaces with perfect noitds necessary to compute the equivalent Koebe
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Mesh, i.e. a circle packing on the sphere withtational symmetry. They are only two circles that a
tangent with two meridians (red lines Bigure 6) and a given parallel (blue dotted lineskigure 6).
Mathematically, this means that one value of ttituide A, defines two possible values d,, that

guarantee the construction of a circle packing wothational symmetry.

Figure 6: Koebe Mesh with rotational symmetry, fiata (blue dotted lines) and meridians (red plain
lines)

The problem thus depends only on the latitude eftdmgency point on the sphe¢A: and of the rail

subdivision anglAg. Introducingt; =tan, /2 and the constaK, =1+2sin? A@/2 , the solution

follows:
2t| i(l_tlziﬂl_ ng (1)

t.+ =
" (1‘ K@)tiz +(1+ Ke)

The plus or minus sign depends whether the meplojzagated towards the North Pole or the South
Pole. The values of interest on the targeted mogldurface are two parameters that are conserved by
Combescure transform: the rail subdivision a a;leand the angle of each section of the meridian in

the discrete Frénet frame of the f3,| as seen on Figure 7. Once the an A sre retrieved from the
Koebe Mesh, it is possible to construct the an f3, dor the Koebe Mesh and the moulding surface.

The computation is fast (200ms for 1000 faces),guatantees an efficient exploration of the possibl
shapes of Edge Offset Mesh on isogonal mouldinfases. Some examples of domes as Edge Offset
Meshes are shown on Figure 8. It appears that specé ratio of the panels (length over width)
corresponds to the ratio of principal curvatures. Elgure 8, the dome on the left has a strong
curvature anisotropy and an important aspect ktithe equivalent Edge Offset Mesh; the dome on
the right has a more even distribution of curvaguaad, as a result, the equivalent Edge Offset Mesh
is more balanced.
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Figure 7: Parameters describing the geometry afde in an isogonal moulding surface

The main restriction in the design with Edge Offsttshes is the curvature anisotropy on the target
surface, as the shape of the panels cannot be rchaséhe designer. The algorithm proposed here
does not work for surfaces with zero Gaussian ¢urea but performs very well for shapes like
domes or barrel vaults.

Figure 8: Domes as isogonal moulding surfaces péttiect nodes
4. Toric Monge’s surfaces

4.1. Congruence in Monge’s surfaces

Isogonal moulding surfaces are proven to be venjiai to rotational surfaces, and they inherit some
of their congruence properties. Despite their ginties with moulding surfaces, Monge’s surfaces do
not have such properties in the most general ddse.paper proposes to approximate the rail curve
and the generatrix by circular arcs. The sweepfregarcle along a circle represent a portion ot
which implies that Monge's surfaces resulting frale sweeping of circulars splines are a
concatenation of toric patches. The authorstoalt Monge’s surfacesuch surfaces.

Since the resulting surface has a local rotatiegaimetry, discretization of toric Monge’s surfaces
have high node congruence, as well as members @melgpcongruence on each patch. This process
can be applied to Monge’s surfaces or mouldingesed, like the one displayed on Figure 9 where the
rail curve is approached by three circular arcs.igagonal moulding surface based on this geometry
has panel congruence and not only node congruence.
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The congruence increases as the number of pateleesades, it is therefore important to approximate
a given curve with as little patches as possiblés Totivates the implementation of an optimization
algorithm that allows approximation of a given auiwith a minimum amount of circular arcs.

Figure 9: Barrel Vault as a Toric Monge's Surface

4.2. Algorithm principle: bi-arcs

The approximation of a given set of points by dacisplines has already been used in architecture
and other fields of computer-aided design é@al.[1], Songet al.[13]). The aforementioned papers
use the fact that two prescribed points and twgeaahvectors admit a one-parameter family of bsarc
(two circular arcs), like the one represented @ufé 10.

Figure 10 : A biarc and the associated notations

Circular arcs are here described as Non RationaieBéurves of degree 2. Only three control points
are required, one at each end, and one on thesdicter bissector. Consider a bi-arc with prescribed
pointsA andB and prescribed tanger TyancTg. The two arcs are meeting tangentially at p@nt

following an unknown vecto T. . The control poiniM, ancMg are at the intersection of the
lines (C,TC) and (A,TA)or(B,TB)respectiver. They are defined by the equation:

{MA = A+1,T,

2
Mg =B+IgTg @
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The two arcs meet tangentially, meaning M ,, Mz andC are aligned:

”MA_MB"2:(|A+IB)2 (3)

Equations (2) and (3) lead to an equation with twknowns that any bi-arc has to satisfy the
equation (4), found in (Soret al.[13]):

VIV +2 VT, +25V Ty +2 ,\l5(TaTg -1)=0 (4)
whereV =B-A. This equation has an infinity of solutions. Ihdae transformed into a parametric

. . . I .
equation, for example by introducing the paranr =I—A. The equation becomes then a second
B

order polynomial equation ih, , which has one positive solution for any value.of

4.2.1. Parameters

Two points and two tangent vectors give a one-patarmfamily of bi-arcs. In this paper, a set of
points is chosen on the curve to approximate. Bse@ated tangent vectors are the tangent vectors o
the curve. The approximation of the curve is thieofebi-arcs generated on each set of consecutive
points of the curve. The parameters of the problarestherefore the U-values of the points on the
curve and the ratio for each bi-arc. For N bi-arcs, there are theee{dy-1) values for(Ui), and N

values for(ri ) .

4.2.2. Error functional

Section 4.2.1 shows how to generate a N-paramataifyf of circular splines approaching a reference
curve. The question of the estimation of the sintijebetween two curves remains. A naive approach
would be to minimize the Euclidean distance, bub tburves can be close in terms of Euclidean
distance and have very different features, astilitesd in Figure 11. When dealing with free-form

curves, it is more important to preserve some késpal references, like peaks and valleys.
Mathematically, this means that the criterion llasdmpare the orientations of the normal vectass, a
illustrated in Figure 11: this kind of measure dates the fact that the two curves on the righehav
one unigue peak.

Figure 11: Two curves with a reasonable Euclidaatadce but that are visually different (left) and
the chosen criterion to assess curves proximightyi
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The functional has the form:

> — 2
E(U,R)= Z I ”n(s)an(P'M ds (4)
biarcs
Wheres is the arc length parameter on the bi-arc, Phés dlosest point evaluated on the reference
curve anan(P') the associated normal vector. The functional peesichanges of curve inflection

and gives satisfactory results. The integrals ameputed numerically as finite sums.

EU.RE Y Y Lfae) () ©

biarcsl<i< N

The number of sampling points is chosen so thatestanation does not vary by more than 0.1%
when doubling its value. With the curves studiedhis paper, this led to values between 10 and 20
sampling points.

4.2.3. Optimisation

The optimization problem is an unconstrained smamtbblem, which hints the use of descent
algorithm. The error functional is minimized by aagi-Newton scheme: the BFGS method. This
method computes an approximate value for the Hessiatrix based only on the estimation of the
gradient. The method is easy to implement and hgmod convergence: it is one of the most popular
quasi-Newton methods (Nocedal and Wright [9]).

Once the descent direction is found, it is necgssafind
The optimization is proven to require

4.3. Application

The optimization algorithm has been applied tortikecurve of Monge’s surface displayed on Figure
2. The curve is non-planar and has numerous imnflecpoints, but it has a double symmetry.

Therefore, only an even number of bi-arcs are uésdthe number of bi-arcs increases, the curve
becomes more and more similar to the referenceeclwas seen on Figure 12. However, this also
increases the number of different nodes, or pamleén a Monge’s surface is generated.

Reference Surface 16 Arcs 12 Arcs 8 Arcs
Number of families of panels 200 70 50 30
Number of families of nodes 200 40 30 20
Number of families of generatrix 20 4 3 2

Table 1: Repetition of elements in Monge’s surface

This aspect of repetition of elements is exploredable 1, for a subdivision with 80 elements oa th
rail and 10 elements on the generatrix. The fornfaiahe number of families of elements is given in
equations (5) and (6):
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N panels = ngeneratrix-(znarcs - 1) (5)

N n

nodes — generatriX'narcs (6)

In this case-study, the symmetry decreases futtteenumber of different elements. Finally, the high
congruence of lengths in isogonal moulding surfateans that there a lot of identical generatrix in
toric Monge’s surfaces. This is of particular ietsr when the main structural elements are along the
generatrix, like in stadium design.

Figure 12: Reference Curve and approximation bg 8yid 16 arcs: top view, elevation

This case study shows that optimization of Mongsigfaces or moulding surfaces towards
concatenation of surfaces of revolution is wellfpened by the algorithm proposed in this paper. The
algorithm reached convergence (variation of therefunctional of less than 0.1%) in less than
100ms, which allows real-time manipulation.

5. Conclusion

The construction of complex structures is subjecittong geometrical constraints. In steel gridlshe
the cost of connections is proven to be a majotofafor the total cost. This paper explored a
particular set of surfaces, called isogonal mowgdinrfaces, that have high node congruence and that
are optimal with respect to common optimizatiorgéds. It also showed how to cover these surfaces
with constant edge offset meshes, and gave hindsigthe potential and practical limitations of suc
meshes. Finally, this paper presented an algoritheth approximates Monge’s surfaces with toric
patches; this solution leads to natural coverinip wlanar panels and torsion free nodes togethidr wi
panels, beams and node repetition. Although thetricts the formal possibilities compared to more
general approaches, it describes archetypal shafpaschitecture, such as domes, doubly curved
barrel vaults, or stadia.
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This solution is a particular subset of generalizgdlidic nets, presented in (Mesed al.[7]). The
formal potential of Monge’s surfaces could be exfmahwith Mdbius transforms, with a loss of
repetition of its elements.

The toric-approximation algorithm introduced insthpaper is a descent algorithm, meaning that the
initial configuration has an influence on the fimaltcome. It could be easily combined with genetic
algorithms to find a global optimum for the appioation problem.

Acknowledgement
The authors thank the ANRT and Bouygues Constmatibich financially support this research.

References

[1] Bo P., Pottmann H., Killan M., Wang W., Wallner, Zircular Arc Structures, ilACM
Transactions on Graphic2011;30(4):101-111.

[2] Bouhaya L., Baverel O., Caron J.-F., Optimizatibgraddshell bar orientation using a simplified
genetic approactstructural and Multidisciplinary Optimizatiqr2014;50(5);839-848

[3] Glymph J., Shelden D., Ceccato C., Mussel J., Sahblb, A parametric strategy for free-form
glass structures using quadrilateral planar fagetsomation in Constructiqr200413: 187-202.

[4] Eigensatz, M., Deuss, M., Schiftner, A., Kilian,,Nitra, N. J., Pottmann, H., & Pauly, M.,
Case studies in cost-optimized paneling of architat freeform surfaces. ikdvances in
Architectural Geometry 201@9-72.

[5] Liu Y., Pottmann H., Wallner J., Yang Y.-L., Wang. Wseometric Modeling with Conical
Meshes and Developable SurfaceshA@M Transactions on Graphic2006;25: 681-689.

[6] Mesnil R., Douthe C., Baverel O., Léger B., Carsh.J Isogonal moulding surfaces: a family of
shapes for high node congruence in free-form sirast Automation in Constructign2015
(acecpted).

[71 Mesnil R., Douthe C., Baverel O., Léger B., Mob@Bisometry and Cyclidic Nets: a framework
for complex shape generation,|&SS 2015 Symposium,Future Visigsisbomitted)

[8] Monge G., Application de l'analyse a la géoméaiéyusage de I'Ecole impériale Polytechnique,
(1807).

[9] Nocedal J. and Wright S.Numerical OptimisationSpringer-Verlag, 2006.

[10] Otto F. IL10 Gitterschalen. Institut fir leichteéEhentragwerke (IL), 1974.

[11] Pottmann H., Liu Y., Wallner J., Bobenko A. and WaN., Geometry of Multi-layer support
structures for architecture, ACM Transactions on Graphic2007;26(3).

[12] Schlaich J., Schober, H., Glass Roof for the Hipfmm at Berlin. Structural Engineering
International 1997;7(4): 252-254

[13] Song X., Aigner M., Chen F and Juttler B., Circudgtine fitting using an evolution process.
Journal of Computational and Applied Mathemati2809;231(1): 423-433.

[14] Wallner, J., & Pottmann, H., Geometric computingffeeform architecturelournal of
Mathematics in Industry2011;1(1), 1-19.



