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Abstract

In this paper, we derive and analyze a compartmental model for the control of arboviral diseases8

which takes into account an imperfect vaccine combined with individual protection and some vec-9

tor control strategies already studied in the literature such as the use of adulticides, destruction of10

breeding site, and reduction of eggs and larvae through chemical interventions. After the formulation11

of the model, a qualitative study based on stability analysis and bifurcation theory reveals that the12

phenomenon of backward bifurcation may occur. The stable disease-free equilibrium of the model13

coexists with a stable endemic equilibrium when the reproduction number, R0, is less than unity. Us-14

ing Lyapunov functions theory, we prove that the trivial equilibrium is globally asymptotically stable;15

when the disease–induced death is not considered, or/and, when the standard incidence is replaced16

by the mass action incidence, the backward bifurcation does not occur. Under a certain threshold17

condition, we establish the global asymptotic stability of the disease–free equilibrium of the full model.18

Through sensitivity analysis, we determine the relative importance of model parameters for disease19

transmission. Numerical simulations show that the combination of several control mechanisms would20

significantly reduce the spread of the disease, if we maintain the level of each control high, and this,21

over a long period.22

Keywords: Compartmental model, Arboviral diseases, Vaccination, Vector control strategies,23

Stability, Backward bifurcation, Sensitivity analysis.24

AMS Subject Classification (2010): 34D20, 34D23, 37N25, 92D30.25

1 Introduction26

Arboviral diseases are affections transmitted by hematophagous arthropods. There are cur-27

rently 534 viruses registered in the International Catalog of Arboviruses and 25% of them have28

caused documented illness in human populations [1, 2, 3]. Examples of those kinds of diseases29

are Dengue, Yellow fever, Saint Louis fever, Encephalitis, West Nile fever and Chikungunya.30

A wide range of arboviral diseases are transmitted by mosquito bites and constitute a public31

health emergency of international concern. According to World Health Organisation (WHO),32

Dengue, caused by any of four closely-related virus serotypes (DEN-1-4) of the genus Flavivirus,33

causes 50–100 million infections worldwide every year, and the majority of patients worldwide34

are children aged 9 to 16 years [4, 5, 6]. The dynamics of arboviral diseases like Dengue or35
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Chikungunya are influenced by many factors such as human and mosquito behaviours. The36

virus itself (multiple serotypes of dengue virus [5, 6], and multiple strains of chikungunya37

virus [7, 8]), as well as the environment directly or indirectly affects all the present mechanisms38

of control [9, 10].39

For all mentioned diseases, only yellow fever has a licensed vaccine. Nonetheless, consid-40

erable efforts are made to obtain the vaccines for other diseases. In the case of Dengue for41

example, the scientists of French laboratory SANOFI have conducted different tries in Latin42

America and Asia. Thus, a tetravalent vaccine could be quickly set up in the coming months.43

The tries in Latin America have shown that vaccine efficacy was 64.7%. Serotype–specific vac-44

cine efficacy was 50.3% for serotype 1, 42.3% for serotype 2, 74.0% for serotype 3, and 77.7%45

for serotype 4 [11]. The tries in Asia have shown that efficacy was 30.2%, and differed by46

serotype [12]. In any case, it is clear that this vaccine will be imperfect.47

Host-vector models for arboviral diseases transmission were proposed in [13, 14, 15, 16,48

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] with the focus on the construction of the49

basic reproductive ratio and related stability analysis of the disease free and endemic equilibria.50

Some of these works in the literature focus on modelling the spread of arboviral diseases and its51

control using some mechanism of control like imperfect vaccines [23, 24, 30] and other control52

tools like individual protection and vector control strategies [13, 14, 19, 25, 27, 28].53

In [19], Dumont and Chiroleu proposed a compartmental model to study the impact of vector54

control methods used to contain or stop the epidemic of Chikungunya of 2006 in Réunion island.55

Moulay et al. [27] studied an optimal control based on protection and vector control strategies56

to fight against Chikungunya. In [24], Rodrigues et al. simulate an hypothetical vaccine as57

an extra protection to the human population against epidemics of Dengue, using the optimal58

control theory. In those models [19, 24, 27],59

(i) the population is constant,60

(ii) the disease-induced death in humans is not considered,61

(iii) the complete stage progression of development of vectors is not considered,62

(iv) none of the above mentioned models takes into account the combination of the mechanisms63

of control already studied in the literature, such as vaccination, individual protection and64

vector control strategies (destruction of breeding site, eggs and larvae reduction).65

The aim of this work is to propose and study a arboviral disease control model which66

takes into account human immigration, disease–induced mortality in human communities, the67

complete stage structured model for vectors and a combination of human vaccination, individual68

protection and vector control strategies to fight against the spread of these kind of diseases.69

We start with the formulation of a constant control model, which is an extension of the70

previous model developed in [30]. We include the complete stage progression of development71

of vectors, the waning vaccine, and four others controls (individual protection, the use of72

adulticides, destruction of breeding site, and reduction of eggs and larvae through chemical73

interventions). We compute the net reproductive number N , as well as the basic reproduction74

number, R0, and investigate the existence and stability of equilibria. We prove that the trivial75

equilibrium is globally asymptotically stable whenever N < 1. When N > 1 and R0 < 1,76

we prove that the system exhibit the backward bifurcation phenomenon. The implication of77

this occurrence is that the classical epidemiological requirement for effective eradication of the78

disease, R0 < 1, is no longer sufficient, even though necessary. However, considering two79

situations: the model without vaccination and the model with mass incidence rates, we prove80

that the disease–induced death and the standard incidence functions, respectively, are the main81
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causes of the occurrence of backward bifurcation. We find that the disease–free equilibrium is82

globally asymptotically stable under certain threshold condition. Through local and global83

sensitivity analysis, we determine the relative importance parameters of the model on the84

disease transmission. By using the pulse control technique (the control is not continuous in85

time order is effective only one day every T days [19]) in numerical simulations, we evaluate86

the impact of different control combinations on the decrease of the spread of these diseases.87

The paper is organized as follows. In Section 2 we present the transmission model and88

in Section 3 we carry out some analysis by determining important thresholds such as the net89

reproductive number N and the basic reproduction number R0, and different equilibria of the90

model. We then demonstrate the stability of equilibria and carry out bifurcation analysis. In91

section 4, both local and global sensitivity analysis are used to assess the important parameters92

in the spread of the diseases. Section 5 is devoted to numerical simulations. A conclusion93

rounds up the paper.94

2 The formulation of the model95

The model we propose here is an extension of the previous model studied in [30], and is based96

on the modelling approach given in [19, 20, 21, 22, 23, 27, 28]. It is assumed that the human and97

vector populations are divided into compartments described by time–dependent state variables.98

The compartments in which the populations are divided are the following ones:99

–For humans, we consider susceptible (denoted by Sh), vaccinated (Vh), exposed (Eh),
infectious (Ih) and resistant or immune (Rh); So that, Nh = Sh + Vh +Eh + Ih +Rh. Following
Garba et al. [23] and Rodrigues et al. [24], we assume that the immunity, obtained by the
vaccination process, is temporary. So, we denote by ω, the waning rate of vaccine. The
recruitment in human population is at the constant rate Λh, and newly recruited individuals
enter the susceptible compartment Sh. Are concerned by recruitment people that are totally
naive from the disease. Each individual human compartment goes out from the dynamics at
natural mortality rates µh. The human susceptible population is decreased following infection,
which can be acquired via effective contact with an exposed or infectious vector at a rate

λh =
aβhv(ηvEv + Iv)

Nh

[23],

where a is the biting rate per susceptible vector, βhv is the transmission probability from an100

infected vector (Ev or Iv) to a susceptible human (Sh). The expression of λh is obtained as101

follows: the probability that a vector chooses a particular human or other source of blood to bite102

can be assumed as
1

Nh

. Thus, a human receives in average a
Nv

Nh

bites per unit of times. Then,103

the infection rate per susceptible human is given by aβhv

Nv

Nh

(ηvEv + Iv)

Nv

. In expression of λh,104

the modification parameter 0 < ηv < 1 accounts for the assumed reduction in transmissibility105

of exposed mosquitoes relative to infectious mosquitoes [23, 30] (see the references therein for106

the specific sources). Latent humans (Eh) become infectious (Ih) at rate γh. Infectious humans107

recover at a constant rate, σ or dies as consequence of infection, at a disease-induced death108

rate δ. After infection, immune humans retain their immunity for life.109

– Following [27], the stage structured model is used to describe the vector population dy-110

namics, which consists of three main stages: embryonic (E), larvae (L) and pupae (P). Even111

if eggs (E) and immature stages (L and P) are all aquatic, it is important to dissociate them112

because, for the control point of view, drying the breeding sites does not kill eggs, but only113

larvae and pupae. Moreover, chemical interventions on the breeding sites has impact on the114
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larvae population, but not on the eggs [27]. The number of laid eggs is assumed proportional115

to the number of females. The system of stage structured model of aquatic phase development116

of vector is given by (see [27] for details)117























Ė = µb

(

1−
E

ΓE

)

(Sv + Ev + Iv)− (s+ µE)E

L̇ = sE

(

1−
L

ΓL

)

− (l + µL)L

Ṗ = lL− (θ + µP )P

Unlike the authors of [27], we take into account the pupal stage in the development of the vector.118

This is justified by the fact that they do not feed during this transitional stage of development,119

as they transform from larvae to adults [10, 31]. So, the control mechanisms cannot be applied120

to them.121

With a rate θ, pupae become female Adults. Each individual vector compartment goes out
from the dynamics at natural mortality rates µv. The vector susceptible population is decreased
following infection, which can be acquired via effective contact with an exposed or infectious
human at a rate

λv =
aβvh(ηhEh + Ih)

Nh

[23],

where βvh is the probability of transmission of infection from an infectious human (Eh or Ih)122

to a susceptible vector (Sv). The modification parameter 0 ≤ ηh < 1 accounts for the relative123

infectiousness of exposed humans in relation to infectious humans. Here too, it is assumed that124

susceptible mosquitoes can acquire infection from exposed humans [16, 23, 30]. Latent vectors125

(Ev) become infectious (Iv) at rate γv. The vector population does not have an immune class,126

since it is assumed that their infectious period ends with their death [21].127

Then, we add new terms in the model to assess the different control tools studied:128

(i) α1 represents the efforts made to protect human from mosquitoes bites. It mainly consists129

to the use of mosquito nets or wearing appropriate clothes [28]. Thus we modify the130

infection term as follows:131

λc
h = (1− α1)λh, and λc

v = (1− α1)λv,with 0 ≤ α1 < 1; (1)

(ii) η1 and η2 are respectively, egg and larval mortality rates induced by chemical intervention,132

(iii) cm is the additional mortality rate due to adulticide,133

(iv) α2 is the parameter associated with the efficacy of the mechanical control.134
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The above assumptions lead to the following non-linear system of ordinary differential equations135



























































































Ṡh = Λh + ωVh − (λc
h + ξ + µh)Sh

V̇h = ξSh − [(1− ǫ)λc
h + ω + µh]Vh

Ėh = λc
h [Sh + (1− ǫ)Vh]− (µh + γh)Eh

İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh

Ṡv = θP − λc
vSv − (µv + cm)Sv

Ėv = λc
vSv − (µv + γv + cm)Ev

İv = γvEv − (µv + cm)Iv

Ė = µb

(

1−
E

α2ΓE

)

(Sv + Ev + Iv)− (s+ µE + η1)E

L̇ = sE

(

1−
L

α2ΓL

)

− (l + µL + η2)L

Ṗ = lL− (θ + µP )P

(2)

The description of state variables and parameters of model (2) are given in table 1 and table136

2, respectively.137

It is important to note that no intervention measure is performed to kill the pupae for two138

reasons: the first reason is the fact that at this stage, no food is absorbed by the insect, so139

it is impossible to make her ingested a toxic substance; the second reason is that the soluble140

products in the water deposits by contact are not selective for mosquito nymphs and act on all141

aquatic wildlife.

Hosts
Adult
vectors

Immature
vectors

ShVh

Eh

Ih

Rh

Sv

Ev

Iv

P

L

E

Figure 1: A compartmental model for the transmission dynamics of vector-borne diseases,
which takes into account a waning vaccine and the complete phase of aquatic development of
vector.

142
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Table 1: The state variables of model (2).

Humans Vectors
Sh: Susceptible E: Eggs
Vh: Vaccines L: Larvae
Eh: Infected in latent stage P : Pupae
Ih: Infectious Sv: Susceptible
Rh: Resistant (immune) Ev Infected in latent stage

Iv Infectious

2.1 Well–posedness of the model143

We now show that the system (2) is mathematically well defined and biologically feasible. Let144

us set145

k1 := ξ + µh; k2 := ω + µh; k3 := µh + γh; k4 := µh + δ + σ;
k5 := s+ µE + η1; k6 := l + µL + η2; k7 := θ + µP ; k8 := µv + cm;
k9 := µv + γv + cm;KE := α2ΓE ;KL := α2ΓL; π := 1− ǫ, τ := a(1− α1).

(3)

System (2) can be rewritten in the following way146

dX

dt
= A(X)X + F (4)

with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T , A(X) =

(

A1(X) 0
0 A4(X)

)

147

with

A1(X) =













−λc
h − k1 ω 0 0 0
ξ −πλc

h − k2 0 0 0
λc
h πλc

h −k3 0 0
0 0 γh −k4 0
0 0 0 σ −µh













and

A2(X) =

















−(λc
v + k8) 0 0 0 0 θ
λc
v −k9 0 0 0 0
0 γv −k8 0 0 0

A96 A96 A96 −A97 0 0
0 0 0 A109 −A10 0
0 0 0 0 l −k7

















where A96 = µb

(

1−
E

KE

)

, A97 =

(

µbNv

KE

+ k5

)

, A109 = s

(

1−
L

KL

)

and A10 =
sE

KL

+ k6;148

and F = (Λh, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T .149

Note that A(X) is a Metzler matrix, i.e. a matrix such that off diagonal terms are non150

negative [33, 34], for all X ∈ R
11
+ . Thus, using the fact that F ≥ 0, system (4) is positively151

invariant in R
11
+ , which means that any trajectory of the system starting from an initial state in152

the positive orthant R11
+ , remains forever in R

11
+ . The right-hand side is Lipschitz continuous:153

there exists a unique maximal solution.154

By adding the first four equations of model system (2), it follows that

Ṅh(t) = Λh − µhNh − δIh ≤ Λh − µhNh
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Table 2: Description and baseline values/range of parameters of model (2).

Parameter Description Baseline Sources
value/range

Λh Recruitment rate of humans 2.5 day−1 [23]
µh Natural mortality rate 1

(67×365)
day−1 [23]

in humans
ξ Vaccine coverage Variable
ω Vaccine waning rate Variable
ǫ The vaccine efficacy Variable
a Average number of bites 1 day−1 [13, 23]
βhv Probability of transmission of 0.1, 0.75 day−1 [13, 23]

infection from an infected vector
to a susceptible human

γh Progression rate from Eh to Ih
[

1
15
, 1
3

]

day−1 [19, 32]
δ Disease–induced death rate 10−3 day−1 [23]
σ Recovery rate for humans 0.1428 day−1 [13, 23]
ηh,ηv Modifications parameter [0, 1) [23]
µv Natural mortality rate of vectors

[

1
30
, 1
14

]

day−1 [13, 23]
γv Progression rate from Ev to Iv

[

1
21
, 1
2

]

day−1 [19, 32]
βvh Probability of transmission of 0.1, 0.75 day−1 [13, 23]

infection from an infected human
to a susceptible vector

θ Maturation rate from pupae 0.08 day−1 [19, 27, 28]
to adult

µb Number of eggs at each deposit 6 day−1 [19, 27, 28]
ΓE Carrying capacity for eggs 103, 106 [13, 27]
ΓL Carrying capacity for larvae 5× 102, 5× 105 [13, 27]
µE Eggs death rate 0.2 or 0.4 [28]
µL Larvae death rate 0.2 or 0.4 [28]
µP Pupae death rate 0.4 Assumed
s Transfer rate from eggs to larvae 0.7 day−1 [28]
l Transfer rate from larvae to pupae 0.5 day−1 [27]
η1, η2 Eggs and larvae mortality rates 0.001,0.3 [28]

induced by chemical intervention
α1 Human protection rate [0, 1) Assumed
α2 Efficacy of the mechanical control (0, 1] [19]
cm Adulticide killing rate [0,0.8] [19]

So that

0 ≤ Nh(t) ≤
Λh

µh

+

(

Nh(0)−
Λh

µh

)

e−µht

Thus, at t −→ ∞, 0 ≤ Nh(t) ≤
Λh

µh

.155

By adding the equations in Sv, Ev and Iv of system (2), it follows that

Ṅv(t) = θP − µvNv
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So that

0 ≤ Nv(t) =
θP

µv

+

(

Nv(0)−
θP

µv

)

e−µvt

Thus, at t −→ ∞, 0 ≤ Nv(t) ≤
θlKL

µvk7
since P ≤

lKL

k7
.156

Therefore, all feasible solutions of model system (2) enter the region:157

D =

{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
11
+ : Nh ≤

Λh

µh

;E ≤ KE ;L ≤ KL;P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

,

which is a positively invariant set of system (2).158

Furthermore, the model (2) is well-posed epidemiologically and we will consider dynamic159

behaviour of model (2) on D.160

3 Mathematical analysis161

In this section, we focus on the qualitative analysis of our model. We determine the different162

equilibrium points which are governed by two epidemiological thresholds, the net reproductive163

number denoted by N and the basic reproduction number denoted by R0. Then, with respect164

on the values of these thresholds, we study the stability (local as well as global) of the different165

equilibrium points, and also we test the occurrence of the backward bifurcation phenomenon.166

These stability analysis are also done for the different corresponding models (model without167

vaccination and model with mass-action incidences), to determine the causes of the occurrence168

of backward bifurcation phenomenon.169

3.1 The disease–free equilibria and its stability170

In the absence of disease in the both population (human and Adult vector), i.e. λc
h = λc

v = 0171

(or Eh = Ih = Ev = Iv = 0), we obtain two equilibria without disease: the trivial equilibrium172

(equilibrium without vector and disease) E0 = (S0
h, V

0
h , 0, 0, 0, 0, 0, 0, 0, 0, 0) and the disease–free173

equilibrium (equilibrium with vector and without disease) E1 = (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )174

with175

S0
h =

Λhk2
µh(k2 + ξ)

, V 0
h =

ξΛh

µh(k2 + ξ)
, N0

v =
KEKLk5k6 (N − 1)

µb (KEs+ k6KL)
,

P =
KEKLk5k6k8 (N − 1)

µbθ (KEs+ k6KL)
, L =

KEKLk5k6k7k8 (N − 1)

µbθl (KEs+ k6KL)
,

E =
KEKLk5k6k7k8 (N − 1)

s (µblKLθ + k5k7k8KE)
.

(5)

where N is the net reproductive number [27, 35, 36] given by176

N =
µbθls

k5k6k7k8
(6)

3.1.1 Local stability of disease–free equilibria177

The local asymptotic stability result of equilibria E0 and E1 is given in the following.178

Theorem 1. Define the basic reproductive number [37, 38]179

R0 =

√

a2(1− α1)
2βhvβvhµhk5k6 (γh + k4ηh) (γv + k8ηv) (πξ + k2)α2ΓEΓL(N − 1)

k3k4k8k9µbΛh (ξ + k2) (k6ΓL + sΓE)
(7)

Then,180

8



(i) if N ≤ 1, the trivial equilibrium E0 is locally asymptotically stable in D;181

(ii) if N > 1, the trivial equilibrium is unstable and the disease–free equilibrium E1 is locally182

asymptotically stable in D whenever R0 < 1.183

Proof. See appendix B.184

The basic reproduction number of a disease is the average number of secondary cases that185

one infectious individual produces during his infectious period in a totally susceptible pop-186

ulation. The epidemiological implication of Theorem 1 is that, in general, when the basic187

reproduction number, R0 is less than unity, a small influx of infectious vectors into the com-188

munity would not generate large outbreaks, and the disease dies out in time (since the DFE is189

locally asymptotically stable) [23, 37, 38, 39]. However, we will show in the subsection 3.2 that190

the disease may still persist even when R0 < 1.191

3.1.2 Global stability of the trivial equilibrium192

The global stability of the trivial equilibrium is given by the following result:193

Theorem 2. If N ≤ 1, then E0 is globally asymptotically stable on D.194

Proof. To prove the global asymptotic stability of the trivial disease–free equilibrium E0, we195

use the direct Lyapunov method. To this aim, we set Y = X − TE with196

X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T and rewrite (2) in the following manner197

dY

dt
= B(Y )Y.

The global asymptotic stability of E0 is achieved by considering the following Lyapunov function
L(Y ) =< g, Y > where

g =

(

1, 1, 1, 1, 1, 1, 1, 1,
k8
µb

,
k5k8
µbs

,
k5k6k8
µbsl

)

.

See appendix C for the details.198

3.1.3 Global stability of the disease–free equilibrium199

We now turn to the global stability of the disease–free equilibrium E1. we prove that the disease–200

free equilibrium E1 is globally asymptotically stable under a certain threshold condition. To201

this aim, we use a result obtained by Kamgang and Sallet [40], which is an extension of some202

results given in [38]. Using the property of E1, it is possible to rewrite (2) in the following203

manner204
{

ẊS = A1(X)(XS −XDFE) +A12(X)XI

ẊI = A2(X)XI

(8)

where XS is the vector representing the state of different compartments of non transmitting in-
dividuals (Sh, Vh, Rh, Sv, E, L, P ) and the vector XI represents the state of compartments of dif-
ferent transmitting individuals (Eh, Ih, Ev, Iv). Here, we have XS = (Sh, Vh, Rh, Sv, E, L, P )T ,

XI = (Eh, Ih, Ev, Iv)
T , X = (XS, XI) and XDFE := E1 = (S0

h, V
0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

T
,

A1(X) =

(

A(1)
1 A(2)

1

A(3)
1 A(4)

1

)

,
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with A(1)
1 (X) =









−(λc
h + k1) ω 0 0
ξ −(πλc

h + k2) 0 0
0 0 −µh 0
0 0 0 −(λc

v + k8)









,

A(2)
1 (X) =









0 0 0
0 0 0
0 0 0
0 0 θ









, A(3)
1 (X) =









0 0 0 µb

(

1−
E

KE

)

0 0 0 0
0 0 0 0









,

A(4)
1 (X) =













−

(

k5 + µb

S0
v

KE

)

0 0

s

(

1−
L

KL

)

−

(

k6 +
sE∗

KL

)

0

0 l −k7













,

A12(X) =



































0 0 −
τβhvηvS

0
h

Nh

−
τβhvS

0
h

Nh

0 0 0

0 0 −
τβhvηvπV

0
h

Nh

−
τβhvπV

0
h

Nh

0 0 0

0 σ 0 0 0 0 0

−
τβvhηhS

0
v

Nh

−
τβvhS

0
v

Nh

0 0 0 0 0

0 0 µb

(

1−
E

KE

)

µb

(

1−
E

KE

)

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0



































,

A2(X) =















−k3 0
τβhvηv(Sh + πVh)

Nh

τβhv(Sh + πVh)

Nh

γh −k4 0 0
τβvhηhSv

Nh

τβvhSv

Nh

−k9 0

0 0 γv −k8















.

A direct computation shows that the eigenvalues of A1(X) have negative real parts. Thus the205

system ẊS = A1(X)(XS − XDFE) is globally asymptotically stable at XDFE. Note also that206

A2(X) is a Metzler matrix.207

We now consider the bounded set G:208

G =
{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
11
+ : Sh ≤ Nh, Vh ≤ Nh, Eh ≤ Nh, Ih ≤ Nh, Rh ≤ Nh,

N̄h =
Λh

(µh + δ)
≤ Nh ≤ N0

h =
Λh

µh

;E ≤ KE ;L ≤ KL;P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

Let us recall the following theorem [40] (See [40] for a proof in a more general setting).209

Theorem 3. Let G ⊂ U = R
7 × R

4. The system (2) is of class C1, defined on U . If210

(1) G is positively invariant relative to (8).211

(2) The system ẊS = A1(X)(XS −XDFE) is Globally asymptotically stable at XDFE.212

(3) For any x ∈ G, the matrix A2(x) is Metzler irreducible.213

(4) There exists a matrix Ā2 , which is an upper bound of the set214

M = {A2(x) ∈ M4(R) : x ∈ G} with the property that if A2 ∈ M, for any x̄ ∈ G, such215

that A2(x̄) = Ā2, then x̄ ∈ R
7 × {0}.216
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(5) The stability modulus of Ā2, α(A2) = maxλ∈sp(A2)Re(λ) satisfied α(A2) ≤ 0.217

Then the DFE is GAS in G.218

For our model system (2), conditions (1–3) of the theorem 3 are satisfied. An upper bound
of the set of matrices M, which is the matrix Ā2 is given by

Ā2 =

















−k3 0
τβhvηv(S

0
h + πV 0

h )

N̄h

τβhv(S
0
h + πV 0

h )

N̄h

γh −k4 0 0
τβvhηhS

0
v

N̄h

τβvhS
0
v

N̄h

−k9 0

0 0 γv −k8

















,

where N̄h =
Λh

(µh + δ)
.219

To check condition (5) in theorem 3, we will use the useful lemma [40] in appendix A. To220

this aim, let221

A =

(

−k3 0
γh −k4

)

, B =





τβhvηv(S
0
h + πV 0

h )

N̄h

τβhv(S
0
h + πV 0

h )

N̄h

0 0



,222

C =





τβvhηhS
0
v

N̄h

τβvhS
0
v

N̄h

0 0



, and D =

(

−k9 0
γv −k8

)

.223

Clearly, A is a stable Metzler matrix. Then, after some computations, we obtainD−CA−1B224

is a stable Metzler matrix if and only if225

Rc ≤ 1 (9)

where226

Rc =

√

a2(1− α1)
2βhvβvhk5k6 (γh + k4ηh) (γv + k8ηv)KEKL(k2 + πξ)(N − 1)

k3k4k8k9µb(k2 + ξ)(k6KL +KEs)Λh

(µh + δ)2

µh
. (10)

227

We claim the following result228

Theorem 4. If N > 1 and Rc ≤ 1, then the disease–free equilibrium E1 is globally asymptoti-229

cally stable in G.230

Remark 1.231

(i) From (10), we have Rc =
(µh + δ)

µh

R0 > R0, showing that Rc is not necessarily an optimal232

threshold parameter.233

(ii) Note that inequality (9) is equivalent to234

R0 ≤ RG =

(

µh

µh + δ

)

< 1, (11)

which means that for235

R0 ≤ RG, (12)
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the disease–free equilibrium E1 is the unique equilibrium (no co-existence with endemic236

equilibria). If237

RG < R0 ≤ 1, (13)

then it is possible to have co-existence with endemic equilibria and thus, the occurrence of238

the backward bifurcation phenomenon.239

(iii) Note that in the absence of disease–induced death, i.e. δ = 0, inequalities (9) and (11)240

become241

R0 ≤ 1. (14)

This suggests that the disease–induced death may be a cause of the instability of the242

disease–free equilibrium E1 when R0 < 1, and thus, one cause of the occurrence of the243

backward bifurcation phenomenon.244

Remark 2. The above results show that if, at any time, through appropriate interventions (eg245

the destruction of breeding sites, massive spraying, personal protection, vaccination, effective246

treatment,...), we are able to reduce N or R0 and Rc less than 1 for a sufficiently long period,247

then, the disease may disappear. The same remark is done in [19].248

The backward bifurcation phenomenon, in epidemiological systems, indicate the possibility249

of existence of at least two endemic equilibria when R0 is less than unity. Thus, the classical250

requirement of R0 < 1 is, although necessary, no longer sufficient for disease elimination [23,251

41, 42, 43]. In some epidemiological models, it has been shown that the backward bifurcation252

phenomenon is caused by factors such as non-linear incidence (the infection force), disease–253

induced death and vaccine (perfect or not) [23, 43, 44, 45, 46, 47]. To confirm whether or not254

the backward bifurcation phenomenon occurs in this case, one could use the approach developed255

in [38, 46, 48], which is based on the general centre manifold theorem [49]. We will explore this256

method in the next section.257

3.2 Endemic equilibria and bifurcation analysis258

3.2.1 Existence of endemic equilibria259

We turn now to the existence of endemic equilibria. Let us introduce the following quantity260

R1 = R0,δ=0. We prove the following result261

Theorem 5. We assume that N > 1, then262

(i) In the absence of disease–induced death in human population (δ = 0), model system (2)263

have264

1. A unique endemic equilibrium whenever R1 > 1.265

2. No endemic equilibrium otherwise.266

(ii) In presence of disease–induced death in human population (δ > 0), model system (2) could267

have268

3. At least one endemic equilibrium whenever R0 > 1.269

4. Zero, one or more than one endemic equilibrium whenever R0 < 1.270

Proof. See appendix D.271

Note that case 4 of Theorem 5 indicate the possibility of existence of at least one endemic272

equilibrium for R0 < 1 and hence the potential occurrence of a backward bifurcation phe-273

nomenon.274

12



3.2.2 Backward bifurcation analysis275

In the following, we use the centre manifold theory [25, 38, 46, 48] to explore the possibility of276

backward bifurcation in (2). To do so, a bifurcation parameter β∗
hv is chosen, by solving for βhv277

from R0 = 1, giving278

β∗
hv =

k3k4k8k9µbΛh (ξ + k2) (k6KL + sKE)

a2(1− α1)2βvhµhk5k6 (γh + k4 ηh) (γv + k8 ηv) (πξ + k2)KEKL(N − 1)
. (15)

Let Jβ∗

hv
denotes the Jacobian of the system (2) evaluated at the DFE (E1 ) and with βhv = β∗

hv.279

Thus,280

Jβ∗

hv
=

(

J1 J2

J3 J4

)

, (16)

where281

J1 =













−k1 ω 0 0 0
ξ −k2 0 0 0
0 0 −k3 0 0
0 0 γh −k4 0
0 0 0 σ −µh













, J4 =

















−k8 0 0 0 0 θ
0 −k9 0 0 0 0
0 γv −k8 0 0 0
K1 K1 K1 −K2 0 0
0 0 0 K3 −K4 0
0 0 0 0 l −k7

















.282

J2 =

























0 −
τβ∗

hv
ηvS

0
h

N0
h

−
τβ∗

hv
S0
h

N0
h

0 0 0

0 −
τβ∗

hv
πηvV

0
h

N0
h

−
τβ∗

hv
πV 0

h

N0
h

0 0 0

0
τβ∗

hv
ηvH

0

N0
h

τβ∗

hv
H0

N0
h

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

























, J3 =

























0 0 −
τβvhηhS

0
v

N0
h

−
τβvhS

0
v

N0
h

0

0 0
τβvhηhS

0
v

N0
h

τβvhS
0
v

N0
h

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























,283

with H0 = S0
h + πV 0

h , K1 = µb

(

1−
E∗

KE

)

, K2 = k5 +
µb

KE

S0
v . K3 = s

(

1−
L∗

KL

)

, and284

K4 =

(

k6 +
sE∗

KL

)

.285

Note that the system (2), with βhv = β∗
hv, has a hyperbolic equilibrium point (i.e., the286

linearised system (2) has a simple eigenvalue with zero real part and all other eigenvalues287

have negative real part). Hence, the centre manifold theory [49, 50] can be used to analyze288

the dynamics of the model (2) near βhv = β∗
hv. The technique in Castillo-Chavez and Song289

(2004) [48] entails finding the left and right eigenvectors of the linearised system above as290

follows.291

The left eigenvector components of Jβ∗

hv
, which correspond to the uninfected states are zero

(see Lemma 3 in [38]). Thus a non-zero components correspond to the infected states. It follows
that the matrix Jβ∗

hv
has a left eigenvector given by v = (v1, v2, . . . , v11), where

v1 = v2 = v5 = v6 = v9 = v10 = v11 = 0; v3 =
k8N

0
h

a(1− α1)β∗
hvH

0
v8;

v4 =
a(1− α1)βvhS

0
v(ηvk8 + γv)

k4k9N
0
h

v8, v7 =
(ηvk8 + γv)

k9
v8, v8 > 0.
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The system (2) has a right eigenvector given by w = (w1, w2, . . . , w11)
T , where

w11 > 0, w8 > 0,

w10 =
k7
l
w11, w9 =

K1θ

k5k8
w11, w7 =

k8
γv

w8, w6 =
θ

k8
w11 −

k9
γv

w8,

w5 =
γhσk8k9N

0
h

a(1− α1)βvhµhγvS0
v (ηhk4 + γh)

w8, w4 =
µh

σ
w5, w3 =

k4
γh

w4,

w2 = −
a(1− α1)β

∗
hv(ηvk8 + γv)

γvN
0
h(k1k2 − ξω)

(ξS0
h + k1V

0
h )w8,

w1 =
ω

k1
w2 −

a(1− α1)β
∗
hvS

0
h

k1N0
h

(ηvw7 + w8) .

Theorem 4.1 in Castillo-Chavez and Song [48] is then applied to establish the existence of292

backward bifurcation in (2). To apply such a theorem, it is convenient to let fk represent the293

right-hand side of the kth equation of the system (2) and let xk be the state variables whose294

derivative is given by the kth equation for k = 1, . . . , 11. The local bifurcation analysis near295

the bifurcation point (βhv = β∗
hv) is then determined by the signs of two associated constants,296

denoted by A1 and A2, defined by297

A1 =

n
∑

k,i,j=1

vkwiwj

∂2fk(0, 0)

∂xi∂xj

and A2 =

n
∑

k,i=1

vkwi

∂2fk(0, 0)

∂xi∂φ
(17)

with φ = βhv − β∗
hv. It is important to note that in fk(0, 0), the first zero corresponds to the298

disease–free equilibrium, E1, for the system (2). Since βhv = β∗
hv is the bifurcation parameter,299

it follows from φ = βhv − β∗
hv that φ = 0 when βhv = β∗

hv which is the second component in300

fk(0, 0).301

It follows then, after some algebraic computations, that

A1 = Γ1 − Γ2

with

Γ1 =
τβ∗

hv
(2V 0

h
w1 + πS0

h
w2)

(N0
h
)2

(ηvw7 + w8)v3 +
τβvhS

0
v

N0
h

[

(ηhw3 + w4)
1

S0
v

+

(

ηhw3 +
1

S0
v

w4

)]

w6v7,

Γ2 = 2
τβvhS

0
v

(N0
h
)2

(

5
∑

i=1

wi

)

(ηhw3 + w4)v7 +
τβ∗

hv
(S0

h
+ πV 0

h
)(N0

h
+ 1)

(N0
h
)2

(

5
∑

i=3

wi

)

(ηvw7 + w8)v3,

and

A2 =
a(S0

h + πV 0
h )

N0
h

(ηvw7 + w8) v3.

Note that the coefficient A2 is always positive. Thus, using Theorem 4.1 in [48], the following302

result is established.303

Theorem 6. The model (2) exhibits a backward bifurcation at R0 = 1 whenever A1 > 0. If304

the reversed inequality holds, then the bifurcation at R0 = 1 is forward.305

The associated bifurcation diagrams are depicted in Figures 2 and 3. Parameter values used306

in figure 2 correspond to those in Table 3, except Λh = 10, ǫ = 1, βvh = 0.8, ηh = 1, ηv = 1,307

σ = 0.01428, δ = 1, α1 = 0.001, α2 = 1, cm = 0.0001, ΓE = 105, ΓL = 50000. In this case the308

conditions required by Theorem 6, are satisfied: A1 = 0.0114 > 0 and A2 = 1.1393 > 0.309
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Parameter values used in figure 3 correspond to those in Table 3, except Λh = 10, βvh = 0.8,310

ηh = ηv = 0 = δ = cm = α1 = 0, α2 = 1, ΓE = 105, ΓL = 50000. We also have A1 = −2.4223 <311

0 and A2 = 0.8333 > 0.312
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Figure 2: The backward bifurcation curves for model system (2) in the (R0, E
∗
h), and (R0, E

∗
v)

planes. The parameter βhv is varied in the range [0, 0.2810] to allow R0 to vary in the range
[0, 1.5]. Two endemic equilibrium points coexist for values of R0 in the range (0.2894, 1)
(corresponding to the range (0.0105, 0.1249) of βhv). The notation EE and DFE stand for
endemic equilibrium and disease–free equilibrium, respectively. Solid lines represent stable
equilibria and dash lines stand for unstable equilibria.
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Figure 3: The forward bifurcation curves for model system (2) in the (R0, E
∗
h), and (R0, E

∗
v)

planes. Solid lines represent stable equilibria and dash lines stand for unstable disease–free
equilibrium.

The occurrence of the backward bifurcation can be also seen in Figure 4. Here, R0 is less313

than the transcritical bifurcation threshold (R0 = 0.29 < 1), but the solution of the model 2 can314

approach either the endemic equilibrium point or the disease-free equilibrium point, depending315

on the initial condition.316
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Figure 4: Solutions of model (2) of the number of infected humans, Eh, and the number of
infected vectors, Ev, for parameter values given in the bifurcation diagram in Figure 2 with
βhv = 0.0105. So R0 = 0.29 < 1, for two different set of initial conditions. The first set
of initial conditions (corresponding to the solid trajectory) is Sh = 700, Vh = 10, Eh = 220,
Ih = 100, Rh = 60, Sv = 3000, Ev = 400, Iv = 120, E = 10000, L = 5000 and P = 3000.
The second set of initial conditions (corresponding to the dotted trajectory) is Sh = 489100,
Vh = 10, Eh = 220, Ih = 100, Rh = 60, Sv = 3000, Ev = 400, Iv = 120, E = 10000, L = 5000
and P = 3000. The solution for initial condition 1 approaches the locally asymptotically stable
endemic equilibrium point, while the solution for initial condition 2 approaches the locally
asymptotically stable DFE.

3.3 The different causes of the backward bifurcation317

From theorem 5, item (i), it follows that the disease-induced death in human (δ) may be a318

cause of the occurrence of the backward bifurcation phenomenon. In the following, we prove319

that the backward bifurcation phenomenon is caused by the disease-induced death in human320

and/or the standard incidence functions (λc
h and λc

v). To this aim, we will consider, in this321

section, two variants of the model (2): the corresponding model without vaccination and the322

corresponding model with mass action incidence.323
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3.3.1 Analysis of the model without vaccination324

The model without vaccination is given by325



















































































Ṡh = Λh − (λc
h + µh)Sh

Ėh = λc
hSh − (µh + γh)Eh

İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh

Ṡv = θP − λc
vSv − (µv + cm)Sv

Ėv = λc
vSv − (µv + γv + cm)Ev

İv = γvEv − (µv + cm)Iv

Ė = µb

(

1−
E

α2ΓE

)

(Sv + Ev + Iv)− (s+ µE + η1)E

L̇ = sE

(

1−
L

α2ΓL

)

− (l + µL + η2)L

Ṗ = lL− (θ + µP )P

(18)

where λc
h and λc

v are given at (1). Model system (18) is defined in the positively-invariant set326

D1 =

{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
10 : Nh ≤ Λh/µh;E ≤ KE;L ≤ KL;P ≤

lKL

k7
;Nv ≤

θlKL

k7k8

}

.

Without lost of generality, we assume that N > 1. The corresponding disease–free equilibria of327

model (18) are given by Env
0 = (N0

h , 0, 0, 0, 0, 0, 0, 0, 0, 0) which correspond to the trivial equilib-328

rium and Env
1 = (N0

h , 0, 0, 0, N
0
v , 0, 0, E, L, P ) which correspond to the disease–free equilibrium,329

with N0
h = Λh

µh

and N0
v , E, L and P are the same, given by (5). The associated next generation330

matrices, F1 and V1, are, respectively, given by331

F1 =













0 0 τβhvηv τβhv

0 0 0 0
τβvhηvN

0
v

N0
h

τβvhN
0
v

N0
h

0 0

0 0 0 0













and V1 =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









.332

It follows that the basic reproduction number for the model without vaccination, denoted333

by Rnv = ρ(F1V
−1
1 ), is given by334

Rnv =

√

a2(1− α1)
2βhvβvh(γh + k4ηh)(γv + k8ηv)N

0
v

k3k4k8k9N
0
h

. (19)

Using Theorem 2 of [38], we establish the following result:335

Theorem 7. Assumed that N > 1. For basic arboviral model without vaccination, given336

by (18), the corresponding disease–free equilibrium is locally asymptotically stable (LAS) if337

Rnv < 1, and unstable if Rnv > 1.338

Existence of endemic equilibria. Here, the existence of endemic equilibria of the model339

(18) will be explored. Let us set the following coefficients340

Rc1 =

√

{2k8(k3k4 − δγh) + (ηhk4 + γh)aµh(1− α1)βvh}

k3k4k8
,

d2 = −k9µbΛh(sKE + k6KL) (k3k4 − δγh) ((ηhk4 + γh)aµh(1− α1)βvh + (k3k4 − δγh)k8) < 0,

d1 = k2
3k

2
4k8k9(sKE + k6KL)µbΛhµh(R

2
nv −R2

c1
),

d0 = k2
3k

2
4k8k9(sKE + k6KL)µbΛhµ

2
h

(

R2
nv − 1

)

.
(20)
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We claim the following:341

Theorem 8. The arboviral diseases model without vaccination (18) has:342

(i) A unique endemic equilibrium if d0 > 0 ⇔ Rnv > 1;343

(ii) A unique endemic equilibrium if d1 > 0, and d0 = 0 or d21 − 4d2d0 = 0;344

(iii) Two endemic equilibria if d0 < 0 (Rnv < 1), d1 > 0 (Rnv > Rc1) and d21 − 4d2d0 > 0;345

(iv) No endemic equilibrium otherwise.346

Proof. Solving the equations in the model (18) in terms of λc,∗
h and λc,∗

v , gives347

S∗
h =

Λh

µh + λc,∗
h

, E∗
h =

λc,∗
h S∗

h

k3
, I∗h =

γhλ
c,∗
h S∗

h

k3k4
, R∗

h =
σγhλ

c,∗
h S∗

h

µhk3k4
, (21)

and348

S∗
v =

θP

(λc,∗
v + k8)

, E∗
v =

θPλc,∗
v

k9(λ
c,∗
v + k8)

, I∗v =
γvθPλc,∗

v

k8k9(λ
c,∗
v + k8)

,

E =
µbθKEP

(k5k8KE + µbθP )
, L =

µbθsKEKLP

k6KL(k5k8KE + µbθP ) + sµbθKEP
,

(22)

Substituting (21) and (22) into the expression of λc,∗
h and λc,∗

v and simplifying, lead the nonzero349

equilibria of the model without vaccination satisfy the quadratic equation350

d2(λ
c,∗
h )2 + d1λ

c,∗
h + d0 = 0 (23)

where di, i = 0, 1, 2, are given by (20).351

Clearly, d2 < 0 and d0 > 0 (resp. d0 < 0) if Rnv > 1 (resp. Rnv < 1). Thus Theorem 8 is352

established.353

It is clear that cases (ii) and (iii) of theorem 8 indicate the possibility of backward bifurcation354

(where the locally-asymptotically stable DFE co-exists with a locally asymptotically stable355

endemic equilibrium when Rnv < 1) in the model without vaccination (18).356

This is illustrated by numerical simulation of the model with the following set of parameter357

values (it should be noted that these parameters are chosen for illustrative purpose only, and358

may not necessarily be realistic epidemiologically): Λh = 5, βhv = 0.03, ηh = ηv = 1, δ = 1, σ =359

0.01, cm = 0.1, βvh = 0.4, α1 = 0.7 and α2 = 0.5. All other parameters are as in Table 3. With360

this set of parameters, Rc1 = 0.0216 < 1, Rnv = 0.2725 < 1 (so thatRc1 < Rnv < 1). It follows:361

d2 = −0.0263 < 0, d1 = 4.8763× 10−4 and d0 = −3.5031× 10−7, so that d21 − 4d2d0 = 2.0093×362

10−7 > 0. The resulting two endemic equilibria Env = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v , E, L, P ), are:363

Env
1 = (281, 70, 5, 1207, 5739, 182, 44, 22180, 10201, 9977) which is locally stable and364

Env
2 = (6333, 67, 4, 1147, 5936, 37, 2, 22180, 10201, 9977) which is unstable.365

The associated bifurcation diagram is depicted in figure 5. This clearly shows the co-366

existence of two locally-asymptotically stable equilibria when Rnv < 1, confirming that the367

model without vaccination (18) undergoes the phenomenon of backward bifurcation too. Thus,368

the following result is established.369

Lemma 1. The model without vaccination (18) undergoes backward bifurcation when Case (iii)370

of Theorem 8 holds.371
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Figure 5: The backward bifurcation curves for model system (18) in the (Rnv, E
∗
h) and (Rnv, E

∗
v)

planes. The parameter βhv varied in the range [0, 0.9090] to allowR0 to vary in the range [0, 1.5].
Two endemic equilibrium points coexist for values of R0 in the range (0.2286, 1) (corresponding
to the range (0.0211, 0.4040) of βhv). The notation EE and DFE stand for endemic equilibrium
and disease–free equilibrium, respectively. Solid lines represent stable equilibria and dash lines
stand for unstable equilibria.

Non-existence of endemic equilibria for Rnv < 1 and δ = 0. In this case, we have the372

following result.373

Lemma 2. The model (18) without disease–induced death (δ = 0) has no endemic equilibrium374

when Rnv,δ=0 ≤ 1, and has a unique endemic equilibrium otherwise.375

Proof. Considering the model (18) without disease–induced death in human, and applying the376

same procedure, we obtain that the non-zero equilibria of the model without vaccination satisfy377
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the linear equation378

p1λ
c,∗
h + p0 = 0,

where p1 = k9k10K12aµbΛhµh(1− α1)βvh + k3(µh + σ)k8k9K12µbΛh and379

p0 = −µhk3k4k8k9K12µbΛh

(

R2
nv,δ=0 − 1

)

.380

Clearly, p1 > 0 and p0 ≥ 0 whenever Rnv,δ=0 ≤ 1, so that λc,∗
h = −

p0
p1

≤ 0. Therefore,381

the model (18) without disease–induced death in human, has no endemic equilibrium whenever382

Rnv,δ=0 ≤ 1.383

The above result suggests the impossibility of backward bifurcation in the model (18) with-384

out disease–induced death, since no endemic equilibrium exists whenRnv,δ=0 < 1 (and backward385

bifurcation requires the presence of at least two endemic equilibria when Rnv,δ=0 < 1) [23, 43].386

To completely rule out backward bifurcation in model (18), we use the direct Lyapunov method387

to prove the global stability of the DFE.388

Global stability of the DFE of (18) for δ = 0.389

Define the positively-invariant and attracting region390

D2 =
{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ D1 : Sh ≤ N0
h ;Sv ≤ N0

v

}

.

We claim the following result.391

Theorem 9. The DFE, Env
1 , of model (18) without disease–induced death (δ = 0), is globally392

asymptotically stable (GAS) in D2 if Rnv,δ=0 < 1.393

Proof. See appendix E.394

3.3.2 Analysis of the model with mass action incidence395

Consider the model (2) with mass action incidence. Thus, the associated forces of infection, λc
h396

and λc
v, respectively, reduce to397

λmh = Ch(ηvEv + Iv) and λmv = Cv(ηhEh + Ih), (24)

where, Ch = a(1 − α1)βhv and Cv = a(1 − α1)βvh. The resulting model (mass action model),
obtained by using (24) in (2), has the same disease–free equilibria given by (5). Without lost
of generality, we consider that N > 1. The associated next generation matrices, Fm and Vm

are given by

Fm =









0 0 ChηvH
0 ChH

0

0 0 0 0
CvηvS

0
v CvS

0
v 0 0

0 0 0 0









, Vm =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









,

where H0 = S0
h + πV 0

h . It follows that the associated reproduction number for the mass action398

model, denoted by R0,m = ρ(FmV
−1
m ), is given by399

R0,m =
√

Rm
hvR

m
vh, (25)

where400

Rm
hv =

(

ChΛh (γh + k4ηh) (πξ + k2)

µhk3k4 (ξ + k2)

)

and Rm
vh =

(

Cv (γv + k8ηv) θP

k28k9

)

.401

Using Theorem 2 of [38], the following result is established:402

Theorem 10. Assume that N > 1. For the arboviral disease model with mass action incidence,403

given by (2) with (24), the DFE, E1, is LAS if R0,m < 1, and unstable if R0,m > 1.404
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Existence of endemic equilibria. Solving the equations in the model (2) with (24) in terms405

of λ∗
mh and λ∗

mv, gives406

S∗
mh =

Λh(πλ
c,∗
mh + k2)

λc,∗
mh(k2 + π(k1 + λc,∗

mh)) + k1k2 − ωξ
, V ∗

mh =
ξS∗

mh

k2 + πλc,∗
mh

,

E∗
mh =

λc,∗
mhS

∗
mh

k3
, I∗mh =

γhλ
c,∗
h S∗

mh

k3k4
, R∗

mh =
σγhλ

c,∗
mhS

∗
mh

µhk3k4
,

(26)

and407

S∗
mv =

θP

(λc,∗
mv + k8)

, E∗
mv =

θPλc,∗
mv

k9(λ
c,∗
mv + k8)

, I∗mv =
γvθPλc,∗

mv

k8k9(λ
c,∗
mv + k8)

. (27)

Substituting (26) and (27) in the expression of λ∗
mh and λ∗

mv and simplifying, shows that the408

nonzero equilibria of the model (2) with (24) satisfy the quadratic equation409

e2(λ
c,∗
mh)

2 + e1λ
c,∗
mh + e0 = 0, (28)

where ei, i = 0, 1, 2, are given by410

e2 = k8k9π [(γh + k4ηh)CvΛh + k3k4k8]

e1 =
k3k4k

2
8k9κπ

(πξ + k2)

(

R2
cm −R2

0,m

)

,

e0 = k3k4k
2
8k9κ

(

1−R2
0,m

)

,

with κ = k1k2 − ξω > 0 and

Rcm =

√

[(γh + k4ηh) (πξ + k2)ΛhCv + (k1π + k2)k3k4k8] (πξ + k2)

k3k4k8κπ
.

e2 is always positive and e0 is positive (resp. negative) whenever R0,m is less (resp. greater) than411

unity. Thus, the mass action model admits only one endemic equilibrium whenever R0,m > 1.412

Now, we consider the case R0,m < 1. The occurrence of backward bifurcation phenomenon413

depend of the sign of coefficient e1. The coefficient e1 is always positive if and only if R0,m <414

Rcm. It follows that the disease–free equilibrium is the unique equilibrium when N > 1 and415

Rcm < 1. Now if Rcm < R0,m < 1, then in addition to the DFE E1, there exists two endemic416

equilibria whenever ∆m = e21 − 4e2e0 > 0. However, Rcm < R0,m < 1 ⇒ Rcm < 1 ⇔417

βvh < −
k3k4k8(ξωπ + k1π

2ξ + k2(πξ + k2))

a(1 − α1) (γh + k4ηh) (πξ + k2)(πξ + k2)Λh

< 0. Since all parameter of model are non-418

negative, we conclude that the condition Rcm < R0,m < 1 does not hold. And thus, the model419

with mass-action incidence does not admit endemic equilibria for R0,m < 1. We claim the420

following:421

Lemma 3. The arboviral diseases model (2) with mass-action incidences (24) has:422

(i) a unique endemic equilibrium if R0,m > 1;423

(ii) no endemic equilibrium otherwise.424

Global stability of the DFE for the model with mass action incidence.425

Since the DFE of the model with mass action incidence is the unique equilibrium whenever426

the corresponding basic reproduction number R0,m is less than unity, it remains to show that427
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the DFE is GAS. To this aim, we use the direct Lyapunov method. Let us define the following428

positive constants:429

p1 =
1

k3
, p2 =

ChH
0(ηvk8 + γv)

k8k9

CvS
0
v

k3k4
, p3 = p1ChH

0 (ηvk8 + γv)

k8k9
, p4 =

ChH
0

k3k8
.

Consider the Lyapunov function430

L = p1Eh + p2Ih + p3Ev + p4Iv.

The derivative of L is given by431

L̇ = p1Ėh + p2İh + p3Ėv + p4İv

= (p1ChηvH + p4γv − p3k9)Ev + (p1ChH − p4k8)Iv

+ (p3CvηhSv + p2γh − p1k3)Eh + (p3CvSv − p2k4)Ih

Replacing pi, i = 1, . . . 4, by their respective term, and using the fact that H = (Sh + πVh) ≤432

H0 = (S0
h + πV 0

h ) and Sv ≤ N0
v in433

D3 =

{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ D : Nh ≤
Λh

µh

, Sv ≤ N0
v = θP,E ≤ KE, L ≤ KL, P ≤

lKL

k7k8

}

,

we obtain L̇ ≤
(

R2
0,m − 1

)

Eh.434

We have L̇ ≤ 0 if R0,m ≤ 1, with L̇ = 0 if R0,m = 1 or Eh = 0. Whenever Eh = 0, we435

also have Ih = 0, Ev = 0 and Iv = 0. Substituting Eh = Ih = Ev = Iv = 0 in the first, fourth436

and fifth equation of Eq. (2) with mass action incidence (24) gives Sh(t) → S0
h, Vh(t) → V 0

h ,437

Rh(t) → 0, and Sv(t) → S0
v = N0

v as t → ∞. Thus438

[Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), E(t), L(t), P (t)] → (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

as t → ∞.

It follows from the LaSalle’s invariance principle [51, 52, 53], that every solution of (2) with439

mass action incidence, with initial conditions in D3 converges to the DFE, as t → ∞. Hence,440

the DFE, E1, of the model with mass action incidence, is GAS in D3 if R0,m ≤ 1.441

Thus, we claim the following result.442

Theorem 11. The DFE, E1, of the model (2) with mass action incidence, is globally asymp-443

totically stable (GAS) in D3 if R0,m < 1.444

Thus, the substitution of standard incidence with mass action incidence in the arboviral445

model (2) removes the backward bifurcation phenomenon of the model. It should be mentioned446

that a similar situation was reported by Garba et al. in [23] and by Sharomi et al. in [43].447

We summarize the previous analysis of subsection 3.3 as follows:448

Lemma 4. The main causes of occurrence of backward bifurcation phenomenon in models (2)449

and (18) are the disease–induced death and the standard incidence rates.450

4 Sensitivity analysis451

As shown in the previous sections, model (2) may admit single or multiple steady states accord-452

ing to the value of the basic reproduction number R0. In turn, R0 depends on the parameters453

of the model. The various uncertainties encountered in data collection and the estimated val-454

ues lead us to evaluate the robustness of the model predictions with the parameter values and,455

in particular, to estimate the effect on R0 of varying single parameter. To this aim, we use456

sensitivity analysis and calculate the sensitivity indices of R0 to the parameters in the model457

using both local and global methods.458
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Table 3: Parameter values using to compute the sensitivity indices of R0.

Parameter value Parameter value Parameter value
cm 0.01 s 0.7 βvh 0.75
µb 6 η2 0.3 ΓE 10000
µP 0.4 µE 0.2 ΓL 5000
θ 0.08 ǫ 0.61 α2 0.5
l 0.5 Λh 2.5 µh

1
67∗365

a 1 βhv 0.75 ηv 0.35
µv

1
30

µL 0.4 σ 0.1428
γh

1
14

ηh 0.35 γv
1
21

ξ 0.5 ω 0.05 η1 0.001
δ 0.001 α1 0.2

4.1 Local sensitivity analysis459

The local sensitivity analysis, based on the normalised sensitivity index of R0 (see [54]), is given460

by461

SΨ =
Ψ

R0

∂R0

∂Ψ

where Ψ denotes the generic parameter of (2).462

This index indicates how sensitive R0 is to changes of parameter Ψ. Clearly, a positive (resp.463

negative) index indicates that an increase in the parameter value results in an increase (resp.464

decrease) in the R0 value [54].465

For instance, the computation of the sensitivity index of R0 with respect to a is given by466

Sa =
a

R0

∂R0

∂a
= 1 > 0.

This shows that R0 is an increasing function of a and the parameter a has an influence on the467

spread of disease.468

We tabulate the indices of the remaining parameters in Table 2 using parameter values on469

Table 3. The results are displayed in Table 4 and Figure 7a. The parameters are arranged470

from most sensitive to least. The model system (2) is most sensitive to a, the average number471

of mosquitoes bites, followed by µv, ǫ, s, Λh, βhv, βvh, ΓE, ΓL and α2. It is important to note472

that increasing (decreasing) a by 10% increases (decreases) R0 by 10%. However, increasing473

(decreasing) the parameters µv by 10% decreases (increases) R0 by 9.190%. The same reasoning474

can be done for other parameters.475

4.2 Uncertainty and global sensitivity analysis476

Local sensitivity analysis assesses the effects of individual parameters at particular points in477

parameter space without taking into account of the combined variability resulting from con-478

sidering all input parameters simultaneously. Here, we perform a global sensitivity analysis to479

examine the model’s response to parameter variation within a wider range in the parameter480

space.481

Following the approach by Marino et al. [55] and Wu et al. [56], partial rank correlation482

coefficients (PRCC) between the basic reproduction number R0 and each parameter are derived483

from 5,000 runs of the Latin hypercube sampling (LHS) method [57]. The parameters are484
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Table 4: Sensitivity indices of R0 to parameters of model (2), evaluated at the baseline param-
eter values given in Table 3.

Parameter Index Parameter Index Parameter Index
a +1 σ –0.2911 ξ –0.0566
µv –0.9190 cm –0.2757 ω +0.0565
ǫ –0.6223 α1 –0.25 µE –0.0171
s +0.5172 ηh +0.2067 δ –0.0020
Λh –0.5 γh –0.2064 η1 –0.0000858
βhv, βvh,ΓE,ΓL, α2 +0.5 ηv +0.1207
µh +0.4996 γv +0.1174
µP –0.4810 µL –0.1026
θ +0.4810 µb +0.0772
l +0.4489 η2 –0.0770

assumed to be random variables with uniform distributions with their mean value listed in485

Table 3.486

With these 5,000 runs of LHS, the derived distribution of R0 is given in Figure 6. This
sampling shows that the mean of R0 is 2.0961 and the standard deviation is 2.7910. This
implies that for the mean of parameter values given in Table 3, we may be confident that the
model predicts an endemic state. The probability that R0 > 1 (the disease–free equilibrium is
unstable and there is exactly one endemic equilibrium point) is 55.60%. We also evaluate the
probabilities that condition in Theorem 4 and inequalities (11), (12) and (13) are satisfied. Let
us set P[X ] the probability of X , and the sets of parameter values for which (N > 1) is true
by Φ,

P [¬Φ] = P [N ≤ 1] = 0.0096, (29a)

P [Φ and (R0 ≤ 1)] = 0.4440, (29b)

P [Φ and (R0 ≤ RG)] = 0.0220, (29c)

P [Φ and (RG < R0 ≤ 1)] = 0.4220. (29d)

Therefore, the probability that the trivial disease–free equilibrium is locally asymptotically487

stable is 0.0096 (from (29a)), the probability that the disease free equilibrium point is locally488

asymptotically stable is 0.440 (from (29b)), the probability that the disease free equilibrium489

point is locally asymptotically stable and (i) there are no endemic equilibrium points is 0.0220490

((29c)); and (ii) there are two endemic equilibrium points is 0.4220 (from (29d)). This implies491

that for the ranges of parameter values given in Table 3, the disease-free equilibrium point is492

likely to be locally asymptotically stable but, the probability of co-existence of a locally asymp-493

totically stable endemic equilibrium point (occurrence of backward bifurcation phenomenon) is494

very significant.495

We now use sensitivity analysis to analyze the influence of each parameter on the basic496

reproductive number. From the previously sampled parameter values, we compute the PRCC497

between R0 and each parameter of model (2). The parameters with large PRCC values (> 0.5498

or < −0.5) statistically have the most influence [56]. The results, displayed in Table 5 and499

Figure 7 (b), show that the parameter α1, the human protection rate, has the highest influence500

on R0. This suggests that individual protection may potentially be the most effective strategy501

to reduce R0. The other parameters with an important effect are α2, βhv, βvh and θ.502
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Figure 6: Sampling distribution of R0 from 5,000 runs of Latin hypercube sampling. The mean
of R0 is 2.0961 and the standard deviation is 2.7910. Furthermore, P(R0 > 1) = 0.5560.

We note that the order of the most important parameters for R0 from the local sensitivity503

analysis does not match that of the global sensitivity analysis, showing that the local results504

are not robust, and depend of the parameters values. So, for this kind of situation, we must to505

consider the results of the global sensitivity analysis.506

Table 5: Partial Rank Correlation Coefficients between R0 and each parameters of model (2).

Parameter Correlation Parameter Correlation Parameter Correlation
Coefficients Coefficients Coefficients

α1 –0.6125 l 0.3767 γv 0.0378
α2 0.5960 ǫ –0.3348 µL –0.0357
βhv 0.5817 s 0.2945 cm -0.0271
βvh 0.5815 σ –0.1808 ηh 0.0178
θ 0.5078 µP –0.1594 η1 -0.0161
a 0.4810 µh 0.1306 µE -0.0113
µv –0.3911 γh –0.0605 ξ –0.0109
ΓL 0.4195 ηv 0.0578 δ -0.0077
ΓE 0.3888 µb 0.0439 η2 0.0037
Λh –0.3876 ω 0.0410

5 Numerical simulations507

In the previous model [30], we have shown that the use of a vaccine with efficacy of about508

60%, should be accompanied by other control measures such as means of individual protection509

(spanning wearing clothes during hours of vector activity, use of repellents,. . .), vector control510

(combining the use of adulticide to kill adult vectors, chemical control with use of larvicide to511
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Figure 7: Local (a) and global (b) sensitivity indices for R0 against model parameters show
that the order of the most important parameters for R0 from the local sensitivity analysis does
not match those from the global sensitivity analysis.

kill the eggs and larvae, and mechanical control to reduce the number of breeding sites at least512

near habited areas) [19]. Here, we investigate and compare numerical results, with the different513

scenario. We use the following initial state variables Sh(0) = 700, Vh(0) = 10, Eh(0) = 220,514

Ih(0) = 100, Rh(0) = 60, Sv(0) = 3000, Ev(0) = 400, Iv(0) = 120, E(0) = 10000, L = 5000,515

P = 3000.516

5.1 Strategy A: Vaccination combined with individual protection517

only518

In this strategy, we consider the model (2) without vector control. we set α2 = 1 and cm = η1 =519

η2 = 0 and vary the parameter related to individual protection, namely α1, between 0 and 0.8.520

The values of other parameters are given in Table 3. Figure 8 shows that the increase of the521

individual protection level, permit to reduce the total number of infected humans, and the total522

number of infected vectors, but has no impact on the populations of eggs and larvae. However,523

from this figure, it is clear that, this reduction is significant if the level of protection must turn524

around 80% at least, and this, over a long period. Thus, continuous education campaigns of525
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local populations, on how to protect themselves individually, are important in the fight against526

the spread of arboviral diseases.
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Figure 8: Simulations results showing how the total number of infected humans and the to-
tal number of infected vectors decrease when the individual protection increase. All others
parameters values are in Table 3.

527

5.2 Strategy B: Vaccination combined with adulticide528

Nowadays, Deltamethrin is the most used insecticide for impregnation of bednets, because it is529

a highly effective compound on mosquitoes, and this, at of very low doses [58]. However, when530

sprayed in an open environment, Deltamethrin seems to be effective only during a couple of531

hours [19, 59, 60]. Also, its use over a long period and continuously, leads to strong resistance of532

the wild populations of Aedes aegypti, for example [58]. The mortality of the mosquitoes after533

spraying varied between 20% and 80%. To be more realistic, we will consider the technique534

called ”pulse control” (the control is not continuous in time order is effective only one day every535

T days) [19]. To this aim, we consider that spraying is done once a week, and this, for 100536

days. We set α1 = η1 = η2 = 0 and α2 = 1.537

Simulation results on figure 9 show that a mortality rate induced by the use of larvicide,538

cm, greater than 60% has a significant impact on the decrease of the total number of infected539

humans and vectors, and on the decrease of eggs and larvae.540
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Figure 9: Simulations results showing how the total number of infected vectors, eggs and larvae
populations decrease when the aldulticide control parameter cm increase. All others parameters
values are in Table 3.

5.3 Strategy C: Vaccination combined with larvicide541

Since the efficacy and the duration of a larvicide (Bti=Bacillus thuringiensis var. israelensis)542

strongly depend on several factors like water quality, exposure, and even the type of breeding543

sites, we thus consider, to be more realistic, that the duration can vary between a couple of544

days and two weeks [19, 61]. We consider that the larvicide spraying happens once every 15545

days, and this, on a period of 100 days. We set α1 = cm = 0 and α2 = 1.546

The figure 10 shows that the use of larvicide has no significant impact on the decrease of547

total number of infected humans and vectors, as well as on the number of eggs and larvae. This548

can be justified by the fact that the use of conventional larvicides requires certain constraints549

on their use: they can not be used continuously, their duration of action decreases with time.550

In addition, eggs of certain populations of vectors such as Aedes albopictus, come into prolonged551

hibernation when conditions in the breading sites are not conducive to their good growth (this552

is justified by the control rate value η1 = 0.001). Also, the pupae do not consume anything,553

until reaching the mature stage.554

5.4 Strategy D: Vaccination combined with mechanical control555

The effectiveness of this type of control depends largely on awareness campaigns of local people556

in the sense that, to reduce the proliferation of vectors, people should destroy and systematically,557
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Figure 10: Simulations results showing how the total number of infected humans, the total
number of infected vectors, and the eggs and larvae populations decrease with the larvicide
control associated parameters η1 and η2. All others parameters values are in Table 3.

potential breeding sites. Thus, we consider that this type of control can be achieved by local558

populations, and this, daily. We set α1 = cm = 0 = η1 = η2.559

The figure 11 shows that this type of control is appropriate in the fight against the prolifer-560

ation of vectors. This can only be possible by the multiplication of local populations awareness561

campaigns.562

5.5 Strategy E: Combining vaccination, individual protection and563

adulticide564

In this strategy, we consider the model (2) without larvicide and mechanical control. we set565

α2 = 1 and η1 = η2 = 0 and vary the parameter related to individual protection and the566

use of adulticide, namely α1 and cm, respectively, between 0 and 0.8. The values of other567

parameters are given in Table 3. Figure 12 shows that the use of the combination of these568

controls decreases significantly the total number of infected humans, infected vectors as well as569

the number of eggs and larvae, when its associated rates, namely α1 and cm, are greater than570

0.3 and 0.2, respectively.571
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Figure 11: Simulations results showing how the total number of infected vectors, eggs and
larvae populations decrease with the mechanical control associated parameter α2. All others
parameters values are in Table 3.

5.6 Strategy F: Combining vaccination, individual protection and572

mechanical control573

Like for strategy E, the simulations results on figure 13 show that the combined use of these574

three types of controls has a positive impact in the vector control.575

6 Conclusion576

In this paper, we have derived and analyzed a deterministic model for the transmission of577

arboviral diseases with non linear form of infection and complete stage structured model for578

vectors, which takes into account a vaccination with waning immunity, individual protection579

and vector control strategies.580

We have begun by calculate the net reproductive number N and the basic reproduction581

number, R0, and investigate the existence and stability of equilibria. The stability analysis582

revealed that for N ≤ 1, the trivial equilibrium is globally asymptotically stable. When583

N > 1 and R0 < 1, the disease–free equilibrium is locally asymptotically stable. Under certain584

threshold condition, the disease–free equilibrium is also globally asymptotically stable. We585

have found that the model exhibits backward bifurcation. The epidemiological implication of586

this phenomenon is that for effective eradication and control of diseases, R0 should be less than587
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Figure 12: Simulations results showing the advantage that we have to combine vaccination,
individual protection and adulticide.

a critical values less than one. Thus, we have proved, that the disease–induced death is the588

principal cause of the backward bifurcation phenomenon in the full model and the corresponding589

model without vaccination. However, the substitution of the standard incidences with the mass590

action incidences removed the backward bifurcation phenomenon.591

We have proved that the model admits at least one endemic equilibrium, and only one592

endemic equilibrium point in the model without disease–induced death, and in the model with593

mass action incidences, whenever the basic reproduction number is great than unity.594

Using parameters value of Chikungunya and Dengue fever, we have calculated the sensitivity595

indices of the basic reproduction number, R0, to the parameters in the model using both local596

and global methods. Local sensitivity analysis showed that the model system is most sensitive597

to a, the average number of mosquitoes bites, followed by µv, the natural mortality rate of598

vectors. Considering that all input parameters vary simultaneously, we have used the Latin599

Hypercube Sampling (LHS) to estimate statistically the mean value of the basic reproduction600

number. The result showed that the model is in an endemic state, since the mean of R0 is601

greater than unity. We also estimated the probability that the model predicts the occurrence602

of backward bifurcation phenomenon and of the likely stability of the disease-free equilibrium603

point.604

Then, using global sensitivity analysis, we have computed the Partial Rank Correlation605

Coefficients between R0 and each parameter of the model. Unlike the local sensitivity analysis,606

the global analysis showed that the parameters α1, the human protection rate, has the highest607
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Figure 13: Simulations results showing the advantage that we have to combine vaccination,
individual protection and mechanical control.

influence on R0. The other parameters with an important effect are α2, the efficacy of the608

mechanical control, βhv, the probability of transmission of infection from an infected vector to609

a susceptible human, βvh, the probability of transmission of infection from an infected human610

to a susceptible vector, and θ, the maturation rate from pupae to adult vectors. This showed611

that the order of the most important parameters for R0 from the local sensitivity analysis does612

not match those from the global sensitivity analysis. So, the local sensitivity results are not613

robust.614

To assess the impact of combination of different controls, we have conducted several sim-615

ulations, using the called ”pulse control” technique. According to the numerical results, we616

conclude that the use of an imperfect vaccine with low efficacy combined with high individual617

protection and good vector control strategy (reduction of breeding sites by local populations618

action, chemical action using adulticides and larvicides), can effectively reduce the transmission619

of the pathogen and the proliferation of vector populations. However, due to lack of resources to620

implement these control mechanisms, developing countries should focus on the education of the621

local populations. Because, unlike diseases such as malaria whose breeding sites of Anophe-622

les mosquitoes are known, those of Aedes (aegypti and albopictus) and Culex, for example,623

are smaller (old tires, flower pots, vases and other hollow...) and unknown for many local624

populations, which favour the development of vectors.625

Thus, pending the development of a high efficacy vaccine and long-acting, individual protec-626

tion and the various vector control methods are effective ways to combat the spread of arboviral627
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diseases, for developing countries. In addition, the realization of the combination of these con-628

trols may be too expensive, because it means that, for constant controls, we must keep them629

at high levels, and this, for a long time. Thus it is important to know what happens when,630

instead of the constant controls, we use time dependent controls, in optimal control theory.631

This represents a perspective of this work.632
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A Useful result.636

We use the following result, which is the characterization of Metzler matrices, to compute the637

threshold Rc, obtained at Eq. (10).638

Lemma 5 ([40]). Let M be a square Metzler matrix written in block form

(

A B
C D

)

with A639

and D square matrices. M is Metzler stable if and only if matrices A and D − CA−1B are640

Metzler stable.641

B Proof of Theorem 1.642

The Jacobian matrix of f at the Trivial equilibrium is given by643

Df(E0) =

(

Df1 Df2
Df3 Df4

)

. (30)

where644

Df1 =

















−k1 ω 0 0 0 0
ξ −k2 0 0 0 0
0 0 −k3 0 0 0
0 0 γh −k4 0 0
0 0 0 σ −µh 0
0 0 0 0 0 −k8

















, Df3 =













0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 µb

0 0 0 0 0 0
0 0 0 0 0 0













,645

Df2 =





























−
τβhvηvS

0
h

N0
h

−
τβhvS

0
h

N0
h

0 0 0

−
τβhvπηvV

0
h

N0
h

−
τβhvπV

0
h

N0
h

0 0 0

τβhvηvH
0

N0
h

τβhvH
0

N0
h

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 θ





























, Df4 =













−k9 0 0 0 0
γv −k8 0 0 0
µb µb −k5 0 0
0 0 s −k6 0
0 0 0 l −k7













,646

and H0 = S0
h + πV 0

h .647

The characteristic polynomial of Df(E0) is given by:648

P (λ) = − (λ+ k3) (λ+ k4) (λ+ k8) (λ+ k9) (λ+ µh)φ1(λ)φ2(λ)
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where649

φ1(λ) = λ2 + (k2 + k1)λ+ µh(k2 + ξ) and φ2(λ) = λ4 + A1λ
3 + A2λ

2 + A3λ+ A4. we have set650

A1 = k5 + k6 + k7 + k8, A2 = k8(k5 + k6 + k7) + k7(k5 + k6) + k5k6,
A3 = k5k6k7 + k8(k5k6 + k7(k5 + k6)), A4 = k5k6k7k8(1−N ).

The roots of P (λ) are λ1 = −µh, λ1 = −k1, λ2 = −k3, λ3 = −k4, λ4 = −k8, λ4 = −k9, and651

the others roots are the roots of φ1(λ) and φ2(λ). The real part of roots of φ1(λ) are negative.652

Since N < 1, it is clear that all coefficients of φ2(λ) are always positive. Now we just have653

to verify that the Routh–Hurwitz criterion holds for polynomial φ2(λ). To this aim, setting654

H1 = A1, H2 =

∣

∣

∣

∣

A1 1
A3 A2

∣

∣

∣

∣

, H3 =

∣

∣

∣

∣

∣

∣

A1 1 0
A3 A2 A1

0 A4 A3

∣

∣

∣

∣

∣

∣

, H4 =

∣

∣

∣

∣

∣

∣

∣

∣

A1 1 0 0
A3 A2 A1 1
0 A4 A3 A2

0 0 0 A4

∣

∣

∣

∣

∣

∣

∣

∣

= A4H3.655

The Routh-Hurwitz criterion of stability of the trivial equilibrium E0 is given by656















H1 > 0
H2 > 0
H3 > 0
H4 > 0

⇔















H1 > 0
H2 > 0
H3 > 0
A4 > 0

(31)

We have H1 = A1 = k5 + k6 + k7 + k8 > 0,657

H2 = A1A2 − A3

= (k7 + k6 + k5) k
2
8 +

(

k2
7 + (2k6 + 2k5) k7 + k2

6 + 2k5k6 + k2
5

)

k8

+ (k6 + k5) k
2
7 +

(

k2
6 + 2k5k6 + k2

5

)

k7 + k5k
2
6 + k2

5k6
658

H3 = A1A2A3 −A2
1A4 −A2

3

= (k6 + k5)
(

k27 + (k6 + k5) k7 + k5k6
)

k38

+
(

µblsθ + (k6 + k5) k
3
7 + 2(k6 + k5)

2k27 +
(

k36 + 4k5k
2
6 + 4k25k6 + k35

)

k7 + k5k
3
6 + 2k25k

2
6 + k35k6

)

k28

+
[

(2k7 + 2k6 + 2k5)µblsθ +
(

k26 + 2k5k6 + k25
)

k37 +
(

k36 + 4k5k
2
6 + 4k25k6 + k35

)

k27

+
(

2k5k
3
6 + 4k25k

2
6 + 2k35k6

)

k7 + k25k
3
6 + k35k

2
6

]

k8 +
(

k27 + (2k6 + 2k5) k7 + k26 + 2k5k6 + k25
)

µblsθ

+
(

k5k
2
6 + k25k6

)

k37 +
(

k5k
3
6 + 2k25k

2
6 + k35k6

)

k27 +
(

k25k
3
6 + k35k

2
6

]

k7

We always have H1 > 0, H2 > 0, H3 > 0 and H4 > 0 if N < 1. Thus, the trivial equilibrium659

E0 is locally asymptotically stable whenever N < 1.660

We assume the net reproductive number N > 1. Following the procedure and the notation661

in [38], we may obtain the basic reproduction number R0 as the dominant eigenvalue of the662

next–generation matrix [37, 38]. Observe that model (2) has four infected populations, namely663

Eh, Ih, Ev, Iv. It follows that the matrices F and V defined in [38], which take into account664

the new infection terms and remaining transfer terms, respectively, are given by665

F =

















0 0
τβhvηvH

0

N0
h

τβhvH
0

N0
h

0 0 0 0
τβvhηvS

0
v

N0
h

τβvhS
0
v

N0
h

0 0

0 0 0 0

















, and V =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









.666

The dominant eigenvalue of the next–generation matrix FV −1 is given by (7). The local667

stability of the disease–free equilibrium E1 is a direct consequence of Theorem 2 in [38]. This668

ends the proof.669
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C Proof of Theorem 2.670

Setting Y = X − TE with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T , H0 = (S0
h + πV 0

h ),671

A99 =

(

k5 + µb

Sv + Ev + Iv
KE

)

, and A10 =

(

k6 + s
E

KL

)

. we can rewrite (2) in the following672

manner673

dY

dt
= B(Y )Y (32)

where B(Y ) =

(

A(Y ) B(Y )
C(Y ) D(Y )

)

, with674

A(Y ) =













−(λc
h + k1) ω 0 0 0 0
ξ −(πλc

h + k2) 0 0 0 0
λc
h πλc

h −k3 0 0 0
0 0 γh −k4 0 0
0 0 0 σ −µh 0













,675

B(Y ) =

























−
τβhvηvS

0
h

Nh

−
τβhvS

0
h

Nh

0 0 0

−
τβhvηvπV

0
h

Nh

−
τβhvπV

0
h

Nh

0 0 0

τβhvηvH
0

Nh

τβhvH
0

Nh
0 0 0

0 0 0 0 0
0 0 0 0 0

























, C(Y ) =

















0 0 0 0 0 −(λc
v + k8)

0 0 0 0 0 λc
v

0 0 0 0 0 0
0 0 0 0 0 µb

0 0 0 0 0 0
0 0 0 0 0 0

















,676

D(Y ) =

















0 0 0 0 θ
−k9 0 0 0 0
γv −k8 0 0 0
µb µb −A99 0 0
0 0 s −A10 0
0 0 0 l −k7

















.677

It is clear that Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is the only equilibrium. Then it suffices to con-678

sider the following Lyapunov function L(Y ) =< g, Y > were g =

(

1, 1, 1, 1, 1, 1, 1, 1,
k8
µb

,
k5k8
µbs

,
k5k6k8
µbsl

)

.679

Straightforward computations lead that680

L̇(Y ) =< g, Ẏ >
def
=< g,B(Y )Y >

= −µhY1 − µhY2 − µhY3 − (µh + δ)Y4 − µhY5

−
k8
KE

(Y6 + Y7 + Y8)−
k5k8
µbKL

Y9Y10 + θ

(

1−
1

N

)

Y11

We have L̇(Y ) < 0 if N ≤ 1 and L̇(Y ) = 0 if Yi = 0, i = 1, 2, . . . , 11 (i.e Sh = S0
h, Vh = V 0

h681

and Eh = Ih = Rh = Sv = Ev = Iv = E = L = P = 0). Moreover, the maximal invariant682

set contained in
{

L|L̇(Y ) = 0
}

is (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Thus, from Lyapunov theory, we683

deduce that (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and thus, E0, is GAS if and only if N ≤ 1.684

D Proof of Theorem 5.685

In order to determine the existence of endemic equilibria, i.e., equilibria with all positive com-686

ponents, say687

E∗∗ = (S∗
h, V

∗
h , E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v , E, L, P ) ,
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we have to look for the solution of the algebraic system of equations obtained by equating the688

right sides of system (2) to zero. In this way we consider two case:689

(i) Special case: Absence of disease–induced death in human (δ = 0).690

Note that in the absence of disease–induced death in human population, we have N∗
h =691

N0
h = Λh/µh. Let692

λc,∗
h =

a(1− α1)βhv(ηvE
∗
v + I∗v )

N∗
h

, λc,∗
v =

a(1− α1)βvh(ηhE
∗
h + I∗h)

N∗
h

(33)

be the forces of infection of humans and vectors at steady state, respectively. Solving the693

equations in (2) at steady state gives694

S∗
h =

Λh(πλ
c,∗
h + k2)

µh(k2 + ξ) + λc,∗
h (πλc,∗

h + πk1 + k2)
, V ∗

h =
ξS∗

h

(πλc,∗
h + k2)

,

E∗
h =

λc,∗
h (S∗

h + πV ∗
h )

k3
, I∗h =

γhλ
c,∗
h (S∗

h + πV ∗
h )

k3k4
, R∗

h =
σγhλ

c,∗
h (S∗

h + πV ∗
h )

µhk3k4
,

(34)

and695

S∗
v =

θP

(λc,∗
v + k8)

, E∗
v =

θPλc,∗
v

k9(λ
c,∗
v + k8)

, I∗v =
γvθPλc,∗

v

k8k9(λ
c,∗
v + k8)

,

E =
µbθKEP

(k5k8KE + µbθP )
, L =

µbθsKEKLP

k6KL(k5k8KE + µbθP ) + sµbθKEP
,

(35)

where P is solution of the following equation696

f(P ) = −k7P [µbθ(sKE + k6KL)P + k5k6k8KEKL(N − 1)] = 0 (36)

A direct resolution of the above equation give P = 0 or P =
k5k6k8KEKL(N − 1)

µbθ(sKE + k6KL)
.697

Note that P = 0 corresponds to the trivial equilibrium E0. Now we consider P > 0 i.e.698

N > 1. Replacing (34) and (35) in (33) give699

λc,∗
h =

a(1− α1)βhvµh

Λh

(

ηv
θPλ∗

v

k9(λ∗
v + k8)

+
γvθPλ∗

v

k8k9(λ∗
v + k8)

)

(37)

700

λc,∗
v =

a(1− α1)βvhµh

Λh

(

ηh
λ∗
h(S

∗
h + πV ∗

h )

k3
+

γhλ
∗
h(S

∗
h + πV ∗

h )

k3k4

)

(38)

Substuting (38) in (37) give701

(k6KL + sKE)λ
∗
h

[

a2(λ
∗
h)

2 + a1λ
∗
h + a0

]

= 0 (39)

where a2, a1 and a0 are given by702

Rb =

√

(πξ + k2)

π(ξ + k2)

(

(k1π + k2)

µh

+
a(1 − α1)βvh(γh + k4ηh)(πξ + k2)

k3k4k8

)

,

a2 = (a(1− α1)βvhµh(γh + k4ηh) + k3k4k8) k9µbΛhπ,

a1 =
k3k4k8k9µbΛh (ξ + k2)µhπ

(πξ + k2)
(Rb −R1),

a0 = µhk3k4k8k9µbΛh(ξ + k2) (1−R1) .

(40)

The trivial solution λ∗
h = 0 of (39) corresponds to the disease–free equilibrium E1. Now, we703

just look the equilibria when λ∗
h > 0. Note that coefficient a2 is always positive and a0 is704
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negative (resp. positive) if and only if R1 > 1 (resp. R1 < 1). Thus model system (2),705

in absence of disease–induced death in human population (δ = 0), admits only one endemic706

equilibrium whenever R1 > 1. Since the sign of coefficient a1 depend of the value of parameter,707

we investigate the possibility of occurrence of backward bifurcation phenomenon when R1 < 1.708

Furthermore, consider the inequality709

R1 < Rb. (41)

Since a2 is always positive and a0 is always positive whenever R1 < 1, then, the occur-710

rence of backward bifurcation phenomenon depend of the sign of coefficient a1. The co-711

efficient a1 is always positive if and only if condition (41) holds (i.e R1 < Rb). It fol-712

lows that the disease–free equilibrium is the unique equilibrium when N > 1 and R1 < 1.713

Now if Rb < R1 < 1, then in addition to the DFE E1, there exists two endemic equi-714

libria whenever ∆ = a21 − 4a2a0 > 0. However, Rb < R1 < 1 ⇒ Rb < 1 ⇔ βvh <715

−
[π2ξ2 + (µhπ

2 + (2ω + µh) π) ξ + (ω + µh)
2] k3k4k8

a(1− α1)µh(πξ + k2)2(γh + k4ηh)
< 0. Since all parameter of model (2)716

are nonnegative, we conclude that the condition Rb < R1 < 1 does not hold. And thus, the717

backward bifurcation never occurs in the absence of disease–induced death in human.718

(ii) Presence of disease induced death in human (δ 6= 0).719

In this case, we have N∗
h =

Λh − δI∗h
µh

. Applying the same procedure as case (i), we obtain720

that λ∗
h at steady state is solution of the following equation721

f(λ∗
h) = λ∗

h

[

c4(λ
∗
h)

4 + c3(λ
∗
h)

3 + c2(λ
∗
h)

2 + c1λ
∗
h + c0

]

= 0, (42)

where722

c4 = −π2k9K12µbΛh (k3k4 − δγh) (k10aµh(1− α1)βvh + k8(k3k4 − δγh)) ,

723

c3 = π(k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπβvhKEKL + 2k9k10K12aµbδΛhµhγhπ(1 − α1)βvhξ

− k3k4k9k10K12aµbΛhµhπ(1 − α1)βvhξ − 2k8k9K12µbδ
2Λhγ

2
h
πξ + 2k3k4k8k9K12µbδΛhγhπξ

− k1k3k4k9k10K12aµbΛhµhπ(1− α1)βvh + 2k2k9k10K12aµbδΛhµhγh(1− α1)βvh

− 2k2k3k4k9k10K12aµbΛhµh(1 − α1)βvh + 2k1k3k4k8k9K12µbδΛhγhπ − 2k1k
2
3k

2
4k8k9K12µbΛhπ

− 2k2k8k9K12µbδ
2Λhγ

2
h
+ 4k2k3k4k8k9K12µbδΛhγh − 2k2k

2
3k

2
4k8k9K12µbΛh),

724

c2 = k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπ
2βvhξKEKL

+ k1k3k4k5k6k10k11a
2µ2

h
(1 − α1)

2βhvnπ
2βvhKEKL

+ 2k2k3k4k5k6k10k11a
2µ2

h
(1 − α1)

2βhvnπβvhKEKL + k9k10K12aµbδΛhµhγhπ
2(1− α1)βvhξ

2

− k8k9K12µbδ
2Λhγ

2

h
π2ξ2 − k1k3k4k9k10K12aµbΛhµhπ

2(1− α1)βvhξ

+ k3k4k9k10K12aµbΛhµhωπ(1− α1)βvhξ + 2k2k9k10K12aµbδΛhµhγhπ(1− α1)βvhξ

− k2k3k4k9k10K12aµbΛhµhπ(1− α1)βvhξ + 2k1k3k4k8k9K12µbδΛhγhπ
2ξ

− 2k3k4k8k9K12µbδΛhγhωπξ + 2k23k
2

4k8k9K12µbΛhωπξ − 2k2k8k9K12µbδ
2Λhγ

2

h
πξ

+ 2k2k3k4k8k9K12µbδΛhγhπξ − 2k1k2k3k4k9k10K12aµbΛhµh(1− α1)πβvh

+ k22k9k10K12aµbδΛhµhγh(1− α1)βvh − k22k3k4k9k10K12aµbΛhµh(1− α1)βvh

− k21k
2

3k
2

4k8k9K12µbΛhπ
2 + 4k1k2k3k4k8k9K12µbδΛhγhπ − 4k1k2k

2

3k
2

4k8k9K12µbΛhπ

− k22k8k9K12µbδ
2Λhγ

2

h
+ 2k22k3k4k8k9K12µbδΛhγh − k22k

2

3k
2

4k8k9K12µbΛh,
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c1 = ((k1k3k4k5k6k10k11a
2µ2

h
(1− α1)βhvnπ

2 + k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvn(k2 − ω)π)βvhξ

+ (2k1k2k3k4k5k6k10k11a
2µ2

h
(1 − α1)βhvnπ + k22k3k4k5k6k10k11a

2µ2
h
(1 − α1)βhvn)(1− α1)βvh)KEKL

+ (k3k4k9k10K12aµbΛhµhωπ(1− α1)βvh − 2k3k4k8k9K12µbδΛhγhωπ)ξ
2

+ ((k2k3k4k9k10K12aµbΛhµhω − k1k2k3k4k9k10K12aµbΛhµhπ)(1 − α1)βvh

+ (2k1k
2
3k

2
4k8k9K12µbΛhω + 2k1k2k3k4k8k9K12µbδΛhγh)π

+ (2k2k
2
3k

2
4k8k9K12µbΛh − 2k2k3k4k8k9K12µbδΛhγh)ω)ξ

− k1k
2
2k3k4k9k10K12aµbΛhµh(1− α1)βvh − 2k21k2k

2
3k

2
4k8k9K12µbΛhπ

+ 2k1k
2
2k3k4k8k9K12µbδΛhγh − 2k1k

2
2k

2
3k

2
4k8k9K12µbΛh,

726

c0 = k2
3k

2
4k8k9K12µbΛhµ

2
h(k2 + ξ)2

(

R2
0 − 1

)

,

with k10 = γh + ηhk4, k11 = γv + ηvk8, K12 = (sKE + k6KL) and n = N − 1. Notes that c4 is727

always negative and c0 is positive (resp. negative) if R0 is greater (resp. less) that the unity.728

It follows, depending of the sign of coefficients c3, c2 and c1, that the model system (2) admits729

at least one endemic equilibrium whenever R0 > 1 and the phenomenon of backward (resp.730

forward) bifurcation can occurs when R0 < 1 (resp. R0 > 1). This ends the proof.731

E Proof of Theorem 9732

Consider the Lyapunov function733

G = q1Eh + q2Ih + q3Ev + q4Iv,

where734

q1 =
1

k3
; q3 =

ζ1S
0
h

k3k8

(γv + k8ηv)

k9
, q2 =

ζ1S
0
h

k3k8

(γv + k8ηv)ζ2S
0
v

k4k9
, q4 =

ζ1S
0
h

k3k8
.

and we have set ζ1 =
τµhβhv

Λh

and ζ2 =
τµhβvh

Λh

. The derivative of G is given by735

Ġ = q1Ėh + q2İh + q3Ėv + q4İv

= q1(λ
c
hSh − k3Eh) + q2(γhEh − k4Ih) + q3(λ

c
vSv − k9Ev) + q4(γvEv − k8Iv)

= q1ζ1Sh(ηvEv + Iv)− q3k9Ev + q4γvEv − q4k8Iv + q3ζ2Sv(ηhEh + Ih)− q1k3Eh + q2γhEh − q2k4Ih

= (q1ζ1Shηv + q4γv − q3k9)Ev + (q1ζ1Sh − q4k8)Iv + (q3ζ2Svηh + q2γh − q1k3)Eh + (q3ζ2Sv − q2k4)Ih

≤ (q1ζ1S
0
hηv + q4γv − q3k9)Ev + (q1ζ1S

0
h − q4k8)Iv + (q3ζ2S

0
vηh + q2γh − q1k3)Eh + (q3ζ2S

0
v − q2k4)Ih,

since Sh ≤ S0
h, Sv ≤ S0

v

Replacing qi, i = 1, . . . , 4, by their value gives after straightforward simplifications736

Ġ ≤
(

R2
nv,δ=0 − 1

)

Eh

We have Ġ ≤ 0 if Rnv,δ=0 ≤ 1, with Ġ = 0 if Rnv,δ=0 = 1 or Eh = 0. Whenever Eh = 0, we also737

have Ih = 0, Ev = 0 and Iv = 0. Substituting Eh = Ih = Ev = Iv = 0 in the first, fourth and738

fifth equation of Eq. (18) with δ = 0 gives Sh(t) → S0
h = N0

h , Rh(t) → 0, and Sv(t) → S0
v = N0

v739

as t → ∞. Thus740

[Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), E(t), L(t), P (t)] → (N0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

as t → ∞.

It follows from the LaSalle’s invariance principle [51, 52, 53] that every solution of (18) (when741

Rnv,δ=0 ≤ 1), with initial conditions in D2 converges to Env
1 , as t → ∞. Hence, the DFE, Env

1 ,742

of model (18) without disease–induced death, is GAS in D2 if Rnv,δ=0 ≤ 1.743
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[60] Helena Sofia Ferreira Rodrigues, Optimal control and numerical optimization applied to885

epidemiological models, Ph.D. thesis, Universidade de Aveiro Departamento de Matemat-886

ica (2012).887

[61] S. Licciardi, personal communication.888

43


	Introduction
	The formulation of the model
	Well–posedness of the model 

	Mathematical analysis
	The disease–free equilibria and its stability
	Local stability of disease–free equilibria
	Global stability of the trivial equilibrium
	Global stability of the disease–free equilibrium

	Endemic equilibria and bifurcation analysis
	Existence of endemic equilibria
	Backward bifurcation analysis

	The different causes of the backward bifurcation
	Analysis of the model without vaccination
	Analysis of the model with mass action incidence


	Sensitivity analysis
	Local sensitivity analysis
	Uncertainty and global sensitivity analysis

	Numerical simulations
	Strategy A: Vaccination combined with individual protection only
	Strategy B: Vaccination combined with adulticide
	Strategy C: Vaccination combined with larvicide
	Strategy D: Vaccination combined with mechanical control
	Strategy E: Combining vaccination, individual protection and adulticide
	Strategy F: Combining vaccination, individual protection and mechanical control

	Conclusion
	Useful result.
	Proof of Theorem 1.
	Proof of Theorem 2.
	Proof of Theorem 5.
	Proof of Theorem 9

