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Abstract

In this paper, we derive and analyse a compartmental model for the control of arboviral diseases8

which takes into account an imperfect vaccine combined with individual protection and some vector9

control strategies already studied in the literature. After the formulation of the model, a qualitative10

study based on stability analysis and bifurcation theory reveals that the phenomenon of backward11

bifurcation may occur. The stable disease-free equilibrium of the model coexists with a stable endemic12

equilibrium when the reproduction number, R0, is less than unity. Using Lyapunov function theory, we13

prove that the trivial equilibrium is globally asymptotically stable; When the disease–induced death14

is not considered, or/and, when the standard incidence is replaced by the mass action incidence, the15

backward bifurcation does not occur. Under a certain condition, we establish the global asymptotic16

stability of the disease–free equilibrium of the full model. Through sensitivity analysis, we determine17

the relative importance of model parameters for disease transmission. Numerical simulations show that18

the combination of several control mechanisms would significantly reduce the spread of the disease, if19

we maintain the level of each control high, and this, over a long period.20

Keywords: Compartmental model, Arboviral diseases, Vaccination, Vector control strategies,21

Stability, Backward bifurcation, Sensitivity analysis.22
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1 Introduction24

Arboviral diseases are affections transmitted by hematophagous arthropods. There are cur-25

rently 534 viruses registered in the International Catalog of Arboviruses and 25% of them have26

caused documented illness in human populations [1, 2, 3]. Examples of those kinds of diseases27

are Dengue, Yellow fever, Saint Louis fever, Encephalitis, West Nile fever and Chikungunya.28

A wide range of arbovirus diseases are transmitted by mosquito bites and constitute a public29

health emergency of international concern. According to WHO, Dengue, caused by any of30

four closely-related virus serotypes (DEN-1-4) of the genus Flavivirus, causes 50–100 million31

infections worldwide every year, and the majority of patients worldwide are children aged 9 to32

16 years [4, 5, 6]. The dynamics of arboviral diseases like Dengue or Chikungunya are influ-33

enced by many factors such as human and mosquito behaviour, the virus itself, as well as the34

environment which directly or indirectly affects all the present mechanisms of control.35

For all mentioned diseases, only yellow fever has a licensed vaccine. Nevertheless, consid-36

erable efforts are made to obtain the vaccines for other diseases. In the case of Dengue for37
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example, the scientists of French laboratory SANOFI have conducted different tries in Latin38

America and Asia. Thus, a tetravalent vaccine could be quickly set up in the coming months.39

But in any case, it is clear that this vaccine will be imperfect. However, the tries in Latin40

America have shown that vaccine efficacy was 64.7%. Serotype–specific vaccine efficacy was41

50.3% for serotype 1, 42.3% for serotype 2, 74.0% for serotype 3, and 77.7% for serotype 4 [7].42

The tries in Asia have shown that efficacy was 30.2%, and differed by serotype [8].43

Host-vector models for arboviral diseases transmission were proposed in [9, 10, 11, 12, 13,44

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] with the focus on the construction of the basic45

reproductive ratio and related stability analysis of the disease free and endemic equilibria. Some46

of these works in the literature focus on modeling the spread of arboviral diseases and its control47

using some mechanism of control like imperfect vaccines [19, 20, 26] and other control tools like48

individual protection and vector control strategies [9, 10, 15, 21, 23, 24].49

In [15], Dumont and Chiroleu proposed a compartmental model to study the impact of vector50

control methods used to contain or stop the epidemic of Chikungunya of 2006 in Réunion island.51

Moulay et al. [23] study an optimal control based on protection and vector control strategies52

to fight against Chikungunya. In [20], Rodrigues et al. simulate an hypothetical vaccine as53

an extra protection to the human population against epidemics of Dengue, using the optimal54

control. In these models [15, 20, 23],55

(i) the population is constant,56

(ii) the disease-induced death in humans is not considered,57

(iii) the complete stage progression of development of vectors is not considered,58

(iv) none of the above mentioned models takes into account the combination of the mechanisms59

of control already studied in the literature, such as vaccination, individual protection and60

vector control strategies (destruction of breeding site, eggs and larvae reduction).61

The aim of this work is to propose and study a arboviral disease control model which62

takes into account human immigration, disease–induced mortality in human communities, the63

complete stage structured model for vectors and a combination of human vaccination, individual64

protection and vector control strategies to fight against the spread of these kind of diseases.65

We start with the formulation of the constant control model, which is an extension of the66

previous model developed in [26]. We include the complete stage progression of development67

of vectors, the waning vaccine, and four other continuous controls (individual protection, using68

adulticides, the mechanical control, Eggs and larvae reduction). We compute the net repro-69

ductive number N , as well as the basic reproduction number, R0, and investigate the existence70

and stability of equilibria. We prove that the trivial equilibrium is globally asymptotically71

stable whenever N < 1. When N > 1 and R0 < 1, we prove that the system exhibit the72

backward bifurcation phenomenon. The implication of this occurrence is that the classical epi-73

demiological requirement for effective eradication of the disease, R0 < 1, is no longer sufficient,74

even though necessary. However considering two situations: the model without vaccination75

and the model with mass incidence rates, we prove that the disease–induced death and the76

standard incidence functions, respectively, are the main causes of the occurrence of backward77

bifurcation. We found that the disease–free equilibrium is globally asymptotically stable un-78

der certain condition. Through local and global sensitivity analysis, we determine the relative79

importance parameters of the model on the disease transmission. By using the pulse control80

technique in numerical simulations, we evaluate the impact of different controls combinations81

on the decrease of the spread of these diseases.82
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The paper is organized as follows. In Section 2 we present the transmission model and83

in Section 3 we carry out some analysis by determining important thresholds such as the net84

reproductive number N and the basic reproduction number R0, and different equilibria of the85

model. We then demonstrate the stability of equilibria and carry out bifurcation analysis. In86

section 4, both local and global sensitivity analysis are used to assess the important parameters87

in the spread of the diseases. Section 5 is devoted to numerical simulations and discussion. A88

conclusion rounds up the paper.89

2 The formulation of the model90

The model we propose here is an extension of the previous model studied in [26], and is based91

on the modelling approach given in [15, 16, 17, 18, 19, 23, 24]. It is assumed that the human and92

vector populations are divided into compartments described by time–dependent state variables.93

The compartments in which the populations are divided are the following ones:94

–For humans, we consider susceptible (denoted by Sh), vaccinated (Vh), exposed (Eh),95

infectious (Ih) and resistant or immune (Rh); So that, Nh = Sh + Vh +Eh + Ih +Rh. Following96

Garba et al. [19] and Rodrigues et al. [20], we assume that the immunity, obtained by the97

vaccination process, is temporary. So, the immunity has the waning rate ω. The recruitment98

in human population is at the constant rate Λh, and newly recruited individuals enter the99

susceptible compartment Sh. Are concerned by recruitment people that are totally naive from100

the disease. Each individual human compartment goes out from the dynamics at natural101

mortality rates µh. The human susceptible population is decreased following infection, which102

can be acquired via effective contact with an exposed or infectious vector at a rate λh =103

aβhv(ηvEv + Iv)

Nh

[19] where a is the biting rate per susceptible vector, βhv is the transmission104

probability from an infected vector (Ev or Iv) to a susceptible human (Sh). The probability105

that a vector chooses a particular human or other source of blood to bite can be assumed as
1

Nh

.106

Thus, a human receives in average a
Nv

Nh

bites per unit of times. Then, the infection rate per107

susceptible human is given aβhv

Nv

Nh

(ηvEv + Iv)

Nv

. In expression of λh, the modification parameter108

0 < ηv < 1 accounts for the assumed reduction in transmissibility of exposed mosquitoes relative109

to infectious mosquitoes [19] (see the references therein for the specific sources). Latent humans110

(Eh) become infectious (Ih) at rate γh. Infectious humans recover at a constant rate, σ or dies111

as consequence of infection, at a disease-induced death rate δ. Immune humans retain their112

immunity for life.113

– Following [23], the stage structured model is used to describe the vector population dy-114

namics, which consists of three main stages: embryonic (E), larvae (L) and pupae (P). Even if115

eggs (E) and immature stages (L and P) are both aquatic, it is important to dissociate them116

because, for control point of view, drying the breeding sites does not kill eggs, but only larvae117

and pupae. Moreover, chemical interventions on the breeding sites has impact on the larvae118

population, but not on the eggs [23]. The number of laid eggs is assumed proportional to the119

number of females. The system of stage structured model of aquatic phase development of120
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vector is given by (see [23] for details)121























Ė = µb

(

1−
E

ΓE

)

(Sv + Ev + Iv)− (s+ µE)E

L̇ = sE

(

1−
L

ΓL

)

− (l + µL)L

Ṗ = lL− (θ + µP )P

Unlike the authors of [23], we take into account the pupal stage in the development of the122

vector. This is justified by the fact that they do not feed during this transitional stage of123

development, as they transform from larvae to adults. So, the control mechanisms can not be124

applied to them.125

A rate, θ, of pupae become female Adults. Each individual vector compartment goes out126

from the dynamics at natural mortality rates µv. The vector susceptible population is decreased127

following infection, which can be acquired via effective contact with an exposed or infectious128

human at a rate λv =
aβvh(ηhEh + Ih)

Nh

[19] where βvh is the probability of transmission of129

infection from an infectious human (Eh or Ih) to a susceptible vector (Sv). Latent vectors130

(Ev) become infectious (Iv) at rate γv. The modification parameter 0 ≤ ηh < 1 accounts for131

the relative infectiousness of exposed humans in relation to infectious humans. Here too, it is132

assumed that susceptible mosquitoes can acquire infection from exposed humans [12, 19, 26].133

The vector population does not have an immune class, since it is assumed that their infectious134

period ends with their death [17].135

Then, we add new terms in the model to assess the different control tools studied:136

(i) α1 represents the efforts made to protect human from mosquitoes bites. It mainly consists137

to the use of mosquito nets or wearing appropriate clothing [24]. Thus we modify the138

infection term as follows:139

λc
h = (1− α1)λh, and λc

v = (1− α1)λv,with 0 ≤ α1 < 1; (1)

(ii) η1 and η2 are eggs and larvae mortality rates induced by chemical intervention respectively,140

(iii) cm is the additional mortality rate due to the adulticide,141

(iv) α2 is the parameter associated with the efficacy of the mechanical control.142

The above assumptions lead to the following non-linear system of ordinary differential equations143



























































































Ṡh = Λh + ωVh − (λc
h + ξ + µh)Sh

V̇h = ξSh − [(1− ǫ)λc
h + ω + µh]Vh

Ėh = λc
h [Sh + (1− ǫ)Vh]− (µh + γh)Eh

İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh

Ṡv = θP − λc
vSv − (µv + cm)Sv

Ėv = λc
vSv − (µv + γv + cm)Ev

İv = γvEv − (µv + cm)Iv

Ė = µb

(

1−
E

α2ΓE

)

(Sv + Ev + Iv)− (s+ µE + η1)E

L̇ = sE

(

1−
L

α2ΓL

)

− (l + µL + η2)L

Ṗ = lL− (θ + µP )P

(2)
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It is important to note that no intervention measure is performed to kill the pupae for two144

reasons: the first reason is the fact that at this stage, no food is absorbed by the insect, so it145

is impossible to make her ingest a toxic substance; the second reason is the fact that products146

soluble in water deposits by contact are not selective mosquito nymphs and act on all the147

wildlife of the cottage.148

Hosts
Adult
Vectors

Aquatic
phase

ShVh

Eh

Ih

Rh

Sv

Ev

Iv

P

L

E

Figure 1: A compartmental model for the transmission dynamics of vector-borne diseases,
which takes into account a waning vaccine and the complete phase of aquatic development of
vector.

The description of state variables and parameters of model (2) are given in Tables 1–3.149

Table 1: The state variables of model (2).

Humans Vectors
Sh: Susceptible E: Eggs
Vh: Vaccines L: Larvae
Eh: Infected in latent stage P : Pupae
Ih: Infectious Sv: Susceptible
Rh: Resistant (immune) Ev Infected in latent stage

Iv Infectious
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Table 2: Description and baseline values/range of parameters of model (2).

Par. Description Baseline Sources
value/range

Λh Recruitment rate of humans 2.5 day−1 [19]

µh Natural mortality rate day−1

(67×365)
[19]

in humans
ξ Vaccine coverage Variable
ω Vaccine waning rate Variable
ǫ The vaccine efficacy Variable
a Average number of bites 1 day−1 [9, 19]
βhv Probability of transmission of 0.1, 0.75 day−1 [9, 19]

infection from an infectious human
to a susceptible vector

γh Progression rate from Eh to Ih
[

1
15
, 1
3

]

day−1 [15, 27]
δ Disease–induced death rate 10−3 day−1 [19]
σ Recovery rate for humans 0.1428 day−1 [9, 19]
ηh,ηv Modifications parameter [0, 1) [19]
µv Natural mortality rate of vectors

[

1
30
, 1
14

]

day−1 [9, 19]
γv Progression rate from Ev to Iv

[

1
21
, 1
2

]

day−1 [15, 27]
βvh Probability of transmission of 0.1, 0.75 day−1 [9, 19]

infection from an infectious vector
to a susceptible human

θ Maturation rate from pupae 0.08 day−1 [15, 23, 24]
to adult

µb Number of eggs at each deposit 6 day−1 [15, 23, 24]
ΓE Carrying capacity for eggs 103, 106 [9, 23]
ΓL Carrying capacity for larvae 5× 102, 5× 105 [9, 23]
µE Eggs death rate 0.2 or 0.4 [24]
µL Larvae death rate 0.2 or 0.4 [24]
µP Pupae death rate 0.4 Assumed

Table 3: Description and baseline values/range of parameters of model (2).

Par. Description Baseline Sources
value/range

s Transfer rate from eggs to larvae 0.7 day−1 [24]
l Transfer rate from larvae to pupae 0.5 day−1 [23]
η1, η2 Eggs and larvae mortality rates 0.001,0.3 [24]

induced by chemical intervention
α1 Human protection rate [0, 1)
α2 Efficacy of the mechanical control (0, 1] [15]
cm Adulticide killing rate [0,0.8] [15]
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2.1 Well posedness of the model150

We now show that the system (2) is mathematically well defined and biologically feasible. We151

write152

k1 := ξ + µh; k2 := ω + µh; k3 := µh + γh; k4 := µh + δ + σ;
k5 := s+ µE + η1; k6 := l + µL + η2; k7 := θ + µP ; k8 := µv + cm;
k9 := µv + γv + cm;KE := α2ΓE;KL := α2ΓL; π := 1− ǫ, τ = a(1− α1).

(3)

System (2) can be rewritten in the following way153

dX

dt
= A(X)X + F (4)

with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T , A(X) =

(

A1(X) 0
0 A4(X)

)

154

with

A1(X) =













−λc
h − k1 ω 0 0 0
ξ −πλc

h − k2 0 0 0
λh πλh −k3 0 0
0 0 γh −k4 0
0 0 0 σ −µh













and

A2(X) =

















−(λc
v + k8) 0 0 0 0 θ
λv −k9 0 0 0 0
0 γv −k8 0 0 0

A96 A96 A96 −A97 0 0
0 0 0 A109 −A10 0
0 0 0 0 l −k7

















where A96 = µb

(

1−
E

KE

)

, A97 =

(

µbNv

KE

+ k5

)

, A109 = s

(

1−
L

KL

)

and A10 =
sE

KL

+ k6;155

and F = (Λh, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T .156

Note that A(X) is a Metzler matrix, i.e. a matrix such that off diagonal terms are non157

negative [28, 29], for all X ∈ R
11
+ . Thus, using the fact that F ≥ 0, system (4) is positively158

invariant in R
11
+ , which means that any trajectory of the system starting from an initial state in159

the positive orthant R11
+ , remains forever in R

11
+ . The right-hand side is Lipschitz continuous:160

there exists a unique maximal solution.161

By adding the first four equations of model system (2), it follows that

Ṅh(t) = Λh − µhNh − δIh ≤ Λh − µhNh

So that

0 ≤ Nh(t) ≤
Λh

µh

+

(

Nh(0)−
Λh

µh

)

e−µht

Thus, at t −→ ∞, 0 ≤ Nh(t) ≤
Λh

µh

.162

By adding the equations in Sv, Ev and Ev of system (2), it follows that

Ṅv(t) = θP − µvNv

So that

0 ≤ Nv(t) =
θP

µv

+

(

Nv(0)−
θP

µv

)

e−µvt
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Thus, at t −→ ∞, 0 ≤ Nv(t) ≤
θlKL

µvk7
since P ≤

lKL

k7
.163

Therefore, all feasible solutions of model system (2) enter the region:164

D =

{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
11
+ : Nh ≤

Λh

µh

;E ≤ KE;L ≤ KL;P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

165

3 Mathematical analysis166

In this section, we focus on the qualitative analysis of our model. We determine the different167

equilibrium points which are governed by two epidemiological thresholds, the net reproductive168

number denoted by N and the basic reproduction number denoted by R0. Then, dependent169

of the values of these thresholds, we study the stability (local as well as global) of the different170

equilibrium points, and also we test the occurrence of the backward bifurcation phenomenon.171

These stability analysis are also done for the different corresponding models, to determine the172

causes of the occurrence of backward bifurcation phenomenon.173

3.1 The disease–free equilibria and its stability174

In the absence of disease in the both population (human and Adult vector), i.e. λc
h = λc

v = 0175

(or Eh = Ih = Ev = Iv = 0), we obtain two equilibria without disease: the trivial equilibrium176

(equilibrium without vector and disease) E0 = (S0
h, V

0
h , 0, 0, 0, 0, 0, 0, 0, 0, 0) and the disease–free177

equilibrium (equilibrium with vector and without disease) E1 = (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )178

with179

S0
h =

Λhk2
µh(k2 + ξ)

, V 0
h =

ξΛh

µh(k2 + ξ)
, N0

v =
KEKLk5k6 (N − 1)

µb (KEs+ k6KL)
,

P =
KEKLk5k6k8 (N − 1)

µbθ (KEs+ k6KL)
, L =

KEKLk5k6k7k8 (N − 1)

µbθl (KEs+ k6KL)
,

E =
KEKLk5k6k7k8 (N − 1)

s (µblKLθ + k5k7k8KE)
.

(5)

where N is the net reproductive number [23, 30, 31] given by180

N =
µbθls

k5k6k7k8
(6)

3.1.1 Local stability of disease–free equilibria181

The local asymptotic stability result of equilibria E0 and E1 is given in the following.182

Theorem 1. Define the basic reproductive number [32, 33]183

R0 =

√

a2(1− α1)
2βhvβvhµhk5k6 (γh + k4ηh) (γv + k8ηv) (πξ + k2)α2ΓEΓL(N − 1)

k3k4k8k9µbΛh (ξ + k2) (k6ΓL + sΓE)
(7)

Then,184

(i) if N ≤ 1, the trivial equilibrium E0 is locally asymptotically stable in D;185

(ii) if N > 1, the trivial equilibrium is unstable and the disease–free equilibrium E1 is locally186

asymptotically stable in D whenever R0 < 1.187
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Proof. See B.188

The basic reproduction number of a disease is the average number of secondary cases that189

one infectious individual produces during his infectious period in a totally susceptible pop-190

ulation. The epidemiological implication of Theorem 1 is that, in general, when the basic191

reproduction number, R0 is less than unity, a small influx of infectious vectors into the com-192

munity would not generate large outbreaks, and the disease dies out in time (since the DFE is193

LAS) [19, 32, 33, 34]. However, we show in the subsection 3.2 that the disease may still persist194

even when R0 < 1.195

3.1.2 Global stability of the trivial equilibrium196

The global stability of the trivial equilibrium is given by the following result:197

Theorem 2. If N ≤ 1, then E0 is globally asymptotically stable on D.198

Proof. To prove the global asymptotic stability of the trivial disease–free equilibrium E0, we199

use the direct Lyapunov method. To this aim, we set Y = X − TE with200

X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T and rewrite (2) in the following manner201

dY

dt
= B(Y )Y.

The global asymptotic stability of E0 is achieved by considering the following Lyapunov function
L(Y ) =< g, Y > where

g =

(

1, 1, 1, 1, 1, 1, 1, 1,
k8
µb

,
k5k8
µbs

,
k5k6k8
µbsl

)

.

See C for the details.202

3.1.3 Global stability of the disease–free equilibrium203

We now turn to the global stability of the disease–free equilibrium E1. we prove that the disease–204

free equilibrium E1 is globally asymptotically stable under a certain threshold condition. To205

this aim, we use a result obtained by Kamgang and Sallet [35], which is an extension of some206

results given in [33]. Using the property of DFE, it is possible to rewrite (2) in the following207

manner208
{

ẊS = A1(X)(XS −XDFE) +A12(X)XI

ẊI = A2(X)XI

(8)

where XS is the vector representing the state of different compartments of non transmitting in-
dividuals (Sh, Vh, Rh, Sv, E, L, P ) and the vector XI represents the state of compartments of dif-
ferent transmitting individuals (Eh, Ih, Ev, Iv). Here, we have XS = (Sh, Vh, Rh, Sv, E, L, P )T ,

XI = (Eh, Ih, Ev, Iv)
T , X = (XS, XI) and XDFE := E1 = (S0

h, V
0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

T
,

A1(X) =

(

A(1)
1 A(2)

1

A(3)
1 A(4)

1

)

,

9



with A(1)
1 (X) =









−(λc
h + k1) ω 0 0
ξ −(πλc

h + k2) 0 0
0 0 −µh 0
0 0 0 −(λc

v + k8)









,

A(2)
1 (X) =









0 0 0
0 0 0
0 0 0
0 0 θ









, A(3)
1 (X) =









0 0 0 µb

(

1−
E

KE

)

0 0 0 0
0 0 0 0









,

A(4)
1 (X) =













−

(

k5 + µb

S0
v

KE

)

0 0

s

(

1−
L

KL

)

−

(

k6 +
sE∗

KL

)

0

0 l −k7













,

A12(X) =



































0 0 −
τβhvηvS

0
h

Nh

−
τβhvS

0
h

Nh

0 0 0

0 0 −
τβhvηvπV

0
h

Nh

−
τβhvπV

0
h

Nh

0 0 0

0 σ 0 0 0 0 0

−
τβvhηhS

0
v

Nh

−
τβvhS

0
v

Nh

0 0 0 0 0

0 0 µb

(

1−
E

KE

)

µb

(

1−
E

KE

)

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0



































,

A2(X) =















−k3 0
τβhvηv(Sh + πVh)

Nh

τβhv(Sh + πVh)

Nh

γh −k4 0 0
τβvhηhSv

Nh

τβvhSv

Nh

−k9 0

0 0 γv −k8















.

A direct computation shows that the eigenvalues of A1(X) have negative real parts. Thus the209

system ẊS = A1(X)(XS − XDFE) is globally asymptotically stable at XDFE. Note also that210

A2(X) is a Metzler matrix.211

We now consider the bounded set G:212

G =
{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
11 : Sh ≤ Nh, Vh ≤ Nh, Eh ≤ Nh,

Ih ≤ Nh, Rh ≤ Nh, N̄h = Λh/(µh + δ) ≤ Nh ≤ N0
h = Λh/µh;

E ≤ KE ;L ≤ KL;P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

Let us recall the following theorem [35] (See [35] for a proof in a more general setting).213

Theorem 3. Let G ⊂ U = R
7 × R

4. The system (2) is of class C1, defined on U . If214

(1) G is positively invariant relative to (8).215

(2) The system ẊS = A1(X)(XS −XDFE) is Globally asymptotically stable at XDFE.216

(3) For any x ∈ G, the matrix A2(x) is Metzler irreducible.217

(4) There exists a matrix Ā2 , which is an upper bound of the set218

M = {A2(x) ∈ M4(R) : x ∈ G} with the property that if A2 ∈ M, for any x̄ ∈ G, such219

that A2(x̄) = Ā2, then x̄ ∈ R
7 × {0}.220
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(5) The stability modulus of Ā2, α(A2) = maxλ∈sp(A2)Re(λ) satisfied α(A2) ≤ 0.221

Then the DFE is GAS in G.222

For our model system (2), conditions (1–3) of the theorem 3 are satisfied. An upper bound
of the set of matrices M, which is the matrix Ā2 is given by

Ā2 =

















−k3 0
τβhvηv(S

0
h + πV 0

h )

N̄h

τβhv(S
0
h + πV 0

h )

N̄h

γh −k4 0 0
τβvhηhS

0
v

N̄h

τβvhS
0
v

N̄h

−k9 0

0 0 γv −k8

















,

where N̄h =
Λh

(µh + δ)
.223

To check condition (5) in theorem 3, we will use the useful lemma [35] in A. To this aim,224

let225

A =

(

−k3 0
γh −k4

)

, B =





τβhvηv(S
0
h + πV 0

h )

N̄h

τβhv(S
0
h + πV 0

h )

N̄h

0 0



,226

C =





τβvhηhS
0
v

N̄h

τβvhS
0
v

N̄h

0 0



, D =

(

−k9 0
γv −k8

)

.227

Clearly, A is a stable Metzler matrix. Then, after some computations, we obtainD−CA−1B228

is a stable Metzler matrix if and only if229

Rc < 1 (9)

where230

Rc =

√

a2(1− α1)
2βhvβvhk5k6 (γh + k4ηh) (γv + k8ηv)KEKL(k2 + πξ)(N − 1)

k3k4k8k9µb(k2 + ξ)(k6KL +KEs)Λh

(µh + δ)2

µh

. (10)

231

We claim the following result232

Theorem 4. If N > 1 and R0 < Rc < 1, then the disease–free equilibrium E1 is globally233

asymptotically stable in G.234

Remark 1. From (10), we have Rc =
(µh + δ)

µh

R0 > R0, showing that Rc is not necessarily235

an optimal threshold parameter.236

Remark 2. Note that in the absence of disease–induced death, i.e. δ = 0, we have Rc = R0.237

This suggests that the disease–induced death may be a cause of the occurrence of the backward238

bifurcation phenomenon.239

Remark 3. The above results show that if, at any time, through appropriate interventions (eg240

the destruction of breeding sites, massive spraying, personal protection, vaccination,...), we are241

able to reduce N or R0 and Rc less than 1 for a sufficiently long period, then, the disease may242

disappear [15].243
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Theorem 4 means that for R0 < Rc < 1, the DFE is the unique equilibrium (no co-existence244

with an endemic equilibrium). If Rc ≤ R0 ≤ 1, then it is possible to have co-existence with245

endemic equilibria and thus, the occurrence of backward bifurcation phenomenon.246

The backward bifurcation phenomenon, in epidemiological systems, indicate the possibility247

of existence of at least one endemic equilibrium when R0 is less than unity. Thus, the classical248

requirement of R0 < 1 is, although necessary, no longer sufficient for disease elimination [19,249

36, 37, 38]. In some epidemiological models, it has been shown that the backward bifurcation250

phenomenon is caused by factors such as non-linear incidence (the infection force), disease–251

induced death and vaccine (perfect or not) [19, 38, 39, 40, 41, 42]. To confirm whether or not252

the backward bifurcation phenomenon occurs in this case, one could use the approach developed253

in [33, 41, 43], which is based on the general centre manifold theorem [44]. We will explore this254

method in the next section.255

3.2 Endemic equilibria and bifurcation analysis256

3.2.1 Existence of endemic equilibria257

We turn now to the existence of endemic equilibria. Let us introduce the following quantity258

R1 = R2
0|δ=0. We prove the following result259

Theorem 5. We assume that N > 1, then260

(i) In the absence of disease–induced death in human population (δ = 0), model system (2)261

have262

1. an unique endemic equilibrium whenever R1 > 1.263

2. no endemic equilibrium otherwise.264

(ii) In presence of disease–induced death in human population (δ > 0), model system (2) could265

have266

3. at least one endemic equilibrium whenever R0 > 1.267

4. zero, one or more than one endemic equilibrium whenever R0 < 1.268

Proof. See D.269

Note that case 4 of Theorem 5 indicate the possibility of existence of at least one endemic270

equilibrium for R0 < 1 and hence the potential occurrence of a backward bifurcation phe-271

nomenon.272

3.2.2 Backward bifurcation analysis273

In the following, we use the centre manifold theory [21, 33, 41, 43] to explore the possibility of274

backward bifurcation in (2). To do so, a bifurcation parameter β∗
hv is chosen, by solving for βhv275

from R0 = 1, giving276

β∗
hv =

k3k4k8k9µbΛh (ξ + k2) (k6KL + sKE)

a2(1− α1)2βvhµhk5k6 (γh + k4 ηh) (γv + k8 ηv) (πξ + k2)KEKL(N − 1)
. (11)

Let Jβ∗

hv
denotes the Jacobian of the system (2) evaluated at the DFE (E1 ) and with βhv = β∗

hv.277

Thus,278

Jβ∗

hv
=

(

J1 J2

J3 J4

)

, (12)
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where279

J1 =













−k1 ω 0 0 0
ξ −k2 0 0 0
0 0 −k3 0 0
0 0 γh −k4 0
0 0 0 σ −µh













, J4 =

















−k8 0 0 0 0 θ
0 −k9 0 0 0 0
0 γv −k8 0 0 0
K1 K1 K1 −K2 0 0
0 0 0 K3 −K4 0
0 0 0 0 l −k7

















.280

J2 =

























0 −
τβ∗

hv
ηvS

0
h

N0
h

−
τβ∗

hv
S0
h

N0
h

0 0 0

0 −
τβ∗

hv
πηvV

0
h

N0
h

−
τβ∗

hv
πV 0

h

N0
h

0 0 0

0
τβ∗

hv
ηvH

0

N0
h

τβ∗

hv
H0

N0
h

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

























, J3 =

























0 0 −
τβvhηhS

0
v

N0
h

−
τβvhS

0
v

N0
h

0

0 0
τβvhηhS

0
v

N0
h

τβvhS
0
v

N0
h

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























,281

with H0 = S0
h + πV 0

h , K1 = µb

(

1−
E∗

KE

)

, K2 = k5 +
µb

KE

S0
v . K3 = s

(

1−
L∗

KL

)

, and282

K4 =

(

k6 +
sE∗

KL

)

.283

Note that the system (2), with βhv = β∗
hv, has a hyperbolic equilibrium point (i.e., the284

linearised system (2) has a simple eigenvalue with zero real part and all other eigenvalues have285

negative real part). Hence, the centre manifold theory [44, 45] can be used to analyse the286

dynamics of the model (2) near βhv = β∗
hv. The technique in Castillo-Chavez and Song (2004)287

[43] entails finding the left and right eigenvectors of the linearised system above as follows.288

The left eigenvector components of Jβ∗

hv
, which correspond to the uninfected states are zero

(see Lemma 3 in [33]). Thus a non-zero components correspond to the infected states. It follows
that the matrix Jβ∗

hv
has a left eigenvector given by v = (v1, v2, . . . , v11), where

v1 = v2 = v5 = v6 = v9 = v10 = v11 = 0; v3 =
k8N

0
h

a(1− α1)β∗
hvH

0
v8;

v4 =
a(1− α1)βvhS

0
v(ηvk8 + γv)

k4k9N0
h

v8, v7 =
(ηvk8 + γv)

k9
v8, v8 = v8 > 0.

The system (2) has a right eigenvector given by w = (w1, w2, . . . , w11)
T , where

w11 > 0, w8 > 0,

w10 =
k7
l
w11, w9 =

K1θ

k5k8
w11, w7 =

k8
γv

w8, w6 =
θ

k8
w11 −

k9
γv

w8,

w5 =
γhσk8k9N

0
h

a(1− α1)βvhµhγvS0
v (ηhk4 + γh)

w8, w4 =
µh

σ
w5, w3 =

k4
γh

w4,

w2 = −
a(1− α1)β

∗
hv(ηvk8 + γv)

γvN0
h(k1k2 − ξω)

(ξS0
h + k1V

0
h )w8,

w1 =
ω

k1
w2 −

a(1− α1)β
∗
hvS

0
h

k1N
0
h

(ηvw7 + w8) .

Theorem 4.1 in Castillo-Chavez and Song [43] is then applied to establish the existence of289

backward bifurcation in (2). To apply such a theorem, it is convenient to let fk represent the290

right-hand side of the kth equation of the system (2) and let xk be the state variables whose291

derivative is given by the kth equation for k = 1, . . . , 11. The local bifurcation analysis near292

the bifurcation point (βhv = β∗
hv) is then determined by the signs of two associated constants,293

denoted by A1 and A2, defined by294

A1 =
n
∑

k,i,j=1

vkwiwj

∂2fk(0, 0)

∂xi∂xj

and A2 =
n
∑

k,i=1

vkwi

∂2fk(0, 0)

∂xi∂φ
(13)
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with φ = βhv − β∗
hv. It is important to note that in fk(0, 0), the first zero corresponds to the295

disease–free equilibrium, E1, for the system (2). Since βhv = β∗
hv is the bifurcation parameter,296

it follows from φ = βhv − β∗
hv that φ = 0 when βhv = β∗

hv which is the second component in297

fk(0, 0).298

It follows then, after some algebraic manipulations, that

A1 = Γ1 − Γ2

with299

Γ1 =
a(1− α1)β

∗
hv(2V

0
hw1 + πS0

hw2)

(N0
h)

2
(ηvw7 + w8)v3

+
a(1− α1)βvhS

0
v

N0
h

[

(ηhw3 + w4)
1

S0
v

+

(

ηhw3 +
1

S0
v

w4

)]

w6v7,

300

Γ2 = 2
a(1− α1)βvhS

0
v

(N0
h)

2

(

5
∑

i=1

wi

)

(ηhw3 + w4)v7

+
a(1− α1)β

∗
hv(S

0
h + πV 0

h )(N
0
h + 1)

(N0
h)

2

(

5
∑

i=3

wi

)

(ηvw7 + w8)v3,

and

A2 =
a(S0

h + πV 0
h )

N0
h

(ηvw7 + w8) v3

Hence, the coefficient A1 > 0 if and only if301

Γ1 > Γ2 (14)

Note that the coefficient A2 is automatically positive. Thus, using Theorem 4.1 in [43], the302

following result is established.303

Theorem 6. The model (2) exhibits a backward bifurcation at R0 = 1 whenever the inequality304

(14) holds. If the reversed inequality holds, then the bifurcation at R0 = 1 is forward.305

The associated bifurcation diagrams are depicted in Figures 2 and 3. Parameter values used306

in figure 2 correspond to those in Table 4, except Λh = 10, ǫ = 1, βvh = 0.8, ηh = 1, ηv = 1,307

σ = 0.01428, δ = 1, α1 = 0.001, α2 = 1, cm = 0.0001, ΓE = 105, ΓL = 50000. In this case the308

conditions required by Theorem 6, are satisfied: A1 = 0.0114 > 0 and A2 = 1.1393 > 0.309

Parameter values used in figure 3 correspond to those in Table 4, except Λh = 10, βvh = 0.8,310

ηh = ηv = 0 = δ = cm = α1 = 0, α2 = 1, ΓE = 105, ΓL = 50000. We also have A1 = −2.4223 <311

0 and A2 = 0.8333 > 0.312
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Figure 2: The backward bifurcation curves for model system (15) in the (R0, E
∗
h), and (R0, E

∗
v)

planes. The parameter βhv is varied in the range [0, 0.2810] to allow R0 to vary in the range
[0, 1.5]. Two endemic equilibrium points coexist for values of R0 in the range (0.2894, 1) (cor-
responding to the range (0.0105, 0.1249) of βhv). The notation EE and DFE stand for endemic
equilibrium and disease–free equilibrium, respectively. Solid line represent stable equilibria and
dash line stands for unstable equilibria.
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Figure 3: The forward bifurcation curves for model system (15) in the (R0, E
∗
h), and (R0, E

∗
v)

planes. Solid line represent stable equilibria and dash line stands for unstable disease–free
equilibrium.

The occurrence of the backward bifurcation can be also seen in Figure 4. Here, R0 is less313

than the transcritical bifurcation threshold (R0 = 0.29 < 1), but the solution of the model 2 can314

approach either the endemic equilibrium point or the disease-free equilibrium point, depending315

on the initial condition.316
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Figure 4: Solutions of model (2) of the number of infected humans, Eh, and the number of
infected vectors, Ev, for parameter values given in the bifurcation diagram in Figure 2 with
βhv = 0.0105. So R0 = 0.29 < 1, for two different set of initial conditions. The first set
of initial conditions (corresponding to the solid trajectory) is Sh = 700, Vh = 10, Eh = 220,
Ih = 100, Rh = 60, Sv = 3000, Ev = 400, Iv = 120, E = 10000, L = 5000 and P = 3000.
The second set of initial conditions (corresponding to the dotted trajectory) is Sh = 489100,
Vh = 10, Eh = 220, Ih = 100, Rh = 60, Sv = 3000, Ev = 400, Iv = 120, E = 10000, L = 5000
and P = 3000. The solution for initial condition 1 approaches the locally asymptotically stable
endemic equilibrium point, while the solution for initial condition 2 approaches the locally
asymptotically stable DFE.

From theorem 5, item (i), it follows that the disease-induced death in human (δ) may be a317

cause of the occurrence of backward bifurcation phenomenon. In the following, we show that318

the backward bifurcation phenomenon is caused by the disease-induced death in human and/or319

the standard incidence functions (λc
h and λc

v).320

3.3 The different causes of the backward bifurcation321

To determine the different causes of the backward bifurcation phenomenon, we will consider, in322

this section, two variants of the model (2): the corresponding model without vaccination and323

the corresponding model with mass action incidence.324
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3.3.1 Analysis of the model without vaccination325

The model without vaccination is given by326



















































































Ṡh = Λh − (λc
h + µh)Sh

Ėh = λc
hSh − (µh + γh)Eh

İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh

Ṡv = θP − λc
vSv − (µv + cm)Sv

Ėv = λc
vSv − (µv + γv + cm)Ev

İv = γvEv − (µv + cm)Iv

Ė = µb

(

1−
E

α2ΓE

)

(Sv + Ev + Iv)− (s+ µE + η1)E

L̇ = sE

(

1−
L

α2ΓL

)

− (l + µL + η2)L

Ṗ = lL− (θ + µP )P

(15)

where λc
h and λv

v are given at section 2. Model system (15) is defined in the positively-invariant327

set328

D1 =

{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
10 : Nh ≤ Λh/µh;E ≤ KE;L ≤ KL;P ≤

lKL

k7
;Nv ≤

θlKL

k7k8

}

.

Without lost of generality, we assume that N > 1. The corresponding disease–free equilibria329

of model (15) are given by Env
0 = (N0

h , 0, 0, 0, 0, 0, 0, 0, 0, 0) and330

Env
1 = (N0

h , 0, 0, 0, N
0
v , 0, 0, E, L, P ) with N0

h = Λh

µh

and N0
v , E, L and P are the same, given by331

(5). The associated next generation matrices, F1 and V1, are, respectively, given by332

F1 =













0 0 τβhvηv τβhv

0 0 0 0
τβvhηvN

0
v

N0
h

τβvhN
0
v

N0
h

0 0

0 0 0 0













and V1 =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









.333

It follows that the associated reproduction number for the model without vaccination, de-334

noted by Rnv = ρ(F1V
−1
1 ), is given by335

Rnv =

√

a2(1− α1)
2βhvβvh(γh + k4ηh)(γv + k8ηv)N

0
v

k3k4k8k9N0
h

. (16)

Using Theorem 2 of [33], we establish the following result:336

Theorem 7. Assumed that N > 1. For basic arboviral model without vaccination, given by337

(15), the corresponding disease–free equilibrium is LAS if Rnv < 1, and unstable if Rnv > 1.338

Existence of endemic equilibria Here, the existence of endemic equilibria of the model339

(15) will be explored. Let us set the following coefficients340

Rc =

√

{2k8(k3k4 − δγh) + (ηhk4 + γh)aµh(1− α1)βvh}

k3k4k8
,

d2 = −k9µbΛh(sKE + k6KL) (k3k4 − δγh) ((ηhk4 + γh)aµh(1− α1)βvh

+(k3k4 − δγh)k8) < 0,

d1 = k2
3k

2
4k8k9(sKE + k6KL)µbΛhµh(R

2
nv − R2

c),

d0 = k2
3k

2
4k8k9(sKE + k6KL)µbΛhµ

2
h

(

R2
nv − 1

)

.

(17)
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We claim the following:341

Theorem 8. The arboviral diseases model without vaccination (15) has:342

(i) a unique endemic equilibrium if d0 > 1 ⇔ Rnv > 1;343

(ii) a unique endemic equilibrium if d1 > 0, and d0 = 0 or d21 − 4d2d0 = 0;344

(iii) two endemic equilibria if d0 < 0 (i.e. Rnv < 1), d1 > 0 (i.e Rnv > Rc) and d21−4d2d0 > 0;345

(iv) no endemic equilibrium if d0 < 0 (i.e. Rnv < 1) and δ = 0.346

(v) no endemic equilibrium otherwise.347

Proof. Solving the equations in the model (15) in terms of λc,∗
h and λc,∗

v , gives348

S∗
h =

Λh

µh + λc,∗
h

, E∗
h =

λc,∗
h S∗

h

k3
, I∗h =

γhλ
c,∗
h S∗

h

k3k4
, R∗

h =
σγhλ

c,∗
h S∗

h

µhk3k4
, (18)

and349

S∗
v =

θP

(λc,∗
v + k8)

, E∗
v =

θPλc,∗
v

k9(λ
c,∗
v + k8)

, I∗v =
γvθPλc,∗

v

k8k9(λ
c,∗
v + k8)

,

E =
µbθKEP

(k5k8KE + µbθP )
, L =

µbθsKEKLP

k6KL(k5k8KE + µbθP ) + sµbθKEP
,

(19)

Substituting (18) and (19) into the expression of λ∗
h and λ∗

v and simplifying, shows that the350

nonzero equilibria of the model without vaccination satisfy the quadratic equation351

d2(λ
c,∗
h )2 + d1λ

c,∗
h + d0 = 0 (20)

where di, i = 0, 1, 2, are given by (17).352

Clearly, d2 < 0 and d0 > 0 (resp. d0 < 0) if Rnv > 1 (resp. Rnv < 1). Thus Theorem 8 is353

established.354

It is clear that cases (ii) and (iii) of theorem 8 indicates the possibility of backward bi-355

furcation (where the locally-asymptotically stable DFE co-exists with a locally-asymptotically356

stable endemic equilibrium when Rnv < 1) in the model without vaccination (15).357

This is illustrated by simulating the model with the following set of parameter values (it358

should be stated that these parameters are chosen for illustrative purpose only, and may not359

necessarily be realistic epidemiologically): Λh = 5, βhv = 0.03, ηh = ηv = 1, δ = 1, σ = 0.01,360

cm = 0.1, βvh = 0.4, α1 = 0.7 and α2 = 0.5. All other parameters are as in Table 4. With this361

set of parameters, Rc = 0.0216 < 1, Rnv = 0.2725 < 1 (so that Rc < Rnv < 1). It follows:362

d2 = −0.0263 < 0, d1 = 4.8763× 10−4 and d0 = −3.5031× 10−7, so that d21 − 4d2d0 = 2.0093×363

10−7 > 0. The resulting two endemic equilibria Env = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v , E, L, P ), are:364

Env
1 = (281, 70, 5, 1207, 5739, 182, 44, 22180, 10201, 9977) which is locally stable and365

Env
2 = (6333, 67, 4, 1147, 5936, 37, 2, 22180, 10201, 9977) which is unstable.366

The associated bifurcation diagram is depicted in figure 5. This clearly shows the co-367

existence of two locally-asymptotically stable equilibria when Rnv < 1, confirming that the368

model without vaccination (15) undergoes the phenomenon of backward bifurcation too.369

Thus, the following result is established.370

Lemma 1. The model without vaccination (15) undergoes backward bifurcation when Case (iii)371

of Theorem 8 holds.372
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Figure 5: The backward bifurcation curves for model system (15) in the (Rnv, E
∗
h), and

(Rnv, E
∗
v) planes. The parameter βhv is varied in the range [0, 0.9090] to allow R0 to vary

in the range [0, 1.5]. Two endemic equilibrium points coexist for values of R0 in the range
(0.2286, 1) (corresponding to the range (0.0211, 0.4040) of βhv). The notation EE and DFE
stand for endemic equilibrium and disease free equilibrium, respectively. Solid line represent
stable equilibria and dash line stands for unstable equilibria.

Non-existence of endemic equilibria for Rnv < 1 and δ = 0 In this case, we have the373

following result.374

Lemma 2. The model (15) without disease–induced death (δ = 0) has no endemic equilibrium375

when Rnv,δ=0 ≤ 1, and has a unique endemic equilibrium otherwise.376

Proof. Considering the model (15) without disease–induced death in human, and applying the377

same procedure, we obtain that the non-zero equilibria of the model without vaccination satisfy378

20



the linear equation379

p1λ
c,∗
h + p0 = 0,

where p1 = k9k10K12aµbΛhµh(1− α1)βvh + k3(µh + σ)k8k9K12µbΛh and380

p0 = −µhk3k4k8k9K12µbΛh

(

R2
nv,δ=0 − 1

)

.381

Clearly, p1 > 0 and p0 ≥ 0 whenever Rnv,δ=0 ≤ 1, so that λc,∗
h = −

p0
p1

≤ 0. Therefore,382

the model (15) without disease–induced death in human, has no endemic equilibrium whenever383

R2
nv,δ=0 ≤ 1.384

The above result suggests the impossibility of backward bifurcation in the model (15) with-385

out disease–induced death, since no endemic equilibrium exists whenRnv,δ=0 < 1 (and backward386

bifurcation requires the presence of at least two endemic equilibria when Rnv,δ=0 < 1) [19, 38].387

To completely rule out backward bifurcation in model (15), we use the direct Lyapunov method388

to prove the global stability of the DFE.389

Global stability of the DFE of (15) for δ = 0 Define the positively-invariant and attract-390

ing region391

D2 =
{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ D1 : Sh ≤ N0
h ;Sv ≤ N0

v

}

We claim the following result.392

Theorem 9. The DFE, Env
1 , of model (15) without disease–induced death (δ = 0), is globally393

asymptotically stable (GAS) in D2 if Rnv,δ=0 < 1.394

Proof. Consider the Lyapunov function395

G = q1Eh + q2Ih + q3Ev + q4Iv.

where396

q1 =
1

k3
; q3 =

ζ1S
0
h

k3k8

(γv + k8ηv)

k9
, q2 =

ζ1S
0
h

k3k8

(γv + k8ηv)ζ2S
0
v

k4k9
, q4 =

ζ1S
0
h

k3k8
.

and we have set ζ1 =
τµhβhv

Λh

and ζ2 =
τµhβvh

Λh

. The derivative of G is given by397

Ġ = q1Ėh + q2İh + q3Ėv + q4İv

= q1(λ
c
hSh − k3Eh) + q2(γhEh − k4Ih) + q3(λ

c
vSv − k9Ev) + q4(γvEv − k8Iv)

= q1ζ1Sh(ηvEv + Iv)− q3k9Ev + q4γvEv − q4k8Iv

+ q3ζ2Sv(ηhEh + Ih)− q1k3Eh + q2γhEh − q2k4Ih

= (q1ζ1Shηv + q4γv − q3k9)Ev + (q1ζ1Sh − q4k8)Iv

+ (q3ζ2Svηh + q2γh − q1k3)Eh + (q3ζ2Sv − q2k4)Ih

≤ (q1ζ1S
0
hηv + q4γv − q3k9)Ev + (q1ζ1S

0
h − q4k8)Iv

+ (q3ζ2S
0
vηh + q2γh − q1k3)Eh + (q3ζ2S

0
v − q2k4)Ih, since Sh ≤ S0

h, Sv ≤ S0
v

Replacing qi, i = 1, . . . , 4, by their value gives after straightforward simplifications398

Ġ ≤
(

R2
nv,δ=0 − 1

)

Eh

We have Ġ ≤ 0 if Rnv,δ=0 ≤ 1, with Ġ = 0 if Rnv,δ=0 = 1 or Eh = 0. Whenever Eh = 0, we also399

have Ih = 0, Ev = 0 and Iv = 0. Substituting Eh = Ih = Ev = Iv = 0 in the first, fourth and400
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fifth equation of Eq. (15) with δ = 0 gives Sh(t) → S0
h = N0

h , Rh(t) → 0, and Sv(t) → S0
v = N0

v401

as t → ∞. Thus402

[Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), E(t), L(t), P (t)] → (N0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

as t → ∞.

It follows from the LaSalle’s invariance principle [46, 47, 48] that every solution of (15) (when403

Rnv,δ=0 ≤ 1), with initial conditions in D2 converges to Env
1 , as t → ∞. Hence, the DFE, Env

1 ,404

of model (15) without disease–induced death, is GAS in D2 if Rnv,δ=0 ≤ 1.405

3.3.2 Analysis of the model with mass action incidence406

Consider the model (2) with mass action incidence. Thus, the associated forces of infection, λc
h407

and λc
v, respectively, reduce to408

λmh = Ch(ηvEv + Iv) and λmv = Cv(ηhEh + Ih), (21)

where, Ch = a(1 − α1)βhv and Cv = a(1 − α1)βvh. The resulting model (mass action model),
obtained by using (21) in (2), has the same disease–free equilibria given by (5). Without lost
of generality, we consider that N > 1. The associated next generation matrices, Fm and Vm

are given by

Fm =









0 0 ChηvH
0 ChH

0

0 0 0 0
CvηvS

0
v CvS

0
v 0 0

0 0 0 0









, Vm =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









,

where H0 = S0
h + πV 0

h . It follows that the associated reproduction number for the mass action409

model, denoted by R0,m = ρ(FmV
−1
m ), is given by410

R0,m =
√

Rm
hvR

m
vh, (22)

where411

Rm
hv =

(

ChΛh (γh + k4ηh) (πξ + k2)

µhk3k4 (ξ + k2)

)

and Rm
vh =

(

Cv (γv + k8ηv) θP

k28k9

)

.412

Using Theorem 2 of [33], the following result is established:413

Theorem 10. Assume that N > 1. For the arboviral disease model with mass action incidence,414

given by (2) with (21), the DFE, E1, is LAS if R0,m < 1, and unstable if R0,m > 1415

Existence of endemic equilibria Solving the equations in the model (15) in terms of λ∗
mh416

and λ∗
mv, gives417

S∗
mh =

Λh(πλ
c,∗
mh + k2)

λc,∗
mh(k2 + π(k1 + λc,∗

mh)) + k1k2 − ωξ
, V ∗

mh =
ξS∗

mh

k2 + πλc,∗
mh

,

E∗
mh =

λc,∗
mhS

∗
mh

k3
, I∗mh =

γhλ
c,∗
h S∗

mh

k3k4
, R∗

mh =
σγhλ

c,∗
mhS

∗
mh

µhk3k4
,

(23)

and418

S∗
mv =

θP

(λc,∗
mv + k8)

, E∗
mv =

θPλc,∗
mv

k9(λ
c,∗
mv + k8)

, I∗mv =
γvθPλc,∗

mv

k8k9(λ
c,∗
mv + k8)

. (24)
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Substituting (23) and (24) into the expression of λ∗
mh and λ∗

mv and simplifying, shows that the419

nonzero equilibria of the model without vaccination satisfy the quadratic equation420

e2(λ
c,∗
mh)

2 + e1λ
c,∗
mh + e0 = 0, (25)

where ei, i = 0, 1, 2, are given by421

e2 = k8k9π [(γh + k4ηh)CvΛh + k3k4k8]

e1 =
k3k4k

2
8k9κπ

(πξ + k2)

(

R2
cm −R2

0,m

)

,

e0 = k3k4k
2
8k9κ

(

1−R2
0,m

)

,

with κ = k1k2 − ξω > 0 and

Rcm =

√

[(γh + k4ηh) (πξ + k2)ΛhCv + (k1π + k2)k3k4k8] (πξ + k2)

k3k4k8κπ
.

e2 is always positive and e0 is positive (resp. negative) whenever R0,m is less (resp. greater) than422

unity. Thus, the mass action model admits only one endemic equilibria whenever R0m > 1.423

Now, we consider the case R0m < 1. The occurrence of backward bifurcation phenomenon424

depend of the sign of coefficient e1. The coefficient e1 is always positive if and only if R0,m <425

Rcm. It follows that the disease–free equilibrium is the unique equilibrium when N > 1 and426

Rcm < 1. Now if Rcm < R0,m < 1, then in addition to the DFE E1, there exists two endemic427

equilibria whenever ∆m = e21 − 4e2e0 > 0. However, Rcm < R0,m < 1 ⇒ Rcm < 1 ⇔428

βvh < −
k3k4k8(ξωπ + k1π

2ξ + k2(πξ + k2))

a(1 − α1) (γh + k4ηh) (πξ + k2)(πξ + k2)Λh

< 0. Since all parameter of model are non-429

negative, we conclude that the condition Rcm < R0,m < 1 does not hold. And thus, the model430

with mass-action incidence does not admit endemic equilibria for Rcm < 1.431

Global stability of the DFE for the model with mass action incidence Since the DFE432

of the model with mass action incidence is the unique equilibrium whenever the corresponding433

basic reproduction number R0,m is less than unity, it remains to show that the DFE is gas. To434

this aim, we use the direct Lyapunov method. Let us define the following positive constants:435

p1 =
1

k3
, p2 =

ChH
0(ηvk8 + γv)

k8k9

CvS
0
v

k3k4
, p3 = p1ChH

0 (ηvk8 + γv)

k8k9
, p4 =

ChH
0

k3k8
.

Consider the Lyapunov function436

L = p1Eh + p2Ih + p3Ev + p4Iv.

The derivative of L is given by437

L̇ = p1Ėh + p2İh + p3Ėv + p4İv

= (p1ChηvH + p4γv − p3k9)Ev + (p1ChH − p4k8)Iv

+ (p3CvηhSv + p2γh − p1k3)Eh + (p3CvSv − p2k4)Ih

Replacing pi, i = 1, . . . 4, by their respective term, and using the fact that H = (Sh + πVh) ≤438

H0 = (S0
h + πV 0

h ) and Sv ≤ N0
v in439

D3 =

{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ D : Nh ≤
Λh

µh

, Sv ≤ N0
v
= θP,E ≤ KE, L ≤ KL, P ≤

lKL

k7k8

}

,
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we obtain L̇ ≤
(

R2
0,m − 1

)

Eh.440

We have L̇ ≤ 0 if R0,m ≤ 1, with L̇ = 0 if R0,m = 1 or Eh = 0. Whenever Eh = 0, we also441

have Ih = 0, Ev = 0 and Iv = 0. Substituting Eh = Ih = Ev = Iv = 0 in the first, fourth and442

fifth equation of Eq. (15) with mass action incidence gives Sh(t) → S0
h, Vh(t) → V 0

h , Rh(t) → 0,443

and Sv(t) → S0
v = N0

v as t → ∞. Thus444

[Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), E(t), L(t), P (t)]

→ (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P ) as t → ∞.

It follows from the LaSalle’s invariance principle [46, 47, 48], that every solution of (2) with445

mass action incidence, with initial conditions in D3 converges to the DFE, as t → ∞. Hence,446

the DFE, E1, of the model with mass action incidence, is GAS in D3 if R0,m ≤ 1.447

Thus, we claim the following result.448

Theorem 11. The DFE, E1, of the model (2) with mass action incidence, is globally asymp-449

totically stable (GAS) in D3 if R0,m < 1.450

Thus, the substitution of standard incidence with mass action incidence in the arboviral451

model (2) removes the backward bifurcation phenomenon of the model. It should be mentioned452

that a similar situation was reported by Garba et al. in [19] and by Sharomi et al. in [38].453

We summarize the previous analysis of Subsection 3.3 as follows:454

Lemma 3. The main causes of occurrence of backward bifurcation phenomenon in models (2)455

and (15) are the disease–induced death and the standard incidence rates.456

4 Sensitivity analysis457

As shown in the previous sections, model (2) may admit single or multiple steady states accord-458

ing to the value of the basic reproduction number R0. In turn, R0 depends on the parameters459

of the model. The various uncertainties encountered in data collection and the estimated values460

leads us to evaluate the robustness of the model predictions with the parameter values and,461

in particular, to estimate the effect on R0 of varying single parameters. To this aim, we use462

sensitivity analysis and calculate the sensitivity indices of R0 to the parameters in the model463

using both local and global methods.464

4.1 Local sensitivity analysis465

The local sensitivity analysis, based on the normalised sensitivity index of R0 (see [49]), is given466

by467

SΨ =
Ψ

R0

∂R0

∂Ψ

where Ψ denotes the generic parameter of (2).468

This index indicates how sensitive R0 is to changes of parameter Ψ. Clearly, a positive (resp.469

negative) index indicates that an increase in the parameter value results in an increase (resp.470

decrease) in the R0 value [49].471

For instance, the computation of the sensitivity index of R0 with respect to a is given by472

Sa =
a

R0

∂R0

∂a
= 1 > 0.
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Table 4: Parameter values using to compute the sensitivity indices of R0.

Parameter value Parameter value Parameter value
cm 0.01 s 0.7 βvh 0.75
µb 6 η2 0.3 ΓE 10000
µP 0.4 µE 0.2 ΓL 5000
θ 0.08 ǫ 0.61 α2 0.5
l 0.5 Λh 2.5 µh

1
67∗365

a 1 βhv 0.75 ηv 0.35
µv

1
30

µL 0.4 σ 0.1428
γh

1
14

ηh 0.35 γv
1
21

ξ 0.5 ω 0.05 η1 0.001
δ 0.001 α1 0.2

Table 5: Sensitivity indices of R0 to parameters of model (2), evaluated at the baseline param-
eter values given in Table 4.

Parameter Index Parameter Index Parameter Index
a +1 σ –0.2911 ξ –0.0566
µv –0.9190 cm –0.2757 ω +0.0565
ǫ –0.6223 α1 –0.25 µE –0.0171
s +0.5172 ηh +0.2067 δ –0.0020
Λh –0.5 γh –0.2064 η1 –0.0000858
βhv, βvh,ΓE,ΓL, α2 +0.5 ηv +0.1207
µh +0.4996 γv +0.1174
µP –0.4810 µL –0.1026
θ +0.4810 µb +0.0772
l +0.4489 η2 –0.0770

This shows that R0 is an increasing function of a and the parameter a has an influence on the473

spread of disease.474

We tabulate the indices of the remaining parameters in Table 2 using parameter values on475

Table 4. The results, displayed in Table 5 and Figure 7a. The parameters are arranged from476

most sensitive to least. The model system (2) is most sensitive to a, the average number of477

mosquitoes bites, followed by µv, ǫ, s, Λh, βhv, βvh, ΓE , ΓL and α2. It is important to note478

that increasing (decreasing) a by 10% increases (decreases) R0 by 10%. However, increasing479

(decreasing) the parameters µv by 10% decreases (increases) R0 by 9.190%. The same reasoning480

can be done for other parameters.481

4.2 Uncertainty and global sensitivity analysis482

Local sensitivity analysis assesses the effects of individual parameters at particular points in483

parameter space without taking into account of the combined variability resulting from con-484

sidering all input parameters simultaneously. Here, we perform a global sensitivity analysis to485

examine the model’s response to parameter variation within a wider range in the parameter486

space.487

Following the approach by Marino et al. [50] and Wu et al. [51], partial rank correlation488
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coefficients (PRCC) between the basic reproduction number R0 and each parameter are derived489

from 5,000 runs of the Latin hypercube sampling (LHS) method [52]. The parameters are490

assumed to be random variables with uniform distributions with its mean value listed in Table 4.491

With these 5,000 runs of LHS, the derived distribution of R0 is given in Figure 6. This492

sampling shows that the mean of R0 is 2.0642 and the standard deviation is 2.6865. The493

probability that R0 > 1 is 54.86%. This implies that for the mean of parameter values given494

in Table 4, we may be confident that the model predicts a endemic state.495
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Figure 6: Sampling distribution of R0 from 5,000 runs of Latin hypercube sampling. The mean
of R0 is 2.0642 and the standard deviation is 2.6865. Furthermore, P(R0 > 1) = 0.5486.

We now use sensitivity analysis to analyse the influence of each parameter on the basic496

reproductive number. From the previously sampled parameter values, we compute the PRCC497

betweenR0 and each parameter of model (2). The parameters with large PRCC values (> 0.5 or498

< −0.5) statistically have the most influence [51]. The results, displayed in Table 6 and Figure499

7 (b), show that the parameters α1, the human protection rate, has the highest influence on500

R0. This suggests that individual protection may potentially be the most effective strategy to501

reduce R0. The other parameter with an important effect are α2, βhv, βvh and θ.502

We note that the order of the most important parameters for R0 from the local sensitivity503

analysis does not match that of the global sensitivity analysis, showing that the local results504

are not robust.505
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Table 6: Partial Rank Correlation Coefficients between R0 and each parameters of model (2).

Para- Correlation Para- Correlation Para Correlation
meter Coefficients meter Coefficients meter Coefficients
α1 –0.6125 l 0.3767 γv 0.0378
α2 0.5960 ǫ –0.3348 µL –0.0357
βhv 0.5817 s 0.2945 cm -0.0271
βvh 0.5815 σ –0.1808 ηh 0.0178
θ 0.5078 µP –0.1594 η1 -0.0161
a 0.4810 µh 0.1306 µE -0.0113
µv –0.3911 γh –0.0605 ξ –0.0109
ΓL 0.4195 ηv 0.0578 δ -0.0077
ΓE 0.3888 µb 0.0439 η2 0.0037
Λh –0.3876 ω 0.0410
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(a) Local sensitivity indices for R0
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Figure 7: Local (a) and global (b) sensitivity indices for R0 against model parameters show
that the local sensitivity results are not robust: the order of the most important parameters
for R0 from the local sensitivity analysis not match those from the global sensitivity analysis.

5 Numerical simulations and discussions506

In the previous model [26], we have shown that the use of a vaccine with efficacy of about 60%,507

was to be accompanied by other control measurements such as means of personal protection508

(Information in relation to the damage caused by these diseases, spanning wearing clothes509

during hours of vector activity, use of repellents), vector control (combining the use of adulticide510

to kill adult vectors, chemical control with use of larvicide to kill the eggs and larvae, and511

mechanical control to reduce the number of breeding sites at least near inhabited areas) [15].512

Here, we investigate and compare numerical results, with the different scenario. We use the513
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following initial state variables Sh(0) = 700, Vh(0) = 10, Eh(0) = 220, Ih(0) = 100, Rh(0) = 60,514

Sv(0) = 3000, Ev(0) = 400, Iv(0) = 120, E(0) = 10000, L = 5000, P = 3000.515

5.1 Strategy A: Vaccination combined with individual protection516

only517

In this strategy, we consider the model (2) without vector control. we set α2 = 1 and cm = η1 =518

η2 = 0 and vary the parameter related to individual protection, namely α1, between 0 and 0.8.519

The values of other parameters are given in Table 4. Figure 8 shows that the increase of the520

individual protection level, permit to reduce the total number of infected humans, and the total521

number of infected vectors, but has no impact on the populations of eggs and larvae. However,522

from this figure, it is clear that, this reduction is significant if the level of protection must turn523

around 80% at least, and this, over a long period. Thus, continuous education campaigns of524

people, on how to protect themselves individually, are important in the fight against the spread525

of arboviral diseases.526

29



0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Time (days)

E
h
(t

)+
I h

(t
)

 

 

0 20 40 60 80 100
500

1000

1500

2000

2500

3000

3500

4000

4500

Time (days)

E
v(t

)+
I v(t

)

α
1
=0

α
1
=0.3

α
1
=0.5

α
1
=0.8

0 20 40 60 80 100
7000

7500

8000

8500

9000

9500

10000

Time (days)

E(t)

0 20 40 60 80 100
2500

3000

3500

4000

4500

5000

Time (days)

L(t)

Figure 8: Simulations results showing how the total number of infected humans and the to-
tal number of infected vectors decrease when the individual protection increase. All others
parameters values are in Table 4.

5.2 Strategy B: Vaccination combined with adulticide527

Nowadays, Deltamethrin is the most used insecticide for impregnation of bednets, because528

it is a highly effective compound on mosquitoes at of very low doses [53]. However, when529

sprayed in an open environment, Deltamethrin seems to be effective only during a couple of530

hours [15, 54, 55]. Also, its use over a long period and continuously, leads to strong resistance of531

the wild populations of Aedes aegypti, for example [53]. The mortality of the mosquitoes after532

spraying varied between 20% and 80%. To be more realistic, we will consider the technique533

called ”pulse control” (the control is not continuous in time order is effective only one day every534

T days) [15]. To this aims, we consider that spraying is carried out once a week, and this, for535

100 days. We set α1 = η1 = η2 = 0 and α2 = 1.536
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Simulation result on figure 9 show that a mortality rate induced by the use of larvicide,537

cm, greater than 60% has a significant impact on the decrease of the total number of infected538

humans and vectors, and on the decrease of eggs and larvae.539
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Figure 9: Simulations results showing how the total number of infected vectors, eggs and larvae
populations decrease when the aldulticide control parameter cm increase. All others parameters
values are in Table 4.

5.3 Strategy C: Vaccination combined with larvicide540

Since the efficacy and the duration of a larvicide (Bti=Bacillus thuringiensis var. israelensis)541

strongly depend on several factors like water quality, exposure, and even the type of breeding542

sites, we thus consider, to be more realistic, that the duration can vary between a couple of543

days and two weeks [15, 56]. We consider that the larvicide spraying happens once every 15544

days, and this, on a period of 100 days. We set α1 = cm = 0 and α2 = 1.545
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The figure 10 shows that the use of larvicide has no significant impact on the decrease of546

total number of infected humans and vectors, as well as on the number of eggs and larvae. This547

can be justified by the fact that the use of conventional larvicides requires certain constraints548

on their use: they can not be used continuously, their duration of action decreases with time. In549

addition, eggs of certain populations of vectors such as Aedes albopictus, come into prolonged550

hibernation when conditions in the breading sites are not conducive to their good growth (this551

is justified by the control rate value η1 = 0.001). Also, the pupae do not consume anything,552

until reaching the mature stage.553
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Figure 10: Simulations results showing how the total number of infected humans, the total
number of infected vectors, and the eggs and larvae populations decrease with the larvicide
control associated parameters η1 and η2. All others parameters values are in Table 4.
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5.4 Strategy D: Vaccination combined with mechanical control554

The effectiveness of this type of control depends largely on awareness campaigns of local people555

in the sense that, to reduce the proliferation of vectors, people should always destroy, and556

systematically, potential breeding sites. Thus, we consider that this type of control can be557

achieved by local populations, and this, every daily. We set α1 = cm = 0 = η1 = η2.558

The figure 11 shows that this type of control is appropriate in the fight against the prolif-559

eration of vectors. This can only be possible by that by the multiplication of local populations560

awareness campaigns.561
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Figure 11: Simulations results showing how the total number of infected vectors, eggs and
larvae populations decrease with the mechanical control associated parameter α2. All others
parameters values are in Table 4.
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5.5 Strategy E: Combining vaccination, individual protection and562

adulticide563

In this strategy, we consider the model (2) without larvicide and mechanical control. we set564

α2 = 1 and η1 = η2 = 0 and vary the parameter related to individual protection and the565

use of adulticide, namely α1 and cm, respectively, between 0 and 0.8. The values of other566

parameters are given in Table 4. Figure 12 shows that the use of the combination of these567

controls decreases significantly the total number of infected humans, infected vectors as well as568

the number of eggs and larvae, when its associated rates, namely α1 and cm, are greater than569

0.3 and 0.2, respectively.570
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Figure 12: Simulations results showing the advantage that we have to combine vaccination,
individual protection and adulticide.
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5.6 Strategy F: Combining vaccination, individual protection and571

mechanical control572

Like for strategy E, the simulations results on figure 13 show that the combined use of these573

three types of controls has a positive impact in the vector control.574
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Figure 13: Simulations results showing the advantage that we have to combine vaccination,
individual protection and mechanical control.

6 Conclusion575

In this paper, we derived and analysed a deterministic model for the transmission of arboviral576

diseases with non linear form of infection and complete stage structured model for vectors,577

which takes into account a vaccination with waning immunity, individual protection and vector578

control strategies.579
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We begin by calculated the net reproductive number N and the basic reproduction number,580

R0, and investigated the existence and stability of equilibria. The stability analysis reveals that581

for N ≤ 1, the trivial equilibrium is globally asymptotically stable. When N > 1 and R0 <582

1, the disease–free equilibrium is locally asymptotically stable. Under certain condition, the583

disease–free equilibrium is also globally asymptotically stable. We found that the model exhibits584

backward bifurcation. The epidemiological implication of this phenomenon is that for effective585

eradication and control of diseases, R0 should be less than a critical values less than one. Thus,586

we proved, that the disease–induced death is the principal cause of the backward bifurcation587

phenomenon, in the full model and the corresponding model without vaccination. However, the588

substitution of standard incidence with mass action incidence removes the backward bifurcation589

phenomenon.590

We proved that the model admits at least one endemic equilibrium, and only one endemic591

equilibrium point in the model without disease–induced death, and in the model with mass592

action incidences, whenever the basic reproduction number is great than unity.593

Using parameters value of Chikungunya and Dengue fever, we calculated the sensitivity594

indices of the basic reproduction number, R0, to the parameters in the model using both595

local and global methods. Local sensitivity analysis showed that the model system is most596

sensitive to a, the average number of mosquitoes bites, followed by µv, the natural mortality597

rate of vectors. Considering that all input parameters vary simultaneously, we use the Latin598

Hypercube Sampling (LHS) to estimate statistically the mean value of the basic reproduction599

number. The result showed that the model is in an endemic state, since the mean of R0 is600

2.0642, which is greater than unity. Then, using global sensitivity analysis, we computed the601

Partial Rank Correlation Coefficients between R0 and each parameter of the model. Unlike602

the local sensitivity analysis, the global analysis showed that the parameters α1, the human603

protection rate, has the highest influence on R0. The other parameter with an important604

effect are α2, the efficacy of the mechanical control, βhv, the probability of transmission of605

infection from an infectious vector to a susceptible human, βvh, the probability of transmission606

of infection from an infectious human to a susceptible vector, and θ, the maturation rate from607

pupae to adult vectors. This showed that the order of the most important parameters for R0608

from the local sensitivity analysis not match those from the global sensitivity analysis. So, the609

local sensitivity results are not robust.610

To assess the impact of combination of different controls, we conduct several simulations,611

using the called ”pulse control” technique. According to the numerical results, we conclude that612

the use of an imperfect vaccine with low efficiency combined with high individual protection and613

good vector control strategy (reduction of breeding sites by local populations action, chemical614

action using adulticides and larvicides), can effectively reduce the transmission of the pathogen615

and the proliferation of vector populations. However, due to lack of resources to implement these616

control mechanisms, developing countries should focus on the education of the local populations.617

Because, unlike diseases such as malaria whose breeding sites of Anopheles mosquitoes are618

known, those of arboviruses (old tires, flower pots, vases and other hollow...) are smaller and619

unknown for many local populations, which favour the development of vectors.620

Thus, pending the development of a high efficacy vaccine and long-acting, individual pro-621

tection and the various vector control methods are effective ways to combat the arboviruses, for622

developing countries. In addition, the realization of the combination of these controls may be623

too expensive, because it means that, for constant controls, we must keep them at levels high,624

and this, for a long time. Thus it is important to know what happens when, instead of the625

constant controls, we use time dependent controls, in optimal control theory. This represents626

a perspective of this work.627
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A Useful result.631

We use the following result, which is the characterization of Metzler matrices, to compute the632

threshold Rc, obtained at Eq. (10).633

Lemma 4 ([35]). Let M be a square Metzler matrix written in block form

(

A B
C D

)

with A634

and D square matrices. M is Metzler stable if and only if matrices A and D − CA−1B are635

Metzler stable.636

B Proof of Theorem 1.637

The Jacobian matrix of f at the Trivial equilibrium is given by638

Df(E0) =

(

Df1 Df2
Df3 Df4

)

. (26)

where639

Df1 =

















−k1 ω 0 0 0 0
ξ −k2 0 0 0 0
0 0 −k3 0 0 0
0 0 γh −k4 0 0
0 0 0 σ −µh 0
0 0 0 0 0 −k8

















, Df3 =













0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 µb

0 0 0 0 0 0
0 0 0 0 0 0













,640

Df2 =





























−
a(1− α1)βhvηvS

0
h

N0
h

−
a(1− α1)βhvS

0
h

N0
h

0 0 0

−
a(1− α1)βhvπηvV

0
h

N0
h

−
a(1− α1)βhvπV

0
h

N0
h

0 0 0

a(1− α1)βhvηvH
0

N0
h

a(1− α1)βhvH
0

N0
h

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 θ





























,641

Df4 =













−k9 0 0 0 0
γv −k8 0 0 0
µb µb −k5 0 0
0 0 s −k6 0
0 0 0 l −k7













, and H0 = S0
h + πV 0

h .642

The characteristic polynomial of Df(E0) is given by:643

P (λ) = − (λ+ k3) (λ+ k4) (λ+ k8) (λ+ k9) (λ+ µh)φ1(λ)φ2(λ)

where644

φ1(λ) = λ2 + (k2 + k1)λ+ µh(k2 + ξ) and φ2(λ) = λ4 + A1λ
3 + A2λ

2 + A3λ+ A4. we have set645

A1 = k5 + k6 + k7 + k8, A2 = k8(k5 + k6 + k7) + k7(k5 + k6) + k5k6,
A3 = k5k6k7 + k8(k5k6 + k7(k5 + k6)), A4 = k5k6k7k8(1−N ).
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The roots of P (λ) are λ1 = −µh, λ1 = −k1, λ2 = −k3, λ3 = −k4, λ4 = −k8, λ4 = −k9, and646

the others roots are the roots of φ1(λ) and φ2(λ). The real part of roots of φ1(λ) are negative.647

Since N < 1, it is clear that all coefficients of φ2(λ) are always positive. Now we just have648

to verify that the Routh–Hurwitz criterion holds for polynomial φ2(λ). To this aim, setting649

H1 = A1, H2 =

∣

∣

∣

∣

A1 1
A3 A2

∣

∣

∣

∣

, H3 =

∣

∣

∣

∣

∣

∣

A1 1 0
A3 A2 A1

0 A4 A3

∣

∣

∣

∣

∣

∣

, H4 =

∣

∣

∣

∣

∣

∣

∣

∣

A1 1 0 0
A3 A2 A1 1
0 A4 A3 A2

0 0 0 A4

∣

∣

∣

∣

∣

∣

∣

∣

= A4H3.650

The Routh-Hurwitz criterion of stability of the trivial equilibrium E0 is given by651















H1 > 0
H2 > 0
H3 > 0
H4 > 0

⇔















H1 > 0
H2 > 0
H3 > 0
A4 > 0

(27)

We have H1 = A1 = k5 + k6 + k7 + k8 > 0,652

H2 = A1A2 − A3

= (k7 + k6 + k5) k
2
8 +

(

k2
7 + (2k6 + 2k5) k7 + k2

6 + 2k5k6 + k2
5

)

k8

+ (k6 + k5) k
2
7 +

(

k2
6 + 2k5k6 + k2

5

)

k7 + k5k
2
6 + k2

5k6
653

H3 = A1A2A3 −A2
1A4 −A2

3

= (k6 + k5)
(

k27 + (k6 + k5) k7 + k5k6
)

k38

+
(

µblsθ + (k6 + k5) k
3
7 + 2(k6 + k5)

2k27 +
(

k36 + 4k5k
2
6 + 4k25k6 + k35

)

k7 + k5k
3
6 + 2k25k

2
6 + k35k6

)

k28

+
[

(2k7 + 2k6 + 2k5)µblsθ +
(

k26 + 2k5k6 + k25
)

k37 +
(

k36 + 4k5k
2
6 + 4k25k6 + k35

)

k27

+
(

2k5k
3
6 + 4k25k

2
6 + 2k35k6

)

k7 + k25k
3
6 + k35k

2
6

]

k8 +
(

k27 + (2k6 + 2k5) k7 + k26 + 2k5k6 + k25
)

µblsθ

+
(

k5k
2
6 + k25k6

)

k37 +
(

k5k
3
6 + 2k25k

2
6 + k35k6

)

k27 +
(

k25k
3
6 + k35k

2
6

]

k7

We always have H1 > 0, H2 > 0, H3 > 0 and H4 > 0 if N < 1. Thus, the trivial equilibrium654

E0 is locally asymptotically stable whenever N < 1.655

We assume the net reproductive number N > 1. Following the procedure and the notation656

in [33], we may obtain the basic reproduction number R0 as the dominant eigenvalue of the657

next–generation matrix [32, 33]. Observe that model (2) has four infected populations, namely658

Eh, Ih, Ev, Iv. It follows that the matrices F and V defined in [33], which take into account659

the new infection terms and remaining transfer terms, respectively, are given by660

F =

















0 0
τβhvηvH

0

N0
h

τβhvH
0

N0
h

0 0 0 0
τβvhηvS

0
v

N0
h

τβvhS
0
v

N0
h

0 0

0 0 0 0

















, and V =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









, with661

τ = a(1 − α1). The dominant eigenvalue of the next–generation matrix FV −1 is given by (7).662

The local stability of the disease–free equilibrium E1 is a direct consequence of Theorem 2 of663

[33]. This ends the proof.664

C Proof of Theorem 2.665

Setting Y = X − TE with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T , H0 = (S0
h + πV 0

h ),666

A99 =

(

k5 + µb

Sv + Ev + Iv
KE

)

, and A10 =

(

k6 + s
E

KL

)

. we can rewrite (2) in the following667
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manner668

dY

dt
= B(Y )Y (28)

where B(Y ) =

(

A(Y ) B(Y )
C(Y ) D(Y )

)

, with669

A(Y ) =













−(λc
h + k1) ω 0 0 0 0
ξ −(πλc

h + k2) 0 0 0 0
λc
h πλc

h −k3 0 0 0
0 0 γh −k4 0 0
0 0 0 σ −µh 0













,670

B(Y ) =

























−
a(1− α1)βhvηvS

0
h

Nh
−
a(1− α1)βhvS

0
h

Nh
0 0 0

−
a(1− α1)βhvηvπV

0
h

Nh
−
a(1− α1)βhvπV

0
h

Nh
0 0 0

a(1− α1)βhvηvH
0

Nh

a(1− α1)βhvH
0

Nh

0 0 0

0 0 0 0 0
0 0 0 0 0

























,671

C(Y ) =

















0 0 0 0 0 −(λc
v + k8)

0 0 0 0 0 λc
v

0 0 0 0 0 0
0 0 0 0 0 µb

0 0 0 0 0 0
0 0 0 0 0 0

















, D(Y ) =

















0 0 0 0 θ
−k9 0 0 0 0
γv −k8 0 0 0
µb µb −A99 0 0
0 0 s −A10 0
0 0 0 l −k7

















.672

It is clear that Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is the only equilibrium. Then it suffices to con-673

sider the following Lyapunov function L(Y ) =< g, Y > were g =

(

1, 1, 1, 1, 1, 1, 1, 1,
k8
µb

,
k5k8
µbs

,
k5k6k8
µbsl

)

.674

Straightforward computations lead that675

L̇(Y ) =< g, Ẏ >
def
=< g,B(Y )Y >

= −µhY1 − µhY2 − µhY3 − (µh + δ)Y4 − µhY5

−
k8
KE

(Y6 + Y7 + Y8)−
k5k8
µbKL

Y9Y10 + θ

(

1−
1

N

)

Y11

We have L̇(Y ) < 0 if N ≤ 1 and L̇(Y ) = 0 if Yi = 0, i = 1, 2, . . . , 11 (i.e Sh = S0
h, Vh = V 0

h676

and Eh = Ih = Rh = Sv = Ev = Iv = E = L = P = 0). Moreover, the maximal invariant677

set contained in
{

L|L̇(Y ) = 0
}

is (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Thus, from Lyapunov theory, we678

deduce that (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and thus, E0, is GAS if and only if N ≤ 1.679

D Proof of Theorem 5.680

In order to determine the existence of endemic equilibria, i. e. equilibria with all positive681

components, say682

E∗∗ = (S∗
h, V

∗
h , E

∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v , E, L, P ) ,

we have to look for the solution of the algebraic system of equations obtained by equating the683

right sides of system (2) to zero. In this way we consider two case:684
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(i) Special case: Absence of disease–induced death in human (δ = 0)Note that in the685

absence of disease–induced death in human population, we have N∗
h = N0

h = Λh/µh. Let686

λc,∗
h =

a(1− α1)βhv(ηvE
∗
v + I∗v )

N∗
h

, λc,∗
v =

a(1− α1)βvh(ηhE
∗
h + I∗h)

N∗
h

(29)

be the forces of infection of humans and vectors at steady state, respectively. Solving the687

equations in (2) at steady state gives688

S∗
h =

Λh(πλ
c,∗
h + k2)

µh(k2 + ξ) + λc,∗
h (πλc,∗

h + πk1 + k2)
, V ∗

h =
ξS∗

h

(πλc,∗
h + k2)

,

E∗
h =

λc,∗
h (S∗

h + πV ∗
h )

k3
, I∗h =

γhλ
c,∗
h (S∗

h + πV ∗
h )

k3k4
, R∗

h =
σγhλ

c,∗
h (S∗

h + πV ∗
h )

µhk3k4
,

(30)

and689

S∗
v =

θP

(λc,∗
v + k8)

, E∗
v =

θPλc,∗
v

k9(λ
c,∗
v + k8)

, I∗v =
γvθPλc,∗

v

k8k9(λ
c,∗
v + k8)

,

E =
µbθKEP

(k5k8KE + µbθP )
, L =

µbθsKEKLP

k6KL(k5k8KE + µbθP ) + sµbθKEP
,

(31)

where P is solution of the following equation690

f(P ) = −k7P [µbθ(sKE + k6KL)P + k5k6k8KEKL(N − 1)] = 0 (32)

A direct resolution of the above equation give P = 0 or P =
k5k6k8KEKL(N − 1)

µbθ(sKE + k6KL)
.691

Note that P = 0 corresponds to the trivial equilibrium E0. Now we consider P > 0 i.e.692

N > 1. Replacing (30) and (31) in (29) give693

λc,∗
h =

a(1− α1)βhvµh

Λh

(

ηv
θPλ∗

v

k9(λ∗
v + k8)

+
γvθPλ∗

v

k8k9(λ∗
v + k8)

)

(33)

694

λc,∗
v =

a(1− α1)βvhµh

Λh

(

ηh
λ∗
h(S

∗
h + πV ∗

h )

k3
+

γhλ
∗
h(S

∗
h + πV ∗

h )

k3k4

)

(34)

Substuting (34) in (33) give695

(k6KL + sKE)λ
∗
h

[

a2(λ
∗
h)

2 + a1λ
∗
h + a0

]

= 0 (35)

where a2, a1 and a0 are given by696

Rb =
(πξ + k2)

π(ξ + k2)

(

(k1π + k2)

µh

+
a(1− α1)βvh(γh + k4ηh)(πξ + k2)

k3k4k8

)

,

a2 = (a(1− α1)βvhµh(γh + k4ηh) + k3k4k8) k9µbΛhπ,

a1 =
k3k4k8k9µbΛh (ξ + k2)µhπ

(πξ + k2)
(Rb −R1),

a0 = µhk3k4k8k9µbΛh(ξ + k2) (1− R1) .

(36)

The trivial solution λ∗
h = 0 of (35) corresponds to the disease–free equilibrium E1. Now, we697

just look the equilibria when λ∗
h > 0. Note that coefficient a2 is always positive and a0 is less698

(resp. greater) than unity if and only if R1 > 1 (resp. R1 < 1). Thus model system (2),699

in absence of disease–induced death in human population (δ = 0), admits only one endemic700

equilibrium whenever R0 > 1. Since the sign of coefficient a1 depend of the value of parameter,701
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we investigate the possibility of occurrence of backward bifurcation phenomenon when R0 < 1.702

Furthermore, consider the inequality703

R1 ≤ Rb. (37)

Since a2 is always positive and a0 is always positive whenever R0 < 1, then, the occurrence704

of backward bifurcation phenomenon depend of the sign of coefficient a1. The coefficient a1 is705

always positive if and only if condition (37) holds (i.e R1 < Rb). It follows that the disease–free706

equilibrium is the unique equilibrium when N > 1 and R0 < 1. Now if Rb < R1 < 1, then in707

addition to the DFE E1, there exists two endemic equilibria whenever ∆ = a21−4a2a0 > 0. How-708

ever, Rb < R1 < 1 ⇒ Rb < 1 ⇔ βvh < −
[π2ξ2 + (µhπ

2 + (2ω + µh) π) ξ + (ω + µh)
2] k3k4k8

a(1− α1)µh(πξ + k2)2(γh + k4ηh)
<709

0. Since all parameter of model (2) are nonnegative, we conclude that the condition Rb < R1 < 1710

does not hold. And thus, the backward bifurcation never occurs in the absence of disease–711

induced death in human.712

(ii) Presence of disease induced death in human (δ 6= 0)713

In this case, we have N∗
h =

Λh − δI∗h
µh

. Applying the same procedure as case (i), we obtain that714

λ∗
h at steady state is solution of the following equation715

f(λ∗
h) = λ∗

h

[

c4(λ
∗
h)

4 + c3(λ
∗
h)

3 + c2(λ
∗
h)

2 + c1λ
∗
h + c0

]

= 0, (38)

where716

c4 = −π2k9K12µbΛh (k3k4 − δγh) (k10aµh(1− α1)βvh + k8(k3k4 − δγh)) ,
717

c3 = π(k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπβvhKEKL + 2k9k10K12aµbδΛhµhγhπ(1 − α1)βvhξ

− k3k4k9k10K12aµbΛhµhπ(1 − α1)βvhξ − 2k8k9K12µbδ
2Λhγ

2
h
πξ + 2k3k4k8k9K12µbδΛhγhπξ

− k1k3k4k9k10K12aµbΛhµhπ(1− α1)βvh + 2k2k9k10K12aµbδΛhµhγh(1− α1)βvh

− 2k2k3k4k9k10K12aµbΛhµh(1 − α1)βvh + 2k1k3k4k8k9K12µbδΛhγhπ − 2k1k
2
3k

2
4k8k9K12µbΛhπ

− 2k2k8k9K12µbδ
2Λhγ

2
h
+ 4k2k3k4k8k9K12µbδΛhγh − 2k2k

2
3k

2
4k8k9K12µbΛh),

718

c2 = k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπ
2βvhξKEKL

+ k1k3k4k5k6k10k11a
2µ2

h
(1 − α1)

2βhvnπ
2βvhKEKL

+ 2k2k3k4k5k6k10k11a
2µ2

h
(1 − α1)

2βhvnπβvhKEKL + k9k10K12aµbδΛhµhγhπ
2(1− α1)βvhξ

2

− k8k9K12µbδ
2Λhγ

2

h
π2ξ2 − k1k3k4k9k10K12aµbΛhµhπ

2(1− α1)βvhξ

+ k3k4k9k10K12aµbΛhµhωπ(1− α1)βvhξ + 2k2k9k10K12aµbδΛhµhγhπ(1− α1)βvhξ

− k2k3k4k9k10K12aµbΛhµhπ(1− α1)βvhξ + 2k1k3k4k8k9K12µbδΛhγhπ
2ξ

− 2k3k4k8k9K12µbδΛhγhωπξ + 2k23k
2

4k8k9K12µbΛhωπξ − 2k2k8k9K12µbδ
2Λhγ

2

h
πξ

+ 2k2k3k4k8k9K12µbδΛhγhπξ − 2k1k2k3k4k9k10K12aµbΛhµh(1− α1)πβvh

+ k22k9k10K12aµbδΛhµhγh(1− α1)βvh − k22k3k4k9k10K12aµbΛhµh(1− α1)βvh

− k21k
2

3k
2

4k8k9K12µbΛhπ
2 + 4k1k2k3k4k8k9K12µbδΛhγhπ − 4k1k2k

2

3k
2

4k8k9K12µbΛhπ

− k22k8k9K12µbδ
2Λhγ

2

h
+ 2k22k3k4k8k9K12µbδΛhγh − k22k

2

3k
2

4k8k9K12µbΛh,

719

c1 = ((k1k3k4k5k6k10k11a
2µ2

h
(1− α1)βhvnπ

2 + k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvn(k2 − ω)π)βvhξ

+ (2k1k2k3k4k5k6k10k11a
2µ2

h
(1 − α1)βhvnπ + k22k3k4k5k6k10k11a

2µ2
h
(1 − α1)βhvn)(1− α1)βvh)KEKL

+ (k3k4k9k10K12aµbΛhµhωπ(1− α1)βvh − 2k3k4k8k9K12µbδΛhγhωπ)ξ
2

+ ((k2k3k4k9k10K12aµbΛhµhω − k1k2k3k4k9k10K12aµbΛhµhπ)(1 − α1)βvh

+ (2k1k
2
3k

2
4k8k9K12µbΛhω + 2k1k2k3k4k8k9K12µbδΛhγh)π

+ (2k2k
2
3k

2
4k8k9K12µbΛh − 2k2k3k4k8k9K12µbδΛhγh)ω)ξ

− k1k
2
2k3k4k9k10K12aµbΛhµh(1− α1)βvh − 2k21k2k

2
3k

2
4k8k9K12µbΛhπ

+ 2k1k
2
2k3k4k8k9K12µbδΛhγh − 2k1k

2
2k

2
3k

2
4k8k9K12µbΛh,
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720

c0 = k2
3k

2
4k8k9K12µbΛhµ

2
h(k2 + ξ)2

(

R2
0 − 1

)

,

with k10 = γh + ηhk4, k11 = γv + ηvk8, K12 = (sKE + k6KL) and n = N − 1. Notes that c4 is721

always negative and c0 is positive (resp. negative) if R0 is greater (resp. less) that the unity.722

It follows, depending of the sign of coefficients c3, c2 and c1, that the model system (2) admits723

at least one endemic equilibrium whenever R0 > 1 and the phenomenon of backward (resp.724

forward) bifurcation can occurs when R0 < 1 (resp. R0 > 1). This ends the proof.725
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