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Abstract 
The repetition of elements in a free-form structure is an important topic for the cost rationalization 
process of complex projects. Although nodes are identified as a major cost factor is steel grid shells, 
little research has been done on node repetition. This paper proposes a family of shapes, called 
isogonal moulding surfaces, having high node congruence, flat panels and torsion-free nodes. It is 
shown that their generalization, called Monge’s surfaces, can be approximated by surfaces of 
revolution, yielding high congruence of nodes, panels and members. These shapes are therefore 
interesting tools for geometrically-constrained design approach. 

 
Keywords: conceptual design, structural morphology, fabrication-aware design, moulding surfaces, 
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1. Introduction 
Complex shapes play an increasing role in contemporary architecture. Recent developments in digital 
fabrication and modeling or representation techniques have allowed new formal possibilities. The 
rationalization of these new shapes is an important issue, which has led to a significant research effort 
in the field of discrete differential geometry.  

Geometrical optimization generally considers two aspects: geometry of panels and the geometry of 
structures. Flat quadrangular panels have been identified as a very efficient solution to the 
panelization problem by (Schlaich and Schober [12], Glymph et al. [3]). Another typical geometrical 
optimization task is to find discrete normal to nodes, such as the one displayed on Figure 1, and to 
have planar beams spanning between them.  Meshes that admit such offsets are called conical meshes 
and were introduced in (Liu et al. [5]). Optimization towards planar conical meshes is possible only 
when the mesh is aligned with the lines of curvature of the surface to cover. Current methods require 
integration of vector fields, which lacks flexibility in the early steps of design, as it cannot be realized 
in real-time and can yield unpredictable results on the topology of curvature lines (Wallner and 
Pottmann [14]). The objective of optimization towards planar conical meshes can be restricted to 
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constant-edge offset: in this case, constant height beams are perfectly aligned on the top and bottom of 
each node. Meshes satisfying this property are called Edge Offset Meshes, and they are related to very 
specific surfaces (Pottmann et al. [11]). The modeling of complex shapes as Edge Offset Mesh is still 
a challenge for designers. 

Repetition of elements is also of importance in the cost-reduction process. Repetition of members 
length in free-form structures has been explored for applications to elastic grid shells very early, and is 
still and active reseach topic (Otto [10], Bouhaya et al. [2]). The topic of repetition has also been 
studied for the repetition of panels, for example with clustering techniques (Eigensatz et al. [4]). 
However, although connections are identified as a major cost factor in steel grid shells, little research 
has been done on node-repetition in free-form structures. 

 

Figure 1: A torsion-free node: planes of symmetry of beams meet along a common line 

 

This paper proposes a family of shapes that can naturally be described as planar conical meshes, with 
high node congruence, and possible optimization towards Edge Offset Meshes. This restriction of the 
formal possibilities guarantees that the final shape can easily be constructed. This paper also studies 
Monge’s surfaces, and shows that the number of different nodes, panels or members can be optimized. 

Main contributions of this paper include: 

• Description of a new family of surfaces with high node congruence and planar quadrilateral 
conical mesh: isogonal moulding surfaces. 

• Practical tools to mesh isogonal moulding surfaces with perfect nodes. 

• Approximation of Monge’s surfaces with patches of surface of revolution, which yields high 
repetition of members, panels, and nodes. 

This paper is organised as follows: Section 2 discusses the generation and properties of isogonal 
moulding surfaces and of Monge’s surfaces. The numerical implementation together with some case 
studies is presented in Section 3. An extension of the results obtained for isogonal moulding surfaces 
is proposed for Monge’s surfaces in Section 4. 
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2. Isogonal moulding surfaces 

2.1. Monge’s surfaces 

Monge’s surfaces, or generalized moulding surfaces, are a subset of sweeping sufaces first studied by 
Gaspard Monge in (Monge [8]). They are generated by the sweeping of curve, called generatrix (in 
orange on Figure 2) along a rail curve also called parallel (in blue on Figure 2). The restriction to 
apply is that the swept curve has to lie initially within the normal plane of the rail curve, and it has to 
follow the rotation-minimizing frame. 

     

Figure 2: Stadium as a Monge's surface 

2.2. Isogonal moulding surfaces 
Moulding surfaces were introduced by Gaspard Monge as a restriction of Monge’s surfaces: the 
parallels of moulding surfaces are necessarily planar. An interesting subset of moulding is made of 
surfaces where the rail is subdivided with a constant angle. Such surfaces are called isogonal 
moulding surfaces (Mesnil et al. [6]). 

These surfaces have interesting congruence properties for nodes. Namely, all the nodes belonging to 
the same parallel of a moulding surface are congruent. In the barrel vault displayed on Figure 3, there 
are 700 nodes but only 8 types of nodes because the surface is an isogonal moulding surface. Other 
symmetries can be used to decrease the total number of nodes. 

It has been demonstrated in (Mesnil et al. [6]) that discrete Monge’s surfaces are covered with 
trapezoids, and that isogonal moulding surfaces are covered with isosceles trapezoids. This has two 
consequences: 

• All the members between two parallels are identical (same length, same angle with the 
discrete normal). Isogonal moulding surfaces have high member congruence in addition to 
high node congruence.  

• Isogonal moulding surfaces naturally form circular meshes, they can be used as base mesh 
for generalized cyclidic nets and can be deformed by inversions (Mesnil et al. [7]). 
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Figure 3: Barrel vault as isogonal moulding surface 

2.3. Relation with surfaces of revolution 
The high node congruence in isogonal moulding surfaces can be linked to the symmetries observed in 
surfaces of revolution with one tool: mesh parallelism. A definition of this notion is recalled in (Liu et 
al. [5]): “two meshes are parallel if all their edges are parallel to each other”. A transformation of a 
given mesh to a parallel mesh is called a Combescure transform. As angles between edges are 
preserved by parallelism, a simple corollary is that parallel meshes have identical nodes. 

It can be noticed that mesh parallels to discrete moulding surface are discrete moulding surfaces: the 
parallels remain obviously parallels after a Combescure transform. Even more specifically, mesh 
parallels to isogonal moulding surfaces are isogonal moulding surfaces because the angle subdivision 
of parallels is preserved by mesh parallelism. 

A surface of revolution is a specific case of moulding surface, where rails are circles. A canonical 
surface of revolution (with a uniform subdivision of the rail) is therefore an isogonal moulding 
surface. This demonstrates an important statement, which is illustrated in Figure 4:  ‘All the possible 
shapes parallels to discrete surfaces of revolution are isogonal moulding surfaces’.  

 

 

Figure 4: A surface of revolution and two parallel isogonal moulding surfaces 
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3. Numerical implementation 

3.1. Isogonal curve 
The main challenge in the design of isogonal moulding surfaces is the isogonal subdivision of the rail 
curve. A generic algorithm is proposed and described in (Mesnil et al. [6]), it has a simple graphical 
counterpart illustrated in Figure 5. The algorithm can be described as follows: 

1. Find the tangent vectors TA and TB at the ends of the curve, and measure their angle αAB. If 

the curve is closed and convex, chose αAB  = 2 π. 

2. Divide αAB by the number n of inner nodes. Create the vectors (T i) with i in [1, n-1] , where 

each T i  is obtained by a rotation of TA  by an angle of (i. αAB /n). 

3. Find the points corresponding to the tangency to the (T i) on the initial curve. 

4. Intersect the corresponding lines with each other. 

The algorithm has been implemented within Grasshopper and requires less than 200ms for a hundred 
subdivisions. This guarantees a real-time visualization and generation of isogonal moulding surfaces. 

 

Figure 5: Graphical method for an isogonal subdivision of a planar curve 

3.2. Edge Offset Meshes and moulding surfaces 
Edge Offset Meshes on moulding surfaces are related to Koebe Meshes with a rotational symmetry. In 
order to cover moulding surfaces with perfect nodes, it is necessary to compute the equivalent Koebe 
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Mesh, i.e. a circle packing on the sphere with a rotational symmetry. They are only two circles that are 
tangent with two meridians (red lines on Figure 6) and a given parallel (blue dotted lines on Figure 6). 
Mathematically, this means that one value of the latitude λi  defines two possible values of λi+1 that 

guarantee the construction of a circle packing with rotational symmetry. 

 

Figure 6: Koebe Mesh with rotational symmetry, parallels (blue dotted lines) and meridians (red plain 
lines) 

The problem thus depends only on the latitude of the tangency point on the sphere λi  and of the rail 

subdivision angle θ∆ . Introducing 2/tan iit λ=   and the constant 2/sin21 2 θθ ∆+=K  , the solution 

follows: 
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The plus or minus sign depends whether the mesh is propagated towards the North Pole or the South 
Pole. The values of interest on the targeted moulding surface are two parameters that are conserved by 
Combescure transform: the rail subdivision angleαi , and the angle of each section of the meridian in 

the discrete Frénet frame of the railβ j , as seen on Figure 7. Once the angles λ j  are retrieved from the 

Koebe Mesh, it is possible to construct the angles β j  for the Koebe Mesh and the moulding surface. 

The computation is fast (200ms for 1000 faces), and guarantees an efficient exploration of the possible 
shapes of Edge Offset Mesh on isogonal moulding surfaces. Some examples of domes as Edge Offset 
Meshes are shown on Figure 8. It appears that the aspect ratio of the panels (length over width) 
corresponds to the ratio of principal curvatures. On Figure 8, the dome on the left has a strong 
curvature anisotropy and an important aspect ratio on the equivalent Edge Offset Mesh; the dome on 
the right has a more even distribution of curvatures and, as a result, the equivalent Edge Offset Mesh 
is more balanced. 
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Figure 7: Parameters describing the geometry of a node in an isogonal moulding surface 

The main restriction in the design with Edge Offset Meshes is the curvature anisotropy on the target 
surface, as the shape of the panels cannot be chosen be the designer. The algorithm proposed here 
does not work for surfaces with zero Gaussian curvature, but performs very well for shapes like 
domes or barrel vaults. 

 

Figure 8: Domes as isogonal moulding surfaces with perfect nodes 

4. Toric Monge’s surfaces 

4.1. Congruence in Monge’s surfaces 
Isogonal moulding surfaces are proven to be very similar to rotational surfaces, and they inherit some 
of their congruence properties. Despite their similarities with moulding surfaces, Monge’s surfaces do 
not have such properties in the most general case. This paper proposes to approximate the rail curve 
and the generatrix by circular arcs. The sweeping of a circle along a circle represent a portion of torus, 
which implies that Monge’s surfaces resulting from the sweeping of circulars splines are a 
concatenation of toric patches. The authors call toric Monge’s surfaces such surfaces.  

Since the resulting surface has a local rotational symmetry, discretization of toric Monge’s surfaces 
have high node congruence, as well as members and panels congruence on each patch. This process 
can be applied to Monge’s surfaces or moulding surfaces, like the one displayed on Figure 9 where the 
rail curve is approached by three circular arcs. An isogonal moulding surface based on this geometry 
has panel congruence and not only node congruence.  
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The congruence increases as the number of patches decreases, it is therefore important to approximate 
a given curve with as little patches as possible. This motivates the implementation of an optimization 
algorithm that allows approximation of a given curve with a minimum amount of circular arcs. 

 

Figure 9: Barrel Vault as a Toric Monge's Surface 

4.2. Algorithm principle: bi-arcs 
The approximation of a given set of points by circular splines has already been used in architecture 
and other fields of computer-aided design (Bo et al. [1], Song et al. [13]). The aforementioned papers 
use the fact that two prescribed points and two tangent vectors admit a one-parameter family of bi-arcs 
(two circular arcs), like the one represented on Figure 10.  
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Figure 10 : A biarc and the associated notations 

 

Circular arcs are here described as Non Rational Bézier curves of degree 2. Only three control points 
are required, one at each end, and one on the line sector bissector. Consider a bi-arc with prescribed 
points A and B and prescribed tangents AT and BT . The two arcs are meeting tangentially at point C 

following an unknown vector CT . The control points AM  and BM  are at the intersection of the 

lines( )CTC,  and ( )ATA, or ( )BTB, respectively. They are defined by the equation: 
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The two arcs meet tangentially, meaning thatAM , BM  and C are aligned: 

( )22
BA ll +=− BA MM               (3) 

Equations (2) and (3) lead to an equation with two unknowns that any bi-arc has to satisfy the 
equation (4), found in (Song et al. [13]): 

( ) 01222 =−+++ BAB
T

A
T TTTVVTVV BABA llll           (4) 

where AB −=V . This equation has an infinity of solutions. It can be transformed into a parametric 

equation, for example by introducing the parameter
B

A

l

l
r = . The equation becomes then a second 

order polynomial equation in Al , which has one positive solution for any value of r. 

4.2.1. Parameters 

Two points and two tangent vectors give a one-parameter family of bi-arcs. In this paper, a set of 
points is chosen on the curve to approximate. The associated tangent vectors are the tangent vectors of 
the curve. The approximation of the curve is the set of bi-arcs generated on each set of consecutive 
points of the curve. The parameters of the problems are therefore the U-values of the points on the 
curve and the ratio r for each bi-arc. For N bi-arcs, there are therefore (N-1) values for ( )iU , and N 

values for ( )ir . 

4.2.2. Error functional 

Section 4.2.1 shows how to generate a N-parameter family of circular splines approaching a reference 
curve. The question of the estimation of the similarity between two curves remains. A naïve approach 
would be to minimize the Euclidean distance, but two curves can be close in terms of Euclidean 
distance and have very different features, as illustrated in Figure 11.  When dealing with free-form 
curves, it is more important to preserve some key visual references, like peaks and valleys. 
Mathematically, this means that the criterion has to compare the orientations of the normal vectors, as 
illustrated in Figure 11: this kind of measure validates the fact that the two curves on the right have 
one unique peak. 

 

Figure 11: Two curves with a reasonable Euclidean distance but that are visually different (left) and 
the chosen criterion to assess curves proximity (right) 
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The functional has the form: 

 

( ) ( )∑∫ ×=
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2
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Where s is the arc length parameter on the bi-arc, P’ is the closest point evaluated on the reference 
curve and ( )'0 Pn  the associated normal vector. The functional penalizes changes of curve inflection 

and gives satisfactory results. The integrals are computed numerically as finite sums.  
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The number of sampling points is chosen so that the estimation does not vary by more than 0.1% 
when doubling its value. With the curves studied in this paper, this led to values between 10 and 20 
sampling points. 

4.2.3. Optimisation 

The optimization problem is an unconstrained smooth problem, which hints the use of descent 
algorithm. The error functional is minimized by a quasi-Newton scheme: the BFGS method. This 
method computes an approximate value for the Hessian matrix based only on the estimation of the 
gradient. The method is easy to implement and has a good convergence: it is one of the most popular 
quasi-Newton methods (Nocedal and Wright [9]).  

Once the descent direction is found, it is necessary to find 

The optimization is proven to require 

4.3. Application 
The optimization algorithm has been applied to the rail curve of Monge’s surface displayed on Figure 
2. The curve is non-planar and has numerous inflection points, but it has a double symmetry. 
Therefore, only an even number of bi-arcs are used. As the number of bi-arcs increases, the curve 
becomes more and more similar to the reference curve, as seen on Figure 12. However, this also 
increases the number of different nodes, or panels when a Monge’s surface is generated. 

 

 Reference Surface 16 Arcs 12 Arcs 8 Arcs 

Number of families of panels 200 70 50 30 

Number of families of nodes 200 40 30 20 

Number of families of generatrix 20 4 3 2 

Table 1: Repetition of elements in Monge’s surface 

This aspect of repetition of elements is explored in Table 1, for a subdivision with 80 elements on the 
rail and 10 elements on the generatrix. The formula for the number of families of elements is given in 
equations (5) and (6): 
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)12.( −= arcsgeneratrixpanels nnN                (5) 

arcsgeneratrixnodes nnN .=         (6) 

 

In this case-study, the symmetry decreases further the number of different elements. Finally, the high 
congruence of lengths in isogonal moulding surfaces means that there a lot of identical generatrix in 
toric Monge’s surfaces. This is of particular interest when the main structural elements are along the 
generatrix, like in stadium design.  

 

 
 

Figure 12: Reference Curve and approximation by 8,12 and 16 arcs: top view, elevation 

This case study shows that optimization of Monge’s surfaces or moulding surfaces towards 
concatenation of surfaces of revolution is well performed by the algorithm proposed in this paper. The 
algorithm reached convergence (variation of the error functional of less than 0.1%) in less than 
100ms, which allows real-time manipulation. 

5. Conclusion 
The construction of complex structures is subject to strong geometrical constraints. In steel grid shell, 
the cost of connections is proven to be a major factor for the total cost. This paper explored a 
particular set of surfaces, called isogonal moulding surfaces, that have high node congruence and that 
are optimal with respect to common optimization targets. It also showed how to cover these surfaces 
with constant edge offset meshes, and gave hindsight on the potential and practical limitations of such 
meshes. Finally, this paper presented an algorithm that approximates Monge’s surfaces with toric 
patches; this solution leads to natural covering with planar panels and torsion free nodes together with 
panels, beams and node repetition. Although this restricts the formal possibilities compared to more 
general approaches, it describes archetypal shapes of architecture, such as domes, doubly curved 
barrel vaults, or stadia.  
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This solution is a particular subset of generalized cyclidic nets, presented in (Mesnil et al. [7]). The 
formal potential of Monge’s surfaces could be expanded with Möbius transforms, with a loss of 
repetition of its elements.  

The toric-approximation algorithm introduced in this paper is a descent algorithm, meaning that the 
initial configuration has an influence on the final outcome. It could be easily combined with genetic 
algorithms to find a global optimum for the approximation problem.  
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