
HAL Id: hal-01200471
https://hal.science/hal-01200471v1

Preprint submitted on 16 Sep 2015 (v1), last revised 2 Nov 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backward Bifurcation and Control in Transmission
Dynamics of Arboviral Diseases

Hamadjam Abboubakar, Jean Claude Kamgang, Daniel Tieudjo

To cite this version:
Hamadjam Abboubakar, Jean Claude Kamgang, Daniel Tieudjo. Backward Bifurcation and Control
in Transmission Dynamics of Arboviral Diseases. 2015. �hal-01200471v1�

https://hal.science/hal-01200471v1
https://hal.archives-ouvertes.fr


Backward Bifurcation and Control in
Transmission Dynamics of Arboviral Diseases

Hamadjam Abboubakar1,2, Jean Claude Kamgang2, Daniel Tieudjo2

1 The University of Ngaoundere, UIT, Laboratoire d’Analyse, Simulation et Essai, P.O.

Box 455 Ngaoundere, Cameroon
2 The University of Ngaoundere, ENSAI, Laboratoire de Mathématiques
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Abstract

In this paper, we derive and analyze a compartmental model for the control of ar-

boviral diseases which takes into account an imperfect vaccine combined with individual

protection and some vector control strategies already studied in the literature. After the

formulation of the model, a qualitative study based on stability analysis and bifurcation

theory reveals that the phenomenon of backward bifurcation may occur. The stable

disease-free equilibrium of the model coexists with a stable endemic equilibrium when

the reproduction number, R0, is less than unity. Using Lyapunov function theory, we

prove that the trivial equilibrium is globally asymptotically stable; When the disease–

induced death is not considered, or/and, when the standard incidence is replaced by the

mass action incidence, the backward bifurcation does not occur. Under a certain condi-

tion, we establish the global asymptotic stability of the disease–free equilibrium of the

full model. Through sensitivity analysis, we determine the relative importance of model

parameters for disease transmission. Numerical simulations show that the combination

of several control mechanisms would significantly reduce the spread of the disease, if we

maintain the level of each control high, and this, over a long period.
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1 Introduction

Arboviral diseases are affections transmitted by hematophagous arthropods. There
are currently 534 viruses registered in the International Catalog of Arboviruses
and 25% of them have caused documented illness in human populations [1, 2, 3].
Examples of those kinds of diseases are dengue, yellow fever, Saint Louis fever,
encephalitis, West Nile fever and chikungunya. A wide range of arbovirus diseases
are transmitted by mosquito bites and constitute a public health emergency of
international concern. According to WHO, dengue, caused by any of four closely-
related virus serotypes (DEN-1-4) of the genus Flavivirus, causes 50–100 million
infections worldwide every year, and the majority of patients worldwide are chil-
dren aged 9 to 16 years [4, 5, 6]. The dynamics of arboviral diseases like dengue or
chikungunya are influenced by many factors such as human and mosquito behav-
ior, the virus itself, as well as the environment which directly or indirectly affects
all the present mechanisms of control.

For all mentioned diseases, only yellow fever has a licensed vaccine. Neverthe-
less, considerable efforts are made to obtain the vaccines for other diseases. In
the case of Dengue for example, the scientists of french laboratory SANOFI have
conducted different tries in Latin America and Asia. Thus, a tetravalent vaccine
could be quickly set up in the coming months. But in any case, it is clear that
this vaccine will be imperfect. However, the tries in Latin America have shown
that vaccine efficacy was 64.7%. Serotype-specific vaccine efficacy was 50.3% for
serotype 1, 42.3% for serotype 2, 74.0% for serotype 3, and 77.7% for serotype 4 [7].
The tries in Asia have shown that efficacy was 30.2%, and differed by serotype [8].

Host-vector models for arboviral diseases transmission were proposed in [9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] with the focus on the
construction of the basic reproductive ratio and related stability analysis of the
disease free and endemic equilibria. Some of these works in the literature focus on
modeling the spread of arboviral diseases and its control using some mechanism
of control like imperfect vaccines [19, 20] and other control tools like individual
protection and vector control strategy [9, 10, 15, 21, 23, 24].

In [15], Dumont and Chiroleu proposed a compartmental model to study the
impact of vector control methods used to contain or stop the epidemic of Chikun-
gunya of 2006 in Réunion island. Moulay et al. [23] study an optimal control
based on protection and vector control strategies to fight against Chikungunya. In
[20], Rodrigues et al. simulate an hypothetical vaccine as an extra protection to
the human population against epidemics of Dengue, using the optimal control. In
these models [15, 20, 23],
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(i) the population is constant,

(ii) the disease-induced death in humans is not considered,

(iii) the complete stage progression of development of vectors is not considered,

(iv) none of the above mentioned models takes into account the combination of
the mechanisms of control already studied in the literature, such as vacci-
nation, individual protection and vector control strategies (destruction of
breeding site, eggs and larvae reduction).

The aim of this work is to propose and study a arboviral disease control model
which takes into account human immigration, disease–induced mortality in human
communities, the complete stage structured model for vectors and a combination
of human vaccination, individual protection and vector control strategies to fight
against the spread of these kind of diseases.

We start with the formulation of the model, which is an extension of the previ-
ous model study in [26]. We include the complete stage progression of development
of vectors, the waning vaccine, and four other continuous controls (individual pro-
tection, using adulticides, the mechanical control, Eggs and larvae reduction). We
compute the net reproductive number N , as well as the basic reproduction num-
ber, R0, and investigate the existence and stability of equilibria. We prove that
the trivial equilibrium is globally asymptotically stable whenever N < 1. When
N > 1 and R0 < 1, we prove that the system exhibit the backward bifurcation
phenomenon. The implication of this occurrence is that the classical epidemio-
logical requirement for effective eradication of the disease, R0 < 1, is no longer
sufficient, even though necessary. However considering two situations: the model
without vaccination and the model with mass incidence rates, we prove that the
disease–induced death and the standard incidence functions, respectively, are the
main causes of the occurrence of backward bifurcation. We found that the disease–
free equilibrium is globally asymptotically stable under certain condition. Through
local and global sensitivity analysis, we determine the relative importance parame-
ters of the model on the disease transmission. By using the pulse control technique
in numerical simulations, we evaluate the impact of different controls combinations
on the decrease of the spread of these diseases.

The paper is organized as follows. In Section 2 we present the transmission
model and in Section 3 we carry out some analysis by determining important
thresholds such as the net reproductive number N and the basic reproduction
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number R0, and different equilibria of the model. We then demonstrate the sta-
bility of equilibria and carry out bifurcation analysis. In section 4, both local and
global sensitivity analysis are used to assess the important parameters in the spread
of the diseases. Section 5 is devoted to numerical simulations and discussion. A
conclusion rounds up the paper.

2 The formulation of the model

The model we propose here is based on the modelling approach given in [26, 15,
16, 17, 18, 19, 23, 24]. It is assumed that the human and vector populations
are divided into compartments described by time–dependent state variables. The
compartments in which the populations are divided are the following ones:

–For humans, we consider susceptible (denoted by Sh), vaccinated (Vh), exposed
(Eh), infectious (Ih) and resistant or immune (Rh); So that, Nh = Sh + Vh +Eh +
Ih +Rh. Following Garba et al. [19] and Rodrigues et al. [20], we assume that the
immunity, obtained by the vaccination process, is temporary. So, the immunity
has the waning rate ω. The recruitment in human population is at the constant
rate Λh, and newly recruited individuals enter the susceptible compartment Sh.
Are concerned by recruitment people that are totally naive from the disease, and
immune people whose immunity is lost. Each individual human compartment
goes out from the dynamics at natural mortality rates µh. The human susceptible
population is decreased following infection, which can be acquired via effective

contact with an exposed or infectious vector at a rate λh =
aβhv(ηvEv + Iv)

Nh

[19]

where a is the biting rate per susceptible vector, βhv is the transmission probability
from an infected vector (Ev or Iv) to a susceptible human (Sh). The probability
that a vector chooses a particular human or other source of blood to bite can

be assumed as
1

Nh

. Thus, a human receives in average a
Nv

Nh

bites per unit of

times. Then, the infection rate per susceptible human is given aβhv

Nv

Nh

(ηvEv + Iv)

Nv

.

In expression of λh, the modification parameter 0 < ηv < 1 accounts for the
assumed reduction in transmissibility of exposed mosquitoes relative to infectious
mosquitoes [19] (see the references therein for the specific sources). Latent humans
(Eh) become infectious (Ih) at rate γh. Infectious humans recover at a constant
rate, σ or dies as consequence of infection, at a disease-induced death rate δ.
Immune humans retain their immunity for life.

– Following [23], the stage structured model is used to describe the vector
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population dynamics, which consists of three main stages: embryonic (E), larvae
(L) and pupae (P). Even if eggs (E) and immature stages (L and P) are both
aquatic, it is important to dissociate them because, for optimal control point of
view, drying the breeding sites does not kill eggs, but only larvae and pupae.
Moreover, chemical interventions on the breeding sites has impact on the larvae
population (as such as pupae), but not on the eggs [23]. The number of laid eggs
is assumed proportional to the number of females. The system of stage structured
model of aquatic phase development of vector is given by (see [23] for details)























Ė = µb

(

1−
E

ΓE

)

(Sv + Ev + Iv)− (s+ µE)E

L̇ = sE

(

1−
L

ΓL

)

− (l + µL)L

Ṗ = lL− (θ + µP )P

(1)

Unlike the authors of [23], we take into account the pupal stage in the development
of the vector. This is justified by the fact that they do not feed during this
transitional stage of development, as they transform from larvae to adults. So, the
control mechanisms can not be applied to them.

A rate, θ, of pupae become female Adults. Each individual vector compartment
goes out from the dynamics at natural mortality rates µv. The vector susceptible
population is decreased following infection, which can be acquired via effective

contact with an exposed or infectious human at a rate λv =
aβvh(ηhEh + Ih)

Nh

[19]

where βhv is the transmission probability from an infected human (Eh or Ih) to a
susceptible vector (Sv). Latent vectors (Ev) become infectious (Iv) at rate γv. The
vector population does not have an immune class, since it is assumed that their
infectious period ends with their death [17].

Then, we add new terms in the model to assess the different control tools
studied:

(i) α1 represents the efforts made to protect human from mosquitoes bites. It
mainly consists to the use of mosquito nets or wearing appropiate clothing
[24]. Thus we modify the infection term as follows:

λc
h = (1− α1)λh, and λc

v = (1− α1)λv,with 0 ≤ α1 < 1; (2)

(ii) η1 and η2 are eggs and larvae mortality rates induced by chemical intervention
respectively,
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(iii) cm is the additional mortality rate due to the adulticide,

(iv) α2 is the parameter associated with the efficacy of the mechanical control.

The above assumptions lead to the following non-linear system of ordinary differ-
ential equations



























































































Ṡh = Λh + ωVh − (λc
h + ξ + µh)Sh

V̇h = ξSh − [(1− ǫ)λc
h + ω + µh]Vh

Ėh = λc
h [Sh + (1− ǫ)Vh]− (µh + γh)Eh

İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh

Ṡv = θP − λc
vSv − (µv + cm)Sv

Ėv = λc
vSv − (µv + γv + cm)Ev

İv = γvEv − (µv + cm)Iv

Ė = µb

(

1−
E

α2ΓE

)

(Sv + Ev + Iv)− (s+ µE + η1)E

L̇ = sE

(

1−
L

α2ΓL

)

− (l + µL + η2)L

Ṗ = lL− (θ + µP )P

(3)

It is important to note that no intervention measure is performed to kill the pupae
for two reasons: the first reason is the fact that at this stage, no food is absorbed by
the insect, so it is impossible to make her ingest a toxic substance; the second reason
is the fact that products soluble in water deposits by contact are not selective
mosquito nymphs and act on all the wildlife of the cottage.

The description of state variables and parameters of model (3) are given in
Tables 1 and 2–3.

2.1 Well posedness of the model

We now show that the system (3) is mathematically well defined and biologically
feasible. We write

k1 := ξ + µh; k2 := ω + µh; k3 := µh + γh; k4 := µh + δ + σ;
k5 := s + µE + η1; k6 := l + µL + η2; k7 := θ + µP ; k8 := µv + cm;
k9 := µv + γv + cm;KE := α2ΓE ;KL := α2ΓL; π := 1− ǫ.

(4)

System (3) can be rewritten in the following way

dX

dt
= A(X)X + F (5)

6



Hosts
Adult
Vectors

Aquatic
phase

ShVh

Eh

Ih

Rh

Sv

Ev

Iv

P

L

E

Figure 1: A compartment model for vector-borne disease with waning vaccine and
mosquito aquatic development phase.

with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T , A(X) =

(

A1(X) 0
0 A4(X)

)

with

A1(X) =













−λc
h − k1 ω 0 0 0
ξ −πλc

h − k2 0 0 0
λh πλh −k3 0 0
0 0 γh −k4 0
0 0 0 σ −µh












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Table 1: The state variables of model (3).

Humans Vectors
Sh: Susceptible E: Eggs
Vh: Vaccines L: Larvae
Eh: Infected in latent stage P : Pupae
Ih: Infectious Sv: Susceptible
Rh: Resistant (immune) Ev Infected in latent stage

Iv Infectious

and

A2(X) =

















−(λc
v + k8) 0 0 0 0 θ
λv −k9 0 0 0 0
0 γv −k8 0 0 0
A96 A96 A96 −A97 0 0
0 0 0 A109 −A10 0
0 0 0 0 l −k7

















where A96 = µb

(

1−
E

KE

)

, A97 =

(

µbNv

KE

+ k5

)

, A109 = s

(

1−
L

KL

)

and

A10 =
sE

KL

+ k6; and F = (Λh, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T .

Note that A(X) is a Metzler matrix, i.e. a matrix such that off diagonal terms
are non negative [30, 31], for all X ∈ R

11
+ . Thus, using the fact that F ≥ 0,

system (5) is positively invariant in R
11
+ , which means that any trajectory of the

system starting from an initial state in the positive orthant R11
+ , remains forever in

R
11
+ . The right-hand side is Lipschitz continuous: there exists a unique maximal

solution.
By adding the first four equations of model system (3), it follows that

Ṅh(t) = Λh − µhNh − δIh ≤ Λh − µhNh

So that

0 ≤ Nh(t) ≤
Λh

µh

+

(

Nh(0)−
Λh

µh

)

e−µht

Thus, at t −→ ∞, 0 ≤ Nh(t) ≤
Λh

µh

.
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Table 2: Description and baseline values/range of parameters of model (3).

Parameters Description Baseline value/range Sources

Λh Recruitment rate of humans 2.5 day−1 [19]

µh Natural mortality rate day−1

(67×365)
[19]

in humans
ξ Vaccine coverage Variable
ω Vaccine waning rate Variable
ǫ The vaccine efficacy 0.61 [27]
a Average number of bites 1 day−1 [9, 19]
βhv Probability of transmission of 0.1, 0.75 day−1 [9, 19]

infection from an infectious human
to a susceptible vector

γh Progression rate from Eh to Ih
[

1
15
, 1
3

]

day−1 [15, 28]
δ Disease–induced death rate 10−3 day−1 [19]
σ Recovery rate for humans 0.1428 day−1 [9, 19]
ηh,ηv Modifications parameter [0, 1) [19]
µv Natural mortality rate of vectors

[

1
30
, 1
14

]

day−1 [9, 19]
γv Progression rate from Ev to Iv

[

1
21
, 1
2

]

day−1 [15, 28]
βvh Probability of transmission of 0.1, 0.75 day−1 [9, 19]

infection from an infectious vector
to a susceptible human

θ Maturation rate from pupae 0.08 day−1 [15, 23, 24]
to adult

µb Number of eggs at each deposit 6 day−1 [15, 23, 24]
ΓE Carrying capacity for eggs 103, 106 [9, 23]
ΓL Carrying capacity for larvae 5× 102, 5× 105 [9, 23]
µE Eggs death rate 0.2 or 0.4 [24]
µL Larvae death rate 0.2 or 0.4 [24]
µP Pupae death rate 0.4
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Table 3: Description and baseline values/range of parameters of model (3).

Parameters Description Baseline value/range Sources

s Transfer rate from eggs to larvae 0.7 day−1 [24]
l Transfer rate from larvae to pupae 0.5 day−1 [23, 29]
η1, η2 Eggs and larvae mortality rates 0.001,0.3 [24]

induced by chemical intervention
α1 Human protection rate [0, 1)
α2 Efficacy of the mechanical control (0, 1] [15]
cm Adulticide killing rate [0,0.8] [15]

By adding the equations in Sv, Ev and Ev of system (3), it follows that

Ṅv(t) = θP − µvNv

So that

0 ≤ Nv(t) =
θP

µv

+

(

Nv(0)−
θP

µv

)

e−µvt

Thus, at t −→ ∞, 0 ≤ Nv(t) ≤
θlKL

µvk7
since P ≤

lKL

k7
.

Therefore, all feasible solutions of model system (3) enter the region:

D =

{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
11 : Nh ≤

Λh

µh

;E ≤ KE ;L ≤ KL;

P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

3 Mathematical analysis

3.1 The disease–free equilibria and its stability

In the absence of disease in the both population (human and Adult vector),
i.e. λc

h = λc
v = 0 (or Eh = Ih = Ev = Iv = 0), we obtain two equilibria

without disease: the trivial equilibrium (equilibrium without vector and disease)
E0 = (S0

h, V
0
h , 0, 0, 0, 0, 0, 0, 0, 0, 0) and the disease–free equilibrium (equilibrium
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with vector and without disease) E1 = (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P ) with

S0
h =

Λhk2
µh(k2 + ξ)

, V 0
h =

ξΛh

µh(k2 + ξ)
, N0

v =
KEKLk5k6 (N − 1)

µb (KEs+ k6KL)
,

P =
KEKLk5k6k8 (N − 1)

µbθ (KEs+ k6KL)
, L =

KEKLk5k6k7k8 (N − 1)

µbθl (KEs+ k6KL)
,

E =
KEKLk5k6k7k8 (N − 1)

s (µblKLθ + k5k7k8KE)
.

(6)

where N is the net reproductive number [23, 32, 33] given by

N =
µbθls

k5k6k7k8
(7)

3.1.1 Local stability of disease–free equilibria

The local asymtotic stability result of equilibria E0 and E1 is given in the following.

Theorem 3.1. Define the basic reproductive number [34, 35]

R0 =

√

a2(1 − α1)
2βhvβvhµhk5k6 (γh + k4ηh) (γv + k8ηv) (πξ + k2)α2ΓEΓL(N − 1)

k3k4k8k9µbΛh (ξ + k2) (k6ΓL + sΓE)
(8)

Then,

(i) if N ≤ 1, the trivial equilibrium E0 is locally asymptotically stable in D;

(ii) if N > 1, the trivial equilibrium is unstable and the desease–free equilibrium
E1 is locally asymptotically stable in D whenever R0 < 1.

Proof. See Appendix B.

The basic reproduction number of a disease is the average number of secondary
cases that one infectious individual produces during his infectious period in a
totally susceptible population. The epidemiological implication of Theorem 3.1 is
that, in general, when the basic reproduction number, R0 is less than unity, a small
influx of infectious vectors into the community would not generate large outbreaks,
and the disease dies out in time (since the DFE is LAS) [19, 34, 35, 36]. However,
we show in the subsection 3.2 that the disease may still persist even when R0 < 1.
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3.1.2 Global stabilty of the trivial equilibrium

The global stability of the trivial equilibrium is given by the following result:

Theorem 3.2. If N ≤ 1, then E0 is globally asymptotically stable on D.

Proof. To prove the global asymptotic stability of the trivial disease–free equilib-
rium E0, we use the direct Lyapunov method. To this aim, we set Y = X − TE
with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T and rewrite (3) in the following
manner

dY

dt
= B(Y )Y.

The global asymptotic stabilty of E0 is achieved by considering the following Lya-

punov function L(Y ) =< g, Y > where g =

(

1, 1, 1, 1, 1, 1, 1, 1,
k8
µb

,
k5k8
µbs

,
k5k6k8
µbsl

)

.

See Appendix C for the details.

3.1.3 Global stabilty of the disease–free equilibrium

We now turn to the global stabilty of the disease–free equilibrium E1. we prove that
the disease–free equilibrium E1 is globally asymptotically stable under a certain
threshold condition. To this aim, we use a result obtained by Kamgang and Sallet
[37], which is an extension of some results given in [35]. Using the property of
DFE, it is possible to rewrite (3) in the following manner

{

ẊS = A1(X)(XS −XDFE) +A12(X)XI

ẊI = A2(X)XI

(9)

where XS is the vector representing the state of different compartments of non
transmitting individuals (Sh, Vh, Rh, Sv, E, L, P ) and the vector XI represents the
state of compartments of different transmitting individuals (Eh, Ih, Ev, Iv). Here,
we have XS = (Sh, Vh, Rh, Sv, E, L, P )T , XI = (Eh, Ih, Ev, Iv)

T , X = (XS, XI) and

XDFE := E1 = (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

T
,

A1(X) =

(

A(1)
1 A(2)

1

A(3)
1 A(4)

1

)

,

with A(1)
1 (X) =









−(λc
h + k1) ω 0 0
ξ −(πλc

h + k2) 0 0
0 0 −µh 0
0 0 0 −(λc

v + k8)









,
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A(2)
1 (X) =









0 0 0
0 0 0
0 0 0
0 0 θ









, A(3)
1 (X) =









0 0 0 µb

(

1−
E

KE

)

0 0 0 0
0 0 0 0









,

A(4)
1 (X) =













−

(

k5 + µb

S0
v

KE

)

0 0

s

(

1−
L

KL

)

−

(

k6 +
sE∗

KL

)

0

0 l −k7













,

A12(X) =



































0 0 −
ab1ηvS

0
h

Nh

−
ab1S

0
h

Nh

0 0 0

0 0 −
ab1ηvπV

0
h

Nh

−
ab1πV

0
h

Nh

0 0 0

0 σ 0 0 0 0 0

−
ab2ηhS

0
v

Nh

−
ab2S

0
v

Nh

0 0 0 0 0

0 0 µb

(

1−
E

KE

)

µb

(

1−
E

KE

)

0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0



































,

A2(X) =















−k3 0
ab1ηv(Sh + πVh)

Nh

ab1(Sh + πVh)

Nh

γh −k4 0 0
ab2ηhSv

Nh

ab2Sv

Nh

−k9 0

0 0 γv −k8















.

A direct computation shows that the eigenvalues ofA1(X) have negative real parts.
Thus the system ẊS = A1(X)(XS − XDFE) is globally asymptotically stable at
XDFE. Note also that A2(X) is a Metzler matrix.

We now consider the bounded set G:

G =
{

(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
11 : Sh ≤ Nh, Vh ≤ Nh, Eh ≤ Nh,

Ih ≤ Nh, Rh ≤ Nh, N̄h = Λh/(µh + δ) ≤ Nh ≤ N0
h = Λh/µh;

E ≤ KE;L ≤ KL;P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

13



Let us recall the following theorem [37] (See [37] for a proof in a more general
setting).

Theorem 3.3. Let G ⊂ U = R
7 × R

4. The system (3) is of class C1, defined on
U . If

(1) G is positively invariant relative to (9).

(2) The system ẊS = A1(X)(XS − XDFE) is Globally asymptotically stable at
XDFE.

(3) For any x ∈ G, the matrix A2(x) is Metzler irreducible.

(4) There exists a matrix Ā2 , which is an upper bound of the set
M = {A2(x) ∈ M4(R) : x ∈ G} with the property that if A2 ∈ M, for any
x̄ ∈ G, such that A2(x̄) = Ā2, then x̄ ∈ R

7 × {0}.

(5) The stability modulus of Ā2, α(A2) = maxλ∈sp(A2)Re(λ) satisfied α(A2) ≤ 0.

Then the DFE is GAS in G.

For our model system (3), conditions (1–3) of the theorem 3.3 are satisfied. An
upper bound of the set of matrices M, which is the matrix Ā2 is given by

Ā2 =

















−k3 0
ab1ηv(S

0
h + πV 0

h )

N̄h

ab1(S
0
h + πV 0

h )

N̄h

γh −k4 0 0
ab2ηhS

0
v

N̄h

ab2S
0
v

N̄h

−k9 0

0 0 γv −k8

















,

where N̄h =
Λh

(µh + δ)
.

To check condition (5) in theorem 3.3, we will use the useful lemma [37] in A.
To this aim, let

A =

(

−k3 0
γh −k4

)

, B =





ab1ηv(S
0
h + πV 0

h )

N̄h

ab1(S
0
h + πV 0

h )

N̄h

0 0



,

C =





ab2ηhS
0
v

N̄h

ab2S
0
v

N̄h

0 0



, D =

(

−k9 0
γv −k8

)

.

14



Clearly, A is a stable Metzler matrix. Then, after some computations, we
obtain D − CA−1B is a stable Metzler matrix if and only if

Rc < 1 (10)

where

Rc =

√

a2(1− α1)
2βhvβvhk5k6 (γh + k4ηh) (γv + k8ηv)KEKL(k2 + πξ)(N − 1)

k3k4k8k9µb(k2 + ξ)(k6KL +KEs)Λh

(µh + δ)2

µh

.

(11)

We claim the following result

Theorem 3.4. If N > 1 and R0 < Rc < 1, then the disease–free equilibrium E1 is
globally asymptotically stable in G.

Remark 3.1. From (11), we have

R2
c =

(µh + δ)2

µ2
h

R2
0 > R2

0,

showing that Rc is not necessarily an optimal threshold parameter.

Remark 3.2. Note that in the absence of disease–induced death, i.e. δ = 0, we
have Rc = R0. This suggests that the disease–induced death may be a cause of the
occurence of the backward bifurcation phenomenon.

Remark 3.3. The previous results are of utmost importance, because they show
that if at any time, through appropriate interventions (e.g. destruction of breeding
sites, massive spraying, individual protection,...), we are able to lower N or R0

and Rc to less than 1 for a sufficiently long period, then the disease can disappear
[15].

Theorem 3.4 means that for R0 < Rc < 1, the DFE is the unique equilibrium
(no co-existence with an endemic equilibrium). If Rc ≤ R0 ≤ 1, then it is possible
to have co-existence with endemic equilibria and thus, the occurrence of backward
bifurcation phenomenon.

The backward bifurcation phenomenon, in epidemiological systems, indicate
the possibility of existence of at least one endemic equilibrium when R0 is less
than unity. Thus, the classical requirement of R0 < 1 is, although necessary, no
longer sufficient for disease elimination [19, 38, 39, 40]. In some epidemiological

15



models, it has been shown that the backward bifurcation phenomenon is caused by
factors such as nonlinear incidence (the infection force), disease–induced death or
imperfect vaccine [19, 40, 41, 42, 43, 44]. To confirm whether or not the backward
bifurcation phenomenon occurs in this case, one could use the approach developed
in [35, 43, 45], which is based on the general centre manifold theorem [46]. We will
explore this method in the next section.

3.2 Endemic equilibria and bifurcation analysis

3.2.1 Existence of endemic equilibria

We turn now to the existence of endemic equilibria. Let us introduce the following
quantity R1 = R2

0|δ=0. We proove the following result

Theorem 3.5. We assume that N > 1, then
(i) In the absence of disease–induced death in human population (δ = 0), model

system (3) have

1. an unique endemic equilibrium whenever R1 > 1.

2. no endemic equilibrium otherwise.

(ii) In presence of disease–induced death in human population (δ > 0), model
system (3) could have

3. at least one endemic equilibrium whenever R0 > 1.

4. zero, one or more than one endemic equilibrium whenever R0 < 1.

Proof. See appendix D.

Note that case 4 of Theorem 3.5 indicate the possibility of existence of at
least one endemic equilibrium for R0 < 1 and hence the potential occurrence of a
backward bifurcation phenomenon.

3.2.2 Backward bifurcation analysis

In the following, we use the center manifold theory [21, 35, 43, 45] to explore the
possibility of backward bifurcation in (3). To do so, a bifurcation parameter β∗

hv

is chosen, by solving for βhv from R0 = 1, giving

β∗
hv =

k3k4k8k9µbΛh (ξ + k2) (k6KL + sKE)

a2(1− α1)2βvhµhk5k6 (γh + k4 ηh) (γv + k8 ηv) (πξ + k2)KEKL(N − 1)
.

(12)
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Let Jβ∗

hv
denotes the Jacobian of the system (3) evaluated at the DFE (E1 ) and

with βhv = β∗
hv. Thus,

Jβ∗

hv
=

(

J1 J2

J3 J4

)

, (13)

where

J1 =













−k1 ω 0 0 0
ξ −k2 0 0 0
0 0 −k3 0 0
0 0 γh −k4 0
0 0 0 σ −µh













, J4 =

















−k8 0 0 0 0 θ

0 −k9 0 0 0 0
0 γv −k8 0 0 0
K1 K1 K1 −K2 0 0
0 0 0 K3 −K4 0
0 0 0 0 l −k7

















.

J2 =

























0 −
a(1− α)β∗

hv
ηvS

0

h

N0

h

−
a(1− α)β∗

hv
S0

h

N0

h

0 0 0

0 −
a(1− α)β∗

hv
πηvV

0

h

N0

h

−
a(1− α)β∗

hv
πV 0

h

N0

h

0 0 0

0
a(1 − α)β∗

hv
ηvH

0

N0

h

a(1− α)β∗

hv
H0

N0

h

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

























,

J3 =

























0 0 −
a(1− α)βvhηhS

0

v

N0

h

−
a(1− α)βvhS

0

v

N0

h

0

0 0
a(1− α)βvhηhS

0

v

N0

h

a(1− α)βvhS
0

v

N0

h

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























,

withH0 = S0
h+πV 0

h ,K1 = µb

(

1−
E∗

KE

)

,K2 = k5+
µb

KE

S0
v . K3 = s

(

1−
L∗

KL

)

,

and K4 =

(

k6 +
sE∗

KL

)

.

Note that the system (3), with βhv = β∗
hv, has a hyperbolic equilibrium point

(i.e., the linearized system (3) has a simple eigenvalue with zero real part and
all other eigenvalues have negative real part). Hence, the center manifold theory
[46, 47] can be used to analyze the dynamics of the model (3) near βhv = β∗

hv. The
technique in Castillo-Chavez and Song (2004) [45] entails finding the left and right
eigenvectors of the linearized system above as follows.

The left eigenvector composants of Jβ∗

hv
, which correspond to the uninfected

states are zero (see Lemma 3 in [35]). Thus a nonzero composants correspond to
the infected states. It follows that the matrix Jβ∗

hv
has a left eigenvector given by
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v = (v1, v2, . . . , v11), where

v1 = v2 = v5 = v6 = v9 = v10 = v11 = 0; v3 =
k8N

0
h

a(1− α1)β∗
hvH

0
v8;

v4 =
a(1− α1)βvhS

0
v(ηvk8 + γv)

k4k9N0
h

v8, v7 =
(ηvk8 + γv)

k9
v8, v8 = v8 > 0.

The system (3) has a right eigenvector given by w = (w1, w2, . . . , w11)
T , where

w11 > 0, w8 > 0,

w10 =
k7
l
w11, w9 =

K1θ

k5k8
w11, w7 =

k8
γv

w8, w6 =
θ

k8
w11 −

k9
γv

w8,

w5 =
γhσk8k9N

0
h

a(1− α1)βvhµhγvS0
v(ηhk4 + γh)

w8, w4 =
µh

σ
w5, w3 =

k4
γh

w4,

w2 = −
a(1− α1)β

∗
hv(ηvk8 + γv)

γvN
0
h(k1k2 − ξω)

(ξS0
h + k1V

0
h )w8,

w1 =
ω

k1
w2 −

a(1− α1)β
∗
hvS

0
h

k1N0
h

(ηvw7 + w8) .

Theorem 4.1 in Castillo-Chavez and Song [45] is then applied to establish the
existence of backward bifurcation in (3). To apply such a theorem, it is convenient
to let fk represent the right-hand side of the kth equation of the system (3) and
let xk be the state variables whose derivative is given by the kth equation for
k = 1, . . . , 11. The local bifurcation analysis near the bifurcation point (βhv = β∗

hv)
is then determined by the signs of two associated constants, denoted by A1 and
A2, defined by

A1 =
n
∑

k,i,j=1

vkwiwj

∂2fk(0, 0)

∂xi∂xj

and A2 =
n
∑

k,i=1

vkwi

∂2fk(0, 0)

∂xi∂φ
(14)

with φ = βhv−β∗
hv. It is important to note that in fk(0, 0), the first zero corresponds

to the disease–free equilibrium, E1, for the system (3). Since βhv = β∗
hv is the

bifurcation parameter, it follows from φ = βhv − β∗
hv that φ = 0 when βhv = β∗

hv

which is the second component in fk(0, 0).
It follows then, after some algebraic manipulations, that

A1 = Γ1 − Γ2

18



with

Γ1 =
a(1− α1)β

∗
hv(2V

0
hw1 + πS0

hw2)

(N0
h)

2
(ηvw7 + w8)v3

+
a(1− α1)βvhS

0
v

N0
h

[

(ηhw3 + w4)
1

S0
v

+

(

ηhw3 +
1

S0
v

w4

)]

w6v7,

Γ2 = 2
a(1− α1)βvhS

0
v

(N0
h)

2

(

5
∑

i=1

wi

)

(ηhw3 + w4)v7

+
a(1− α1)β

∗
hv(S

0
h + πV 0

h )(N
0
h + 1)

(N0
h)

2

(

5
∑

i=3

wi

)

(ηvw7 + w8)v3

and

A2 =
a(S0

h + πV 0
h )

N0
h

(ηvw7 + w8) v3

Hence, the coefficient A1 > 0 if and only if

Γ1 > Γ2 (15)

Note that the coefficient A2 is automatically positive. Thus, using Theorem 4.1 in
[45], the following result is established.

Theorem 3.6. The model (3) exhibits a backward bifurcation at R0 = 1 whenever
the inequality (15) holds. If the reversed inequality holds, then the bifurcation at
R0 = 1 is forward.

The associated bifurcation diagrams are depicted in Figures 2 and 3. Param-
eter values used in figure 2 correspond to those in Table 4, except Λh = 10, ǫ = 1,
βvh = 0.8, ηh = 1, ηv = 1, σ = 0.01428, δ = 1, α1 = 0.001, α2 = 1, cm = 0.0001,
ΓE = 105, ΓL = 50000. In this case the conditions required by Theorem 3.6, are
satisfied: A1 = 0.0114 > 0 and A2 = 1.1393 > 0.

Parameter values used in figure 3 correspond to those in Table 4, except Λh =
10, βvh = 0.8, ηh = ηv = 0 = δ = cm = α1 = 0, α2 = 1, ΓE = 105, ΓL = 50000. We
also have A1 = −2.4223 < 0 and A2 = 0.8333 > 0.

The occurrence of the backward bifurcation can be also seen in Figure 4. Here,
R0 is less than the transcritical bifurcation threshold (R0 = 0.29 < 1), but the
solution of the model 3 can approach either the endemic equilibrium point or the
disease-free equilibrium point, depending on the initial condition.

19



0 0.5 1 1.5
0

50

100

150

R
0

E
h
*

Stable DFE Unstable DFE

Stable EE

Unstable EE

0 0.5 1 1.5
0

2000

4000

6000

8000

10000

12000

R
0

E
v
*

Stable DFE Unstable DFE

Stable EE

Unstable EE

Figure 2: The backward bifurcation curves for model system (16) in the (R0, E
∗
h),

and (R0, E
∗
v) planes. The parameter βhv is varied in the range [0, 0.2810] to allow

R0 to vary in the range [0, 1.5]. Two endemic equilibrium points coexist for values
of R0 in the range (0.2894, 1) (corresponding to the range (0.0105, 0.1249) of
βhv). The notation EE and DFE stand for endemic equilibrium and disease free
equilibrium, respectively. Solid line represent stable equilibria and dash line stands
for unstable equilibria.
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Figure 3: The forward bifurcation curves for model system (16) in the (R0, E
∗
h),

and (R0, E
∗
v ) planes. Solid line represents stable equilibria and dash line stands for

unstable equilibria.

From theorem 3.5, item (i), it follows that the disease-induced death in human
(δ) may be a cause of the occurence of backward bifurcation phenomenon. In the
following, we show that the backward bifurcation phenomenon is caused by the
disease-induced death in human and the standard incidence functions (λc

h and λc
v).
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Figure 4: Solutions of model (3) of the number of infected humans, Eh, and the
number of infected vectors, Ev, for parameter values given in the bifurcation di-
agram in Figure 2 with βhv = 0.0105. So R0 = 0.29 < 1, for two different set of
initial conditions. The first set of initial conditions (corresponding to the solid tra-
jectory) is Sh = 700, Vh = 10, Eh = 220, Ih = 100, Rh = 60, Sv = 3000, Ev = 400,
Iv = 120, E = 10000, L = 5000 and P = 3000. The second set of initial condi-
tions (corresponding to the dotted trajectory) is Sh = 489100, Vh = 10, Eh = 220,
Ih = 100, Rh = 60, Sv = 3000, Ev = 400, Iv = 120, E = 10000, L = 5000 and
P = 3000. The solution for initial condition 1 approaches the locally asymptot-
ically stable endemic equilibrium point, while the solution for initial condition 2
approaches the locally asymptotically stable DFE.

3.3 The different causes of the backward bifurcation

The occurrence of backward bifurcation phenomenon in epidemiological models,
is caused by three factors: the presence of an imperfect vaccine, the presence
of the death induced by the disease, and the standard incidence rates. In this
section, we will consider two variants of the model (3) (the corresponding model
without vaccination, and the corresponding model with mass action incidence), to
determine the causes of this phenomenon.
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3.3.1 Analysis of the model without vaccination

The model without vaccination is given by



















































































Ṡh = Λh − (λc
h + µh)Sh

Ėh = λc
hSh − (µh + γh)Eh

İh = γhEh − (µh + δ + σ)Ih
Ṙh = σIh − µhRh

Ṡv = θP − λc
vSv − (µv + cm)Sv

Ėv = λc
vSv − (µv + γv + cm)Ev

İv = γvEv − (µv + cm)Iv

Ė = µb

(

1−
E

α2ΓE

)

(Sv + Ev + Iv)− (s+ µE + η1)E

L̇ = sE

(

1−
L

α2ΓL

)

− (l + µL + η2)L

Ṗ = lL− (θ + µP )P

(16)

where λc
h and λv

v are given at section 2. Model system (16) is defined in the
positively-invariant set

D1 =
{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ R
10 :

Nh ≤ Λh/µh;E ≤ KE;L ≤ KL;P ≤
lKL

k7
;Nv ≤

θlKL

k7k8

}

.

Without lost of generality, we assume that N > 1. The corresponding disease–free
equilibria of model (16) are given by Env

0 = (N0
h , 0, 0, 0, 0, 0, 0, 0, 0, 0) and

Env
1 = (N0

h , 0, 0, 0, N
0
v , 0, 0, E, L, P ) with N0

h = Λh

µh

and N0
v , E, L and P are the

same, given by (6). The associated next generation matrices, F1 and V1, are, re-
spectively, given by

F1 =













0 0 a(1− α1)βhvηv a(1− α1)βhv

0 0 0 0
a(1− α1)βvhηvN

0
v

N0
h

a(1− α1)βvhN
0
v

N0
h

0 0

0 0 0 0













and

V1 =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









.
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It follows that the associated reproduction number for the model without vac-
cination, denoted by Rnv = ρ(F1V

−1
1 ), is given by

Rnv =

√

a2(1− α1)
2βhvβvh(γh + k4ηh)(γv + k8ηv)N

0
v

k3k4k8k9N0
h

. (17)

Using Theorem 2 of [35], we establish the following result:

Theorem 3.7. Assumed that N > 1. For basic arboviral model without vaccina-
tion, given by (16), the corresponding disease–free equilibrium is LAS if Rnv < 1,
and unstable if Rnv > 1.

Existence of endemic equilibria
Here, the existence of endemic equilibria of the model (16) will be explored.

Let us set the following coefficients

Rc =
{2k8(k3k4 − δγh) + (ηhk4 + γh)aµh(1− α1)βvh}

k3k4k8
,

d2 = −k9µbΛh(sKE + k6KL) (k3k4 − δγh) ((ηhk4 + γh)aµh(1− α1)βvh + (k3k4 − δγh)k8) < 0,

d1 = k2
3k

2
4k8k9(sKE + k6KL)µbΛhµh(R

2
nv − Rc),

d0 = k2
3k

2
4k8k9(sKE + k6KL)µbΛhµ

2
h (R

2
nv − 1) .

(18)
We claim the following:

Theorem 3.8. The arboviral diseases model without vaccination (16) has:

(i) a unique endemic equilibrium if d0 > 1 ⇔ Rnv > 1;

(ii) a unique endemic equilibrium if d1 > 0, and d0 = 0 or d21 − 4d2d0 = 0;

(iii) two endemic equilibria if d0 < 0 (i.e. Rnv < 1), d1 > 0 (i.e R2
nv > Rc) and

d21 − 4d2d0 > 0;

(iv) no endemic equilibrium if d0 < 0 (i.e. Rnv < 1) and δ = 0.

(v) no endemic equilibrium otherwise.

Proof. Solving the equations in the model (16) in terms of λc,∗
h and λc,∗

v , gives

S∗
h =

Λh

µh + λc,∗
h

, E∗
h =

λc,∗
h S∗

h

k3
, I∗h =

γhλ
c,∗
h S∗

h

k3k4
, R∗

h =
σγhλ

c,∗
h S∗

h

µhk3k4
, (19)
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and

S∗
v =

θP

(λc,∗
v + k8)

, E∗
v =

θPλc,∗
v

k9(λ
c,∗
v + k8)

, I∗v =
γvθPλc,∗

v

k8k9(λ
c,∗
v + k8)

,

E =
µbθKEP

(k5k8KE + µbθP )
, L =

µbθsKEKLP

k6KL(k5k8KE + µbθP ) + sµbθKEP
,

(20)

Substituting (19) and (20) into the expression of λ∗
h and λ∗

v and simplifying, shows
that the nonzero equilibria of the model without vaccination satisfy the quadratic
equation

d2(λ
c,∗
h )2 + d1λ

c,∗
h + d0 = 0 (21)

where di, i = 0, 1, 2, are given by (18).
Clearly, d2 < 0 and d0 > 0 (resp. d0 < 0) if Rnv > 1 (resp. Rnv < 1). Thus

Theorem 3.8 is etablished.

It is clear that cases (ii) and (iii) of theorem 3.8 indicates the possibility of
backward bifurcation (where the locally-asymptotically stable DFE co-exists with
a locally-asymptotically stable endemic equilibrium when Rnv < 1) in the model
without vaccination (16).

This is illustrated by simulating the model with the following set of parameter
values (it should be stated that these parameters are chosen for illustrative purpose
only, and may not necessarily be realistic epidemiologically): Λh = 5, βhv = 0.03,
ηh = ηv = 1, δ = 1, σ = 0.01, cm = 0.1, βvh = 0.4, α1 = 0.7 and α2 = 0.5. All
other parameters are as in Table 4. With this set of parameters, Rc = 0.0216 < 1,
Rnv = 0.2725 < 1 (so that Rc < Rnv < 1). It follows: d2 = −0.0263 < 0,
d1 = 4.8763×10−4 and d0 = −3.5031×10−7, so that d21−4d2d0 = 2.0093×10−7 > 0.
The resulting two endemic equilibria Env = (S∗

h, E
∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v , E, L, P ), are:

Env
1 = (281, 70, 5, 1207, 5739, 182, 44, 22180, 10201, 9977) which is locally stable and

Env
2 = (6333, 67, 4, 1147, 5936, 37, 2, 22180, 10201, 9977) which is unstable.
The associated bifurcation diagram is depicted in figure 5. This clearly shows

the co-existence of two locally-asymptotically stable equilibria when Rnv < 1,
confirming that the model without vaccination (16) undergoes the phenomenon of
backward bifurcation too.

Thus, the following result is established.

Lemma 3.1. The model without vaccination (16) undergoes backward bifurcation
when Case (iii) of Theorem 3.8 holds.
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Figure 5: The backward bifurcation curves for model system (16) in the (Rnv, E
∗
h),

and (Rnv, E
∗
v) planes. The parameter βhv is varied in the range [0, 0.9090] to

allow R0 to vary in the range [0, 1.5]. Two endemic equilibrium points coexist for
values of R0 in the range (0.2286, 1) (corresponding to the range (0.0211, 0.4040)
of βhv). The notation EE and DFE stand for endemic equilibrium and disease free
equilibrium, respectively. Solid line represent stable equilibria and dash line stands
for unstable equilibria.
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Non-existence of endemic equilibria for Rnv < 1 and δ = 0

Lemma 3.2. The model (16) without disease–induced death (δ = 0) has no en-
demic equilibrium when Rnv,δ=0 ≤ 1, and has a unique endemic equilibrium other-
wise.

Proof. Considering the model (16) without disease–induced death in human, and
applying the same procedure, we obtain that the nonzero equilibria of the model
without vaccination satisfy the linear equation

p1λ
c,∗
h + p0 = 0,

where p1 = k9k10K12aµbΛhµh(1− α1)βvh + k3(µh + σ)k8k9K12µbΛh and
p0 = −µhk3k4k8k9K12µbΛh

(

R2
nv,δ=0 − 1

)

.

Clearly, p1 > 0 and p0 ≥ 0 whenever Rnv,δ=0 ≤ 1, so that λc,∗
h = −

p0
p1

≤ 0.

Therefore, the model (16) without disease–induced death in human, has no endemic
equilibrium whenever R2

nv,δ=0 ≤ 1.

The above result suggests the impossibility of backward bifurcation in the model
(16) without disease–induced death, since no endemic equilibrium exists when
Rnv,δ=0 < 1 (and backward bifurcation requires the presence of at least two endemic
equilibria when Rnv,δ=0 < 1) [19, 40]. To completely rule out backward bifurcation
in model (16), we use the direct Lyapunov method to proove the global stability
of the DFE.

Global stability of the DFE of (16) for δ = 0
Define the positively-invariant and attracting region

D2 =
{

(Sh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ D1 : Sh ≤ N0
h ;Sv ≤ N0

v

}

We claim the following result.

Theorem 3.9. The DFE, Env
1 , of model (16) without disease–induced death (δ =

0), is globally asymptotically stable (GAS) in D2 if Rnv,δ=0 < 1.

Proof. Consider the Lyapunov function

G = q1Eh + q2Ih + q3Ev + q4Iv.
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where

q1 =
1

k3
, q2 =

a2(1− α1)
2βhvβvh(ηvk8 + γv)N

0
v

k3k4k8k9N0
h

, q3 =
a(1− α1)βhv(ηvk8 + γv)N

0
v

k3k8k9N0
h

,

q4 =
a(1− α1)βhv

k3k8
.

The derivative of G is given by

Ġ = q1Ėh + q2İh + q3Ėv + q4İv

= q1(λ
c
hSh − k3Eh) + q2(γhEh − k4Ih) + q3(λ

c
vSv − k9Ev) + q4(γvEv − k8Iv)

= q1((1 − α1)λhSh − k3Eh) + q2(γhEh − k4Ih) + q3((1− α1)λvSv − k9Ev) + q4(γvEv − k8Iv)

= q1
µh

Λh

[

a(1 − α1)βhv(ηvEv + Iv)Sh −
Λh

µh

k3Eh

]

+ q2(γhEh − k4Ih)

+ q3
µh

Λh

[

a(1− α1)βvh(ηhEh + Ih)Sv − k9
Λh

µh
Ev

]

+ q4(γvEv − k8Iv)

=
1

k3

µh

Λh

a(1− α1)βhvηvShEv +
1

k3

µh

Λh

a(1− α1)βhvShIv

−
1

k3
k3Eh +

a2(1− α1)
2βhvβvh(ηvk8 + γv)N

0
v

k3k4k8k9N
0
h

γhEh −
a2(1− α1)

2βhvβvh(ηvk8 + γv)N
0
v

k3k4k8k9N
0
h

k4Ih

+
a(1− α1)βhv(ηvk8 + γv)N

0
v

k3k8k9N
0
h

µh

Λh
a(1− α1)βvhηhSvEh

+
a(1− α1)βhv(ηvk8 + γv)N

0
v

k3k8k9N
0
h

µh

Λh
a(1− α1)βvhSvIh −

a(1− α1)βhv(ηvk8 + γv)N
0
v

k3k8k9N
0
h

k9Ev

+
a(1− α1)βhv

k3k8
γvEv −

a(1− α1)βhv
k3k8

k8Iv

≤

[

1

k3
a(1− α1)βhvηv + q4γv −

a(1− α1)βhv(ηvk8 + γv)N
0
v

k3k8k9N
0
h

k9

]

Ev +

[

1

k3
a(1− α1)βhv − q4k8

]

Iv

+

[

a(1− α1)βhv(ηvk8 + γv)N
0
v

k3k8k9N
0
h

µh

Λh
a(1− α1)βvhηhN

0
v

+
a2(1− α1)

2βhvβvh(ηvk8 + γv)N
0
v

k3k4k8k9N
0
h

γh −
1

k3
k3

]

Eh

+

[

a(1− α1)βhv(ηvk8 + γv)N
0
v

k3k8k9N
0
h

µh

Λh
a(1− α1)βvhN

0
v −

a2(1− α1)
2βhvβvh(ηvk8 + γv)N

0
v

k3k4k8k9N
0
h

k4

]

Ih

= (R2
nv,δ=0 − 1)Eh

We have Ġ ≤ 0 if Rnv,δ=0 ≤ 1, with Ẏ = 0 if R1 = 1 or Eh = 0. Whenever Eh = 0,
we also have Ih = 0, Ev = 0 and Iv = 0. Substituting Eh = Ih = Ev = Iv = 0 in
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the first, fourth and fifth equation of Eq. (16) with δ = 0 gives Sh(t) → S0
h = N0

h ,
Rh(t) → 0, and Sv(t) → S0

v = N0
v as t → ∞. Thus

[Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), E(t), L(t), P (t)] → (N0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P )

as t → ∞.

It follows from the LaSalle’s invariance principle [48, 49, 50] that every solution of
(16) (when R2

nv,δ=0 ≤ 1), with initial conditions in D2 converges to Env
1 , as t → ∞.

Hence, the DFE, Env
1 , of model (16) without disease–induced death, is GAS in D2

if R2
nv,δ=0 ≤ 1.

3.3.2 Analysis of the model with mass action incidence

Consider the model (3) with mass action incidence. Thus, the associated forces of
infection, λh and λv, respectively, reduce to

λmh = Ch(ηvEv + Iv) and λmv = Cv(ηhEh + Ih), (22)

where, Ch = a(1 − α1)βhv and Cv = a(1 − α1)βvh. The resulting model (mass
action model), obtained by using (22) in (3), has the same disease–free equilibria
given by (6). Without lost of generality, we consider that N > 1. The associated
next generation matrices, Fm and Vm are given by

Fm =









0 0 ChηvH
0 ChH

0

0 0 0 0
CvηvS

0
v CvS

0
v 0 0

0 0 0 0









, Vm =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









,

where H0 = S0
h + πV 0

h . It follows that the associated reproduction number for the
mass action model, denoted by R0,m = ρ(FmV

−1
m ), is given by

R0,m =
√

Rm
hvR

m
vh, (23)

where

Rm
hv =

(

a(1 − α1)βhvΛh (γh + k4ηh) (πξ + k2)

µhk3k4 (ξ + k2)

)

andRm
vh =

(

a(1− α1)βvh (γv + k8ηv) θP

k28k9

)

.

Using Theorem 2 of [35], the following result is established:

Theorem 3.10. Assume that N > 1. For the arboviral disease model with mass
action incidence, given by (3) with (22), the DFE, E1, is LAS if R0,m < 1, and
unstable if R0,m > 1
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Existence of endemic equilibria Solving the equations in the model (16) in
terms of λ∗

mh and λ∗
mv, gives

S∗
mh =

Λh(πλ
c,∗
mh + k2)

λc,∗
mh(k2 + π(k1 + λc,∗

mh)) + k1k2 − ωξ
, V ∗

mh =
ξS∗

mh

k2 + πλc,∗
mh

, E∗
mh =

λc,∗
mhS

∗
mh

k3
,

I∗mh =
γhλ

c,∗
h S∗

mh

k3k4
, R∗

mh =
σγhλ

c,∗
mhS

∗
mh

µhk3k4
,

(24)
and

S∗
mv =

θP

(λc,∗
mv + k8)

, E∗
mv =

θPλc,∗
mv

k9(λ
c,∗
mv + k8)

, I∗mv =
γvθPλc,∗

mv

k8k9(λ
c,∗
mv + k8)

. (25)

Substituting (24) and (25) into the expression of λ∗
mh and λ∗

mv and simplifying,
shows that the nonzero equilibria of the model without vaccination satisfy the
quadratic equation

e2(λ
c,∗
mh)

2 + e1λ
c,∗
mh + e0 = 0, (26)

where ei, i = 0, 1, 2, are given by

e2 = k8k9π [(γh + k4ηh)CvΛh + k3k4k8]

e1 =
k3k4k

2
8k9κπ

(πξ + k2)

(

Rcm − R2
0,m

)

,

e0 = k3k4k
2
8k9κ

(

1−R2
0,m

)

,

with κ = k1k2 − ξω > 0 and

Rcm =
[(γh + k4ηh) (πξ + k2)ΛhCv + (k1π + k2)k3k4k8] (πξ + k2)

k3k4k8κπ
.

e2 is always positive and e0 is positive (resp. negative) whenever R0m is less
(resp. greather) than unity. Thus, the mass action model admits only one endemic
equilibria whenever R0m > 1.

Now, we consider the case R0m < 1. The occurence of backward bifurcation
phenomenon depend of the sign of coefficient e1. The coefficent e1 is always pos-
itive if and only if R2

0,m < Rcm. It follows that the disease–free equilibrium is
the unique equilibrium when N > 1 and Rcm < 1. Now if Rcm < R2

0,m < 1,
then in addition to the DFE E1, there exists two endemic equilibria whenever
∆m = e21 − 4e2e0 > 0. However, Rcm < R2

0,m < 1 ⇒ Rcm < 1 ⇔ βvh <

−
k3k4k8(ξωπ + k1π

2ξ + k2(πξ + k2))

a(1− α1) (γh + k4ηh) (πξ + k2)(πξ + k2)Λh

< 0. Since all parameter of model
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are nonnegative, we conclude that the condition Rcm < R2
0,m < 1 does not hold.

And thus, the model with mass-action incidence does not admit endemic equilibria
for Rcm < 1.

Global stability of the DFE for the model with mass action incidence
Since the DFE of the model with mass action incidence is the unique equilbrium

whenever the corresponding basic reproduction number R2
0,m is less than unity, it

remains to show that the DFE is gas. To this aim, we use the direct Lyapunov
mehod.

Let us define the following positive constants:

p1 =
1

k3
, p2 =

ChH
0(ηvk8 + γv)

k8k9

CvS
0
v

k3k4
, p3 = p1ChH

0 (ηvk8 + γv)

k8k9
, p4 =

ChH
0

k3k8
.

Consider the Lyapunov function

L = p1Eh + p2Ih + p3Ev + p4Iv.

The derivative of L is given by

L̇ = p1Ėh + p2İh + p3Ėv + p4İv

= (p1ChηvH + p4γv − p3k9)Ev + (p1ChH − p4k8)Iv

+ (p3CvηhSv + p2γh − p1k3)Eh + (p3CvSv − p2k4)Ih

Replacing pi, i = 1, . . . 4 by their respective term, and using the fact that H =
(Sh + πVh) ≤ H0 = (S0

h + πV 0
h ) and Sv ≤ N0

v in

D3 = {(Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P ) ∈ D :

Nh ≤
Λh

µh

, Sv ≤ N0
v = θP, E ≤ KE, L ≤ KL, P ≤

lKL

k7k8

}

,

we obtain L̇ ≤
(

R2
0,m − 1

)

Eh.

We have L̇ ≤ 0 if R0,m ≤ 1, with L̇ = 0 if R0,m = 1 or Eh = 0. Whenever Eh =
0, we also have Ih = 0, Ev = 0 and Iv = 0. Substituting Eh = Ih = Ev = Iv = 0
in the first, fourth and fifth equation of Eq. (16) with mass action incidence gives
Sh(t) → S0

h, Vh(t) → V 0
h , Rh(t) → 0, and Sv(t) → S0

v = N0
v as t → ∞. Thus

[Sh(t), Vh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), E(t), L(t), P (t)]

→ (S0
h, V

0
h , 0, 0, 0, N

0
v , 0, 0, E, L, P ) as t → ∞.

31



It follows from the LaSalle’s invariance principle [48, 49, 50], that every solution
of (3) with mass action incidence, with initial conditions in D3 converges to the
DFE, as t → ∞. Hence, the DFE, E1, of the model with mass action incidence, is
GAS in D3 if R0,m ≤ 1.

Thus, we claim the following result.

Theorem 3.11. The DFE, E1, of the model (3) with mass action incidence, is
globally asymptotically stable (GAS) in D3 if R0,m < 1.

Thus, the substitution of standard incidence with mass action incidence in the
arboviral model (3) removes the backward bifurcation phenomenon of the model.
It should be mentioned that a similar situation was reported by Garba et al. in [19]
and by Sharomi et al. in [40].

We summarize the previous analysis of Subsection 3.3 as follows:

Lemma 3.3. The main causes of occurence of backward bifurcation phenomenon
in models (3) and (16) are the disease–induced death and the non-linear incidence
rates.

4 Sensitivity analysis

As shown in the previous sections, model (3) may admit single or multiple steady
states according to the value of the basic reproduction number R0. In turn, R0

depends on the parameters of the model. Usually there are uncertainties in data
collection and estimated values, as for our model, and therefore it is important to
assess the robustness of model predictions to parameter values and, in particular,
to estimate the effect on R0 of varying single parameters. To this aim, we use
sensitivity analysis and calculate the sensitivity indices of R0 to the parameters in
the model using both local and global methods.

4.1 Local sensitivity analysis

The local sensitivity analysis, based on the normalised sensitivity index of R0 (see
[51]), is given by

SΨ =
Ψ

R0

∂R0

∂Ψ

where Ψ denotes the generic parameter of (3).
This index indicates how sensitive R0 is to changes of parameter Ψ. Clearly, a
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Table 4: Parameter values using to compute the sensitivity indices of R0.

Parameter value Parameter value Parameter value
cm 0.01 s 0.7 βvh 0.75
µb 6 η2 0.3 ΓE 10000
µP 0.4 µE 0.2 ΓL 5000
θ 0.08 ǫ 0.61 α2 0.5
l 0.5 Λh 2.5 µh

1
67∗365

a 1 βhv 0.75 ηv 0.35
µv

1
30

µL 0.4 σ 0.1428
γh

1
14

ηh 0.35 γv
1
21

ξ 0.5 ω 0.05 η1 0.001
δ 0.001 α1 0.2

positive (resp. negative) index indicates that an increase in the parameter value
results in an increase (resp. decrease) in the R0 value [51].

For instance, the computation of the sensitivity index of R0 with respect to a
is given by

Sa =
a

R0

∂R0

∂a
= 1 > 0.

This shows that R0 is an increasing function of a and the parameter a has an
influence on the spread of disease.

We tabulate the indices of the remaining parameters in Table 2 using parameter
values on Table 4. The results, displayed in Table 5 and Figure 7a. The parameters
are arranged from most sensitive to least. The model system (3) is most sensitive
to a, the average number of mosquitoes bites, followed by µv, ǫ, s, Λh, βhv, βvh,
ΓE, ΓL and α2. It is important to note that increasing (decreasing) a by 10%
increases (decreases) R0 by 10%. However, increasing (decreasing) the parameters
µv by 10% decreases (increases) R0 by 9.190%. The same reasonning can be done
for other parameters.

4.2 Uncertainty and global sensitivity analysis

Local sensitivity analysis assesses the effects of individual parameters at particular
points in parameter space without taking into account of the combined variability
resulting from considering all input parameters simultaneously. Here, we perform

33



Table 5: Sensitivity indices of R0 to parameters of model (3), evaluated at the
baseline parameter values given in Table 4.

Parameter Index Parameter Index Parameter Index
a +1 σ –0.2911 ξ –0.0566
µv –0.9190 cm –0.2757 ω +0.0565
ǫ –0.6223 α1 –0.25 µE –0.0171
s +0.5172 ηh +0.2067 δ –0.0020
Λh –0.5 γh –0.2064 η1 –0.0000858
βhv, βvh,ΓE,ΓL, α2 +0.5 ηv +0.1207
µh +0.4996 γv +0.1174
µP –0.4810 µL –0.1026
θ +0.4810 µb +0.0772
l +0.4489 η2 –0.0770

a global sensitivity analysis to examine the models response to parameter variation
within a wider range in the parameter space.

Following the approach by Marino et al. and Wu et al. [52, 53], partial rank
correlation coefficients (PRCC) between the basic reproduction number R0 and
each parameter are derived from 5,000 runs of the Latin hypercube sampling (LHS)
method [54]. The parameters are assumed to be random variables with uniform
distributions with its mean value listed in Table 4.

With these 5,000 runs of LHS, the derived distribution of R0 is given in Figure 6.
This sampling shows that the mean of R0 is 2.0642 and the standard deviation is
2.6865. The probability that R0 > 1 is 54.86%. This implies that for the mean of
parameter values given in Table 4, we may be confident that the model predicts a
endemic state.

We now use sensitivity analysis to analyze the influence of each parameter on
the basic reproductive number. From the previously sampled parameter values, we
compute the PRCC between R0 and each parameter of model (3). The parameters
with large PRCC values (> 0.5 or < −0.5) statistically have the most influence
[53]. The results, displayed in Table 6 and Figure 7 (b), show that the parameters
α1, the human protection rate, has the highest influence on R0. This suggests that
individual protection may potentially be the most effective strategy to reduce R0.
The other parameter with an important effect are α2, βhv, βvh and θ.

We note that the order of the most important parameters for R0 from the local
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Figure 6: Sampling distribution ofR0 from 5,000 runs of Latin hypercube sampling.
The mean of R0 is 2.0642 and the standard deviation is 2.6865. Furthermore,
P(R0 > 1) = 0.5486.

sensitivity analysis not match those from the global sensitivity analysis, showing
that the local results are not robust.

5 Numerical simulations and discussions

In the previous model [26], we have shown that the use of a vaccine with efficacy
of about 60%, was to be accompanied by other measurements control such as
means of personal protection (Information in relation to the damage caused by
these diseases, spanning wearing clothes during hours of vector activity, use of
repellents), vector control (combinig the use of Adulticide to kill adult vectors,
chemical control with use of Larvicide to kill the eggs and larvae, and mechanical
control to reduce the number of breeding sites at least near inhabited areas) [15].
Here, we investigate and compare numerical results, with the different scenario.
We use the following initial state variables Sh(0) = 700, Vh(0) = 10, Eh(0) = 220,
Ih(0) = 100, Rh(0) = 60, Sv(0) = 3000, Ev(0) = 400, Iv(0) = 120, E(0) = 10000,
L = 5000, P = 3000.
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Table 6: Partial Rank Correlation Coefficients between R0 and each parameters of
model (3).

Parameter Correlation Parameter Correlation Parameter Correlation
Coefficients Coefficients Coefficients

α1 –0.6125 l 0.3767 γv 0.0378
α2 0.5960 ǫ –0.3348 µL –0.0357
βhv 0.5817 s 0.2945 cm -0.0271
βvh 0.5815 σ –0.1808 ηh 0.0178
θ 0.5078 µP –0.1594 η1 -0.0161
a 0.4810 µh 0.1306 µE -0.0113
µv –0.3911 γh –0.0605 ξ –0.0109
ΓL 0.4195 ηv 0.0578 δ -0.0077
ΓE 0.3888 µb 0.0439 η2 0.0037
Λh –0.3876 ω 0.0410

5.1 Strategy A: Vaccination combined with individual pro-

tection only

In this strategy, we consider the model (3) without vector control. we set α2 = 1
and cm = η1 = η2 = 0 and vary the parameter related to individual potection,
namely α1, between 0 and 0.8. The values of other parameters are given in Table
4. Figure 8 shows that the increase of the individual protection level, permit to
reduce the total number of infected humans, and the total number of infected
vectors, but has no impact on the populations of eggs and larvae. However, from
this figure, it is clear that, this reduction is significant if the level of protection must
turn around 80% at least, and this, over a long period. Thus, continuous education
campaigns of people, on how to protect themselves individually, are important in
the fight against the spread of arboviral diseases.

5.2 Strategy B: Vaccination combined with adulticide

Nowadays, Deltamethrin is the most used insecticide for impregnation of bednets,
because it is a highly effective compound on mosquitoes at of very low doses [55].
However, when sprayed in an open environment, Deltamethrin seems to be effec-
tive only during a couple of hours [56, 15]. Also, its use over a long period and
continuously, leads to strong resistance of the wild populations of Aedes aegypti,
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Figure 7: Local (A) and global (B) sensitivity indices for R0 against model param-
eters show that the local sensitivity results are not robust: the order of the most
important parameters for R0 from the local sensitivity analysis not match those
from the global sensitivity analysis.

for example [55]. The mortality of the mosquitoes after spraying varied between
20% and 80%. To be more realistic, we will consider the technique called ”pulse
control” (the control is not continuous in time order is effective only one day every
T days) [15]. To this aims, we consider that spraying is carried out once a week,
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Figure 8: Simulations results showing how the total number of infected humans
and the total number of infected vectors decrease when the individual protection
increase. All others parameters values are in Table 4.

and this, for 100 days. We set α1 = η1 = η2 = 0 and α2 = 1.
Simulation result on figure 9 show that a mortality rate induced by the use of

larvicide, cm, greater than 60% has a significant impact on the decrease of the total
number of infected humans and vectors, and on the decrease of eggs and larvae.
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Figure 9: Simulations results showing how the total number of infected vectors,
eggs and larvae populations dicrease when the aldulticide control parameter cm
increase. All others parameters values are in Table 4.

5.3 Strategy C: Vaccination combined with larvicide

Since the efficacy and the duration of a larvicide (Bti=Bacillus thuringiensis var.
israelensis) strongly depend on several factors like water quality, exposure, and
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even the type of breeding sites. To be more realistic, we thus consider that the
duration can vary between a couple of days and two weeks [15, 57]. We consider
that the larvicide spraying happens once every 15 days, and this, on a period of
100 days. We set α1 = cm = 0 and α2 = 1.

The figure 10 shows that the use of larvicide has no significant impact on
the decrease of total number of infected humans and vectors, as well as on the
number of eggs and larvae. This can be justified by the fact that the use of
conventional larvicides neccssite certain constraints on their use: they can not be
used continuously, their duration of action decreases with time. In addition, eggs
of certain populations of vectors such as Aedes albopictus, come into prolonged
hibernation when conditions in the breading sites are not conducive to their good
growth (this is justified by the control rate value η1 = 0.001). Also, the pupae do
not consume anything, until reaching the mature stage.

5.4 Strategy D: Vaccination combined with mechanical con-

trol

The effectiveness of this type of control depends largely of the awareness campaigns
of local populations, in the sense that, to reduce the proliferation of vectors, people
must always keep their environment clean by the systematic destruction of breeding
sites. So, we consider that this type of control can be achieved by local populations,
and this, every daily. We set α1 = cm = 0 = η1 = η2.

The figure 11 shows that this type of control is appropriate in the fight against
the proliferation of vectors. This can only be possible by the multiplication of local
populations awareness campaigns.

5.5 Strategy E: Combining vaccination, individual protec-
tion and adulticide

In this strategy, we consider the model (3) without larvicide and mechanical con-
trol. we set α2 = 1 and η1 = η2 = 0 and vary the parameter related to individual
potection and the use of adulticide, namely α1 and cm, respectively, between 0 and
0.8. The values of other parameters are given in Table 4. Figure 12 shows that the
use of the combination of these controls decreases significantly the total number of
infected humans, infected vectors as well as the number of eggs and larvae, when
its associated rates, namely α1 and cm, are greater than 0.3 and 0.2, respectively.
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Figure 10: Simulations results showing how the total number of infected huamans,
the total number of infected vectors, and the eggs and larvae populations dicrease
whith the larvicide control associated parameters η1 and η2. All others parameters
values are in Table 4.
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Figure 11: Simulations results showing how the total number of infected vectors,
eggs and larvae populations dicrease whith the mechanical control associated pa-
rameter α2. All others parameters values are in Table 4.

5.6 Strategy F: Combining vaccination, individual protec-
tion and mechanical control

Like for strategy E, the combined use of these three types of controls has a positive
impact in the vector control.
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Figure 12: Simulations results showing the advantage that we have to combine
vaccination, individual protection and adulticide.

6 Conclusion

In this paper, we derived and analyzed a deterministic model for the transmission of
arboviral diseases with non linear form of infection and complete stage structured
model for vectors, which takes into account a vaccination with waning immunity,
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Figure 13: Simulations results showing the advantage that we have to combine
vaccination, individual protection and mechanical control.

individual protection and vector control strategies.
We begin by calculated the net reproductive number N and the basic repro-

duction number, R0, and investigated the existence and stability of equilibria. The
stability analysis reveals that for N ≤ 1, the trivial equilibrium is globally asymp-
totically stable. When N > 1 and R0 < 1, the disease–free equilibrium is locally
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asymptotically stable. Under certain condition, the disease–free equilibrium is also
globally asymptotically stable. We found that the model exhibits backward bifur-
cation. The epidemiological implication of this phenomenon is that for effective
eradication and control of diseases, R0 should be less than a critical values less
than one. Thus, we proved, that the disease–induced death is the principal cause
of the backward bifurcation phenomenon, in the full model and the corresponding
model without vaccination. However, the substitution of standard incidence with
mass action incidence removes the backward bifurcation phenomenon.

We proved that the model admits at least one endemic equilibrium, and only
one endemic equilibrium point in the model without disease–induced death, and in
the model with mass action incidences, whenever the basic reproduction number
is great than unity.

Using parameters value of Chikungunya and Dengue fever, we calculated the
sensitivity indices of the basic reproduction number, R0, to the parameters in the
model using both local and global methods. Local sensitivity analysis showed that
the model system is most sensitive to a, the average number of mosquitoes bites,
followed by µv, the natural mortality rate of vectors. Considering that all input
parameters vary simultaneously, we use the Latin Hypercube Sampling (LHS) to
estimate statistically the mean value of the basic reproduction number. The result
showed that the model is in an endemic state, since the mean of R0 is 2.0642,
which is greater than unity. Then, using global sensitivity analyisis, we computed
the Partial Rank Correlation Coefficients between R0 and each parameter of the
model. Unlike the local sensitivity analysis, the global analysis showed that the
parameters α1, the human protection rate, has the highest influence on R0. The
other parameter with an important effect are α2, the efficacity of the mechanical
control, βhv, the probability of transmission of infection from an infectious human
to a susceptible vector, βvh, the probability of transmission of infection from an
infectious vector to a susceptible human, and θ, the maturation rate from pupae
to adult vectors. This showed that the order of the most important parameters for
R0 from the local sensitivity analysis not match those from the global sensitivity
analysis. So, the local sensitivity results are not robust.

To assess the impact of combination of different controls, we conduct several
simulations, using the called ”pulse control” technique. According to the numerical
results, we conclude that the use of an imperfect vaccine with low efficiency com-
bined with high individual protection and good vector control statgie (reduction of
breeding sites by local populations action, chemical action and use of adulticide),
can effectively reduce the transmission of the pathogen and the proliferation of
vector populations. However, due to lack of resources to implement these control
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mechanisms, developing countries should focus on the education of the local popu-
lations. Because, unlike diseases such as malaria whose breeding sites of Anopheles
mosquitoes are known, those of arboviruses (old tires, flower pots, vases and other
hollow...) are smaller and unknown for many local populations, which favor the
development of vectors.

Thus, pending the development of a high efficacy vaccine and long-acting, in-
dividual protection and the various vector control methods are effective ways to
overcome the arboviruses, for developing countries. In addition, the realization of
these combination of controls may be too expensive, because it means that, for
constant controls, we must keep them at levels high, and this, for a long time.
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A Usefull result.

We use the following result to compute the threshold Rc at Eq. (11).

Lemma A.1 ([37]). Let M be a square Metzler matrix written in block form
(

A B
C D

)

with A and D square matrices. M is Metzler stable if and only if

matrices A and D − CA−1B are Metzler stable.

B Proof of Theorem 3.1.

The Jacobian matrix of f at the Trivial equilibrium is given by

Df(E0) =

(

Df1 Df2
Df3 Df4

)

. (27)
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where

Df1 =

















−k1 ω 0 0 0 0
ξ −k2 0 0 0 0
0 0 −k3 0 0 0
0 0 γh −k4 0 0
0 0 0 σ −µh 0
0 0 0 0 0 −k8

















, Df3 =













0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 µb

0 0 0 0 0 0
0 0 0 0 0 0













,

Df2 =





























−
a(1− α1)βhvηvS

0
h

N0
h

−
a(1− α1)βhvS

0
h

N0
h

0 0 0

−
a(1− α1)βhvπηvV

0
h

N0
h

−
a(1 − α1)βhvπV

0
h

N0
h

0 0 0

a(1− α1)βhvηvH
0

N0
h

a(1− α1)βhvH
0

N0
h

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 θ





























,

Df4 =













−k9 0 0 0 0
γv −k8 0 0 0
µb µb −k5 0 0
0 0 s −k6 0
0 0 0 l −k7













, and H0 = S0
h + πV 0

h .

The characteristic polynomial of Df(E0) is given by:

P (λ) = − (λ+ k3) (λ+ k4) (λ+ k8) (λ+ k9) (λ+ µh)φ1(λ)φ2(λ)

where
φ1(λ) = λ2 + (k2 + k1)λ+ µh(k2 + ξ) and φ2(λ) = λ4 + A1λ

3 + A2λ
2 + A3λ + A4.

we have set

A1 = k5 + k6 + k7 + k8, A2 = k8(k5 + k6 + k7) + k7(k5 + k6) + k5k6,
A3 = k5k6k7 + k8(k5k6 + k7(k5 + k6)), A4 = k5k6k7k8(1−N ).

The roots of P (λ) are λ1 = −µh, λ1 = −k1, λ2 = −k3, λ3 = −k4, λ4 = −k8,
λ4 = −k9, and the others roots are the roots of φ1(λ) and φ2(λ). The real part
of roots of φ1(λ) are negative. Since N < 1, it is clear that all coefficients of
φ2(λ) are always positive. Now we just have to verify that the Routh–Hurwitz

criterion holds for polynomial φ2(λ). To this aim, setting H1 = A1, H2 =

∣

∣

∣

∣

A1 1
A3 A2

∣

∣

∣

∣

,
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H3 =

∣

∣

∣

∣

∣

∣

A1 1 0
A3 A2 A1

0 A4 A3

∣

∣

∣

∣

∣

∣

, H4 =

∣

∣

∣

∣

∣

∣

∣

∣

A1 1 0 0
A3 A2 A1 1
0 A4 A3 A2

0 0 0 A4

∣

∣

∣

∣

∣

∣

∣

∣

= A4H3.

The Routh-Hurwitz criterion of stability of the trivial equilibrium E0 is given by















H1 > 0
H2 > 0
H3 > 0
H4 > 0

⇔















H1 > 0
H2 > 0
H3 > 0
A4 > 0

(28)

We have H1 = A1 = k5 + k6 + k7 + k8 > 0,

H2 = A1A2 −A3

= (k7 + k6 + k5) k
2
8 +

(

k2
7 + (2k6 + 2k5) k7 + k2

6 + 2k5k6 + k2
5

)

k8

+ (k6 + k5) k
2
7 +

(

k2
6 + 2k5k6 + k2

5

)

k7 + k5k
2
6 + k2

5k6

H3 = A1A2A3 −A2

1
A4 −A2

3

= (k6 + k5)
(

k2
7
+ (k6 + k5) k7 + k5k6

)

k3
8

+
(

µblsθ + (k6 + k5) k
3

7
+ 2(k6 + k5)

2k2
7
+
(

k3
6
+ 4k5k

2

6
+ 4k2

5
k6 + k3

5

)

k7 + k5k
3

6
+ 2k2

5
k2
6
+ k3

5
k6
)

k2
8

+
[

(2k7 + 2k6 + 2k5)µblsθ +
(

k26 + 2k5k6 + k25
)

k37 +
(

k36 + 4k5k
2

6 + 4k25k6 + k35
)

k27

+
(

2k5k
3

6 + 4k25k
2

6 + 2k35k6
)

k7 + k25k
3

6 + k35k
2

6

]

k8 +
(

k27 + (2k6 + 2k5) k7 + k26 + 2k5k6 + k25
)

µblsθ

+
(

k5k
2

6 + k25k6
)

k37 +
(

k5k
3

6 + 2k25k
2

6 + k35k6
)

k27 +
(

k25k
3

6 + k35k
2

6

]

k7

We always have H1 > 0, H2 > 0, H3 > 0 and H4 > 0 if N < 1. Thus, the trivial
equilibrium E0 is locally asymptotically stable whenever N < 1.

We assume the net reproductive number N > 1. Following the procedure and
the notation in [35], we may obtain the basic reproduction number R0 as the dom-
inant eigenvalue of the next–generation matrix [34, 35]. Observe that model (3)
has four infected populations, namely Eh, Ih, Ev, Iv. It follows that the matrices
F and V defined in [35], which take into account the new infection terms and
remaining transfer terms, respectively, are given by

F =

















0 0
a(1− α1)βhvηvH

0

N0
h

a(1− α1)βhvH
0

N0
h

0 0 0 0
a(1− α1)βvhηvS

0
v

N0
h

a(1− α1)βvhS
0
v

N0
h

0 0

0 0 0 0

















,
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V =









k3 0 0 0
−γh k4 0 0
0 0 k9 0
0 0 −γv k8









.

The dominant eigenvalue of the next–generation matrix FV −1 is given by (8).
The local stability of the disease–free equilibrium E1 is a direct consequence of
Theorem 2 of [35]. This ends the proof.

C Proof of Theorem 3.2.

Setting Y = X − TE with X = (Sh, Vh, Eh, Ih, Rh, Sv, Ev, Iv, E, L, P )T , H0 =

(S0
h + πV 0

h ), A99 =

(

k5 + µb

Sv + Ev + Iv
KE

)

, and A10 =

(

k6 + s
E

KL

)

. we can

rewrite (3) in the following manner

dY

dt
= B(Y )Y (29)

where B(Y ) =

(

A(Y ) B(Y )
C(Y ) D(Y )

)

, with

A(Y ) =













−(λc
h + k1) ω 0 0 0 0
ξ −(πλc

h + k2) 0 0 0 0
λc
h πλc

h −k3 0 0 0
0 0 γh −k4 0 0
0 0 0 σ −µh 0




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



,
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


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,

C(Y ) =


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


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0 0 0 0 0 −(λc
v + k8)

0 0 0 0 0 λc
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













, D(Y ) =

















0 0 0 0 θ

−k9 0 0 0 0
γv −k8 0 0 0
µb µb −A99 0 0
0 0 s −A10 0
0 0 0 l −k7

















.
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It is clear that Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is the only equilibrium.
Then it suffices to consider the following Lyapunov function L(Y ) =< g, Y >

were g =

(

1, 1, 1, 1, 1, 1, 1, 1,
k8
µb

,
k5k8
µbs

,
k5k6k8
µbsl

)

. Straightforward computations

lead that

L̇(Y ) =< g, Ẏ >
def
=< g,B(Y )Y >

= −µhY1 − µhY2 − µhY3 − (µh + δ)Y4 − µhY5

−
k8
KE

(Y6 + Y7 + Y8)−
k5k8
µbKL

Y9Y10 + θ

(

1−
1

N

)

Y11

We have L̇(Y ) < 0 if N ≤ 1 and L̇(Y ) = 0 if Yi = 0, i = 1, 2, . . . , 11 (i.e Sh = S0
h,

Vh = V 0
h and Eh = Ih = Rh = Sv = Ev = Iv = E = L = P = 0). Moreover,

the maximal invariant set contained in
{

L|L̇(Y ) = 0
}

is (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Thus, from Lyapunov theory, we deduce that (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and thus,
E0, is GAS if and only if N ≤ 1.

D Proof of Theorem 3.5.

In order to determine the existence of endemic equilibria, i. e. equilibria with all
positive components, say

E∗∗ = (S∗

h, V
∗

h , E
∗

h, I
∗

h, R
∗

h, S
∗

v , E
∗

v , I
∗

v , E, L, P ) ,

we have to look for the solution of the algebraic system of equations obtained by
equating the right sides of system (3) to zero. In this way we consider two case:

(i) Special case: Absence of disease–induced death in human (δ = 0)
Note that in the absence of disease–induced death in human population, we have
N∗

h = N0
h = Λh/µh. Let

λc,∗
h =

a(1− α1)βhv(ηvE
∗
v + I∗v )

N∗
h

, λc,∗
v =

a(1− α1)βvh(ηhE
∗
h + I∗h)

N∗
h

(30)
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be the forces of infection of humans and vectors at steady state, respectively.
Solving the equations in (3) at steady state gives

S∗
h =

Λh(πλ
c,∗
h + k2)

µh(k2 + ξ) + λc,∗
h (πλc,∗

h + πk1 + k2)
, V ∗

h =
ξS∗

h

(πλc,∗
h + k2)

,

E∗
h =

λc,∗
h (S∗

h + πV ∗
h )

k3
, I∗h =

γhλ
c,∗
h (S∗

h + πV ∗
h )

k3k4
, R∗

h =
σγhλ

c,∗
h (S∗

h + πV ∗
h )

µhk3k4
,

(31)
and

S∗
v =

θP

(λc,∗
v + k8)

, E∗
v =

θPλc,∗
v

k9(λ
c,∗
v + k8)

, I∗v =
γvθPλc,∗

v

k8k9(λ
c,∗
v + k8)

,

E =
µbθKEP

(k5k8KE + µbθP )
, L =

µbθsKEKLP

k6KL(k5k8KE + µbθP ) + sµbθKEP
,

(32)

where P is solution of the following equation

f(P ) = −k7P [µbθ(sKE + k6KL)P + k5k6k8KEKL(N − 1)] = 0 (33)

A direct resolution of the above equation give P = 0 or P =
k5k6k8KEKL(N − 1)

µbθ(sKE + k6KL)
.

Note that P = 0 corresponds to the trivial equilibrium E0. Now we consider
P > 0 i.e. N > 1. Replacing (31) and (32) in (30) give

λc,∗
h =

a(1− α1)βhvµh

Λh

(

ηv
θPλ∗

v

k9(λ∗
v + k8)

+
γvθPλ∗

v

k8k9(λ∗
v + k8)

)

(34)

λc,∗
v =

a(1− α1)βvhµh

Λh

(

ηh
λ∗
h(S

∗
h + πV ∗

h )

k3
+

γhλ
∗
h(S

∗
h + πV ∗

h )

k3k4

)

(35)

Substuting (35) in (34) give

(k6KL + sKE) λ
∗

h

[

a2(λ
∗

h)
2 + a1λ

∗

h + a0
]

= 0 (36)

where a2, a1 and a0 are given by

Rb =
(πξ + k2)

π(ξ + k2)

(

(k1π + k2)

µh

+
a(1− α1)βvh(γh + k4ηh)(πξ + k2)

k3k4k8

)

,

a2 = (a(1− α1)βvhµh(γh + k4ηh) + k3k4k8) k9µbΛhπ,

a1 =
k3k4k8k9µbΛh (ξ + k2)µhπ

(πξ + k2)
(Rb − R1),

a0 = µhk3k4k8k9µbΛh(ξ + k2) (1− R1) .

(37)
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The trivial solution λ∗
h = 0 of (36) corresponds to the disease–free equilibrium

E1. Now, we just look the equilibria when λ∗
h > 0. Note that coefficient a2 is

always positive and a0 is less (resp. greather) than unity if and only if R1 > 1
(resp. R1 < 1). Thus model system (3), in absence of disease–induced death in
human population (δ = 0), admits only one endemic equilibrium whenever R0 > 1.
Since the sign of coefficient a1 depend of the value of parameter, we investigate
the possibility of occurence of backward bifurcation phenomenon when R0 < 1.
Furthermore, consider the inequality

R1 ≤ Rb. (38)

Since a2 is always positive and a0 is always positive whenever R0 < 1, then, the
occurence of backward bifurcation phenomenon depend of the sign of coefficient a1.
The coefficent a1 is always positive if and only if condition (38) holds (i.e R1 < Rb).
It follows that the disease–free equilibrium is the unique equilibrium when N > 1
and R0 < 1. Now if Rb < R1 < 1, then in addition to the DFE E1, there exists
two endemic equilibria whenever ∆ = a21 − 4a2a0 > 0. However, Rb < R1 <

1 ⇒ Rb < 1 ⇔ βvh < −
[π2ξ2 + (µhπ

2 + (2ω + µh)π) ξ + (ω + µh)
2] k3k4k8

a(1− α1)µh(πξ + k2)2(γh + k4ηh)
< 0.

Since all parameter of model (3) are nonnegative, we conclude that the condition
Rb < R1 < 1 does not hold. And thus, the backward bifurcation never occurs in
the absence of disease–induced death in human.

(ii) Presence of disease induced death in human (δ 6= 0). In this case, we have

N∗
h =

Λh − δI∗h
µh

. Applying the same procedure as case (i), we obtain that λ∗
h at

steady state is solution of the following equation

f(λ∗

h) = λ∗

h

[

c4(λ
∗

h)
4 + c3(λ

∗

h)
3 + c2(λ

∗

h)
2 + c1λ

∗

h + c0
]

= 0, (39)

where

c4 = −π2k9K12µbΛh (k3k4 − δγh) (k10aµh(1− α1)βvh + k8(k3k4 − δγh)) ,

c3 = π(k3k4k5k6k10k11a
2µ2

h
(1 − α1)

2βhvnπβvhKEKL + 2k9k10K12aµbδΛhµhγhπ(1− α1)βvhξ

− k3k4k9k10K12aµbΛhµhπ(1 − α1)βvhξ − 2k8k9K12µbδ
2Λhγ

2

hπξ + 2k3k4k8k9K12µbδΛhγhπξ

− k1k3k4k9k10K12aµbΛhµhπ(1− α1)βvh + 2k2k9k10K12aµbδΛhµhγh(1− α1)βvh

− 2k2k3k4k9k10K12aµbΛhµh(1− α1)βvh + 2k1k3k4k8k9K12µbδΛhγhπ − 2k1k
2

3
k2
4
k8k9K12µbΛhπ

− 2k2k8k9K12µbδ
2Λhγ

2

h
+ 4k2k3k4k8k9K12µbδΛhγh − 2k2k

2

3
k2
4
k8k9K12µbΛh),
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c2 = k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπ
2βvhξKEKL

+ k1k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπ
2βvhKEKL

+ 2k2k3k4k5k6k10k11a
2µ2

h
(1− α1)

2βhvnπβvhKEKL + k9k10K12aµbδΛhµhγhπ
2(1 − α1)βvhξ

2

− k8k9K12µbδ
2Λhγ

2

h
π2ξ2 − k1k3k4k9k10K12aµbΛhµhπ

2(1 − α1)βvhξ

+ k3k4k9k10K12aµbΛhµhωπ(1 − α1)βvhξ + 2k2k9k10K12aµbδΛhµhγhπ(1 − α1)βvhξ

− k2k3k4k9k10K12aµbΛhµhπ(1 − α1)βvhξ + 2k1k3k4k8k9K12µbδΛhγhπ
2ξ

− 2k3k4k8k9K12µbδΛhγhωπξ + 2k23k
2

4k8k9K12µbΛhωπξ − 2k2k8k9K12µbδ
2Λhγ

2

h
πξ

+ 2k2k3k4k8k9K12µbδΛhγhπξ − 2k1k2k3k4k9k10K12aµbΛhµh(1− α1)πβvh

+ k22k9k10K12aµbδΛhµhγh(1− α1)βvh − k22k3k4k9k10K12aµbΛhµh(1 − α1)βvh

− k21k
2

3k
2

4k8k9K12µbΛhπ
2 + 4k1k2k3k4k8k9K12µbδΛhγhπ − 4k1k2k

2

3k
2

4k8k9K12µbΛhπ

− k22k8k9K12µbδ
2Λhγ

2

h
+ 2k22k3k4k8k9K12µbδΛhγh − k22k

2

3k
2

4k8k9K12µbΛh,

c1 = ((k1k3k4k5k6k10k11a
2µ2

h(1− α1)βhvnπ
2 + k3k4k5k6k10k11a

2µ2

h(1− α1)
2βhvn(k2 − ω)π)βvhξ

+ (2k1k2k3k4k5k6k10k11a
2µ2

h(1 − α1)βhvnπ + k22k3k4k5k6k10k11a
2µ2

h(1 − α1)βhvn)(1− α1)βvh)KEKL

+ (k3k4k9k10K12aµbΛhµhωπ(1 − α1)βvh − 2k3k4k8k9K12µbδΛhγhωπ)ξ
2

+ ((k2k3k4k9k10K12aµbΛhµhω − k1k2k3k4k9k10K12aµbΛhµhπ)(1 − α1)βvh

+ (2k1k
2

3
k2
4
k8k9K12µbΛhω + 2k1k2k3k4k8k9K12µbδΛhγh)π

+ (2k2k
2

3k
2

4k8k9K12µbΛh − 2k2k3k4k8k9K12µbδΛhγh)ω)ξ

− k1k
2

2k3k4k9k10K12aµbΛhµh(1− α1)βvh − 2k21k2k
2

3k
2

4k8k9K12µbΛhπ

+ 2k1k
2

2
k3k4k8k9K12µbδΛhγh − 2k1k

2

2
k2
3
k2
4
k8k9K12µbΛh,

c0 = k2
3k

2
4k8k9K12µbΛhµ

2
h(k2 + ξ)2

(

R2
0 − 1

)

,

with k10 = γh + ηhk4, k11 = γv + ηvk8, K12 = (sKE + k6KL) and n = N − 1. Notes
that c4 is always negative and c0 is positive (resp. negative) if R0 is greather (resp.
less) that the unity. It follows, depending of the sign of coefficients c3, c2 and
c1, that the model system (3) admits at least one endemic equilibrium whenever
R0 > 1 and the phenomenon of backward (resp. forward) bifurcation can occurs
when R0 < 1 (resp. R0 > 1). This ends the proof.
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