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ABSTRACT

Magnetic Shape Memory Alloys (MSMAs) have been the subject of much research in recent years as
potential high-actuation-energy multifunctional materials. In this work we analyze coupled magneto-
mechanical stability analysis of a variant reorientation mechanism for a single crystal based on a pro-
posed 3-D magneto-mechanically coupled constitutive equations, derived in a consistent thermody-
namic way. Discrete symmetry is considered to take into account single crystal anisotropy in the
modeling. Analytical results are presented to demonstrate the influence of coupling and anisotropy in the
stability of such a material system. Finally, a coupled Boundary Value Problem (BVP) using finite element
analysis is performed by considering actual specimen geometry and boundary conditions that are used in
the experiments. The numerical simulation reveals localization zones in the solutions due to the loss of
ellipticity of the coupled magneto-mechanical problem.

1. Introduction

MSMAs are best known for their unique ability to produce
Magnetic Field Induced Strains (MFIS) up to 10% under a magnetic
field (O'Handley, 1998; O'Handley et al., 2000; Miillner et al., 2003;
Shield, 2003). Some of the commonly used MSMA material systems
are NiMnGa (Murray et al., 2001a; O'Handley et al., 2003; Heczko
et al, 2003; Likhachev et al., 2004), FePd (James and Wuttig,
1998; Yamamoto et al., 2004) and NiMnX, where X = In,Sn,Sb
(Sutoua et al.,, 2004). The unique magneto-mechanical coupling
makes MSMAs promising materials for multifunctional structures,
actuator and sensor applications (Pasquale, 2003; Tellinen et al.,
2002; Sarawate and Dapino, 2006, 2007; Karaman et al., 2007).

The coupled MSMA behaviors can be modeled by considering
the material as an electromagnetic continuum. Extensive work on
different electromagnetic formulations had been proposed in the
literature (Toupin, 1956, 1960; Penfield and Haus, 1967; Hutter
et al,, 2006; Eringen and Maugin, 1990) based on different notion
of breaking up long range and short range forces. In a recent work,

(DeSimone, 1993; DeSimone and Podio-Guidugli, 1996) proposed a
continuum theory for deformable ferromagnetic materials.
Dorfmann and Ogden (2004, 2005) derived a theory of nonlinear
magneto-elasticity for magneto sensitive elastomers. McMeeking
and Landis (2005), McMeeking et al. (2007) presented a study of
electrostatic forces on large deformations of polarizable materials.
A theory for the equilibrium response of magneto-elastic mem-
branes is formulated by Steigmann (2004, 2009). Podio-Guidugli
et al. (2010) formulated a continuum theory for the evolution of
magnetization and temperature in a rigid magnetic body for ferro/
paramagnetic transition. The variational formulations for general
magneto-mechanical materials have been proposed by many au-
thors Kankanala and Triantafyllidis (2004), Ericksen (2006),
Bustamante et al. (2008), Miehe et al. (2011b,a).

The macroscopically observable MFIS in MSMA:s is caused by the
microstructural reorientation of martensitic variants (O'Handley
et al., 2000; Karaca et al., 2006), field induced phase trans-
formation (Sutoua et al., 2004; Kainuma et al., 2006; Karaca et al.,
2007, 2009) or a combination of the two mechanisms. In this
work we will focus on variant reorientation. In the variant reor-
ientation mechanism, the variants have different preferred di-
rections of magnetization and the magnetic field is applied to select
certain variants among others, which results in the macroscopic
shape change.
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There are two major modeling approaches for variant reor-
ientation mechanism. In microstructural based models, the
resulting macroscopic strain and magnetization response are pre-
dicted by minimizing a free energy functional. Details on the
microstructural based modeling approach can be found in (James
and Wuttig, 1998; DeSimone and James, 1997; O'Handley, 1998;
Murray et al., 2001b; DeSimone and James, 2002, 2003). The sec-
ond approach to study the material behavior is through thermo-
dynamics based phenomenological modeling (Hirsinger and
Lexcellent, 2003b, a; Kiefer and Lagoudas, 2005; Kiefer et al.,
2006; Kiefer and Lagoudas, 2009). Most recent development of a
variational modeling of variant reorientation in MSMAs can be
found in Wang and Steinmann (2012). Modeling of field induced
phase transformation with detailed experimental characterization
can be found in Haldar et al. (2014). The effects of magnetic body
force and couple on the variant reorientation mechanism are
investigated through a coupled boundary value problem in Haldar
et al. (2011).

One of the major challenges for understanding the magneto-
static response of the MSMAs is the experimental measurement of
the magnetic field inside the material. The measurements of the
magnetic field are strongly influenced by the shape and size of the
specimens Shield (2003). In general, the shape of the specimen,
used in the experiments, is a prismatic bar with a rectangular cross
section. A compressive stress is applied along the axis of the pris-
matic bar and a magnetic field is applied along the perpendicular
direction of the axis Shield (2003), Kiefer et al. (2006). In order to
build a reliable constitutive model, one needs to relate the
measured data of the applied magnetic field with the magnetic
field in the material. A numerical technique to correct the consti-
tutive responses from the demagnetization effect is also described
in Haldar et al. (2011).

During the reorientation process, the nonuniformity caused by
the shape effect combined with the strong nonlinear constitutive
response in magnetization leads to localization of the numerical
solution. We investigated this phenomenon in Haldar et al. (2010),
where we found that the magnetic field during reorientation
changes drastically in the band like localized zones.

In this study, there are two major contributions. The first is that
the considered constitutive equation includes single crystal
anisotropy. A rate form for the mechanical and magnetization
constitutive equations is derived to facilitate the stability analysis in
an efficient way. We analytically perform stability analysis for
magneto-mechanical coupling with anisotropy, where our previous
work was confined only within magnetostatic analysis with
isotropic assumption. We found that a material parameter due to
anisotropy indeed influences the stability of the system. The second
major point is the implementation of the coupled magneto-
mechanical stability analysis. In the FE analysis, our main effort is
to understand how instability caused by the magnetic behavior
affects the mechanical field variables. So, we only considered isot-
ropy in the FE analysis to solve a relatively simple problem. Addi-
tional efforts are necessary to see the influences of anisotropy in the
numerical analysis, which are not considered in this study.

The organization of the paper is as follows: In Section 2, we
briefly introduce a thermodynamic based continuum framework
for a coupled magneto-mechanical dissipative system. A specific
form of the Gibbs free energy is proposed in Section 3 and the
constitutive equations are derived with discrete symmetry re-
strictions. An incremental form of the constitutive equations with
magnetic and mechanical tangent stiffness matrices is presented in
4 and the stability analysis of such a coupled system is presented in
Section 5. Some numerical examples are presented in Section 6.
Finally, in Section 7 we solved a boundary value problem to
demonstrate the appearance of band-like structure due to loss of

ellipticity. Parameter identifications and validation of the newly
proposed constitutive equations are essential. As it is not our main
focus, we present a concise but detailed descriptions in the B.

2. Continuum approach for single crystal MSMA modeling

In this section we briefly outline the thermodynamic framework
to describe the constitutive equations. Evolution equations of the
internal state variables, introduced to capture the hysteretic
behavior of the magneto-mechanical response, are also discussed.

2.1. Thermodynamic framework

We denote the reference configuration by Qo, which is free from
any externally applied stimuli and the current configuration by Q.
The body consists of material points X € Qg. The spatial position in
the deformed configuration is denoted by x = ¢(X;t) and the
deformation gradient is defined by F = Vx¢ with ] = detF > 0. In the
deformed configuration Q, we denote the magnetic induction by b,
the magnetic field by h and the magnetization vector by m. The free
current (conductive) density of the body is neglected in this study.

The constitutive response of MSMAs undergoing variant reor-
ientation will depend on state variables such as appropriate mea-
sures of stress and magnetic field and also internal state variables to
account for loading path dependence due to the hysteretic response
caused by dissipation. Using the Coleman and Noll procedure
(Coleman and Noll, 1963), the following constitutive equations can
be obtained

E= —poG.gt, (1a)
poM = —poG .y, (1b)
s=-G,r, (10)
—pG,z,- ;0. (1d)

Here E = 1(C 1), C = F'F, p is the density, M = JF 'm is the
magnetization, H = F'h is the magnetic field and {Z} is the set of
internal variables in Q. G(SE,H, T,{Z}) is the Gibbs free energy,
SE = JF'6FF T where of=0 — oV, & is the total stress (Toupin, 1956,
1960) generated due to combined magneto-mechanical effect (i.e. if
t is the total traction, then t = on), ¢ is the Maxwell stress in the
deformed configuration and T is the temperature. On deriving Eq.
(1), one needs to start from the internal energy and introduce a
proper Legendre transformation with regard to the deformation
gradient F and magnetic induction b in the deformed configuration.
Detailed derivations can be found in (Haldar and Lagoudas, 2014;
Haldar, 2012). Our next step is to define the set of internal vari-
ables {7}.

2.1.1. Internal state variables

We assume that the volume fraction of the newly oriented field
induced variant is £. We further consider that the inelastic strain E"
and the internal magnetization M’, generated during variant reor-
ientation, are tensorial internal variables of order two and one
respectively. The internal magnetization takes into account the
phenomenological effect of different micro-magnetic mechanisms
like the rotation of magnetization vector and the evolution of
magnetic domain walls. Finally, we consider the mixing energy g" of
the reorientation as an internal variable. So the complete list of the
internal state variables is {Z} = {E",M',¢,g"}. Expanding the en-
tropy inequality (1d), we obtain



TE" ZEr+ﬂMr'Mr+7Tgé+7Tgrgr'20. (2)

The thermodynamic driving forces are denoted by

g = —pG' E>
™ = —pGY M
m: = —pG ¢,
Tgr = 7/)6' gr-

We further assume that the reorientation strain rates obey the
following flow rules

E — ATE. (3)

The A" is the tensor which takes into account the direction and
magnitude of the generated strain during variant reorientation.
Similarly we consider that the rate of magnetization vector
generated during reorientation follows the following flow rules

.y .

M =7'¢, (4)
where 4" takes into account the direction and magnitude of the
internal magnetization due to the evolution of £ Note that the
single scalar variable & relates the 6 independent components of the
inelastic reorientation tensor E" and 3 independent components of
the magnetization vector M" through the evolution equations and
so the model is capable of taking into account any arbitrary
magneto-mechanical loading conditions.

The evolution of interaction or mixing energy between the
martensitic variants during reorientation (g") can be represented
by

g =f¢ (5)

where f" is the hardening function.
The total thermodynamic driving force «" due to variant reor-
ientation is given by

n =mp AT+ oy + e+ merfT (6)

The following transformation function, @, is then introduced,

>0 4o 7)

p— ﬂrin?
CI)'_{ E<0’ -

B

where Y" is a positive scalar associated with the internal dissipation
during reorientation. The proposed reorientation function is similar
to the transformation function used with conventional shape
memory behavior (Lagoudas et al., 1996; Qidwai and Lagoudas,
2000). It is assumed that the constraints of the reorientation pro-
cess follow the principle of maximum dissipation and can be
expressed in terms of the Kuhn Tucker type conditions (Simo and
Hughes, 1998)

®<0, ®=0. (8)

3. Proposed Gibbs free energy and constitutive equations for
variant reorientation

We denote the Gibbs free energy of the variant-1 and the
variant-2 by GY* and G"2 respectively. The Gibbs free energy of the
transforming phase is denoted by G¥1~V2, We write

G(S"H.T.E \M"2,g) =G" (S, H.T)
+ GV (ST H T E LM 5 g),
where
GV (S H T B M £,g) —£[G* (SFH,T) — GV (S, H,T)]
+G'(S* H.E,M") + G"¥(g).

G' and G™* are the Gibbs free energies due to the magneto-
inelastic deformation and the energy due to the mixing of the
two variants during reorientation. We determine the integrity basis
of the scalar function G for the above mentioned tensorial argu-
ments in the following subsections. Detailed group-theoretical
development to obtain the integrity basis for such a single crystal
material system can be found in Haldar and Lagoudas (2014). Here
we briefly present the applied part of the theoretical development
in a aim to calibrate the new model for the stability analysis.

3.1. Finite symmetry restriction for single crystal

The most widely used material for variant reorientation mechanism
is NiMnGa. The martensitic phase has 10 M structure with I4/mmm
space group. The classical point group is 4/mmm (Dgp,). The five mag-
netic point groups are 4 /mmm,4/mmm,4 /mmm, 4/mmm, 4/mmm.
Among them only the 4/mmm is ferromagnetic and the rest of the
members are antiferromagnetic (Cracknell, 1975). So we consider
4/mmm to generate the integrity basis.

There are three variants for tetragonal martensitic phase. We
denote variant-3, which has shorter length (c) along the z direction.
The x and y axes are along the longer side a (Fig. 1(a)). The ste-
reographic representation of the group elements of 4/mmm is
shown in Fig. 1(b). The notation of the diagram is followed from
Bradley and Cracknell (1972). The filled square (M) at the center
represents the 4-fold rotations along the z axis, which are
perpendicular to the plane of the paper and obey the right-hand
rule. A solid ellipse (@) denotes 2-fold rotation along the i—i axis.
The alpha-numeric labeling of the symmetry operations are placed
on the figure in the position to which the letter E is taken by that
operation. Cy, represents 360°/4 anticlockwise/clockwise rotation
along the z axis and Cy; is the 180° rotation along the i—i axis. We
select variant-1 (shorter axis is along the X; direction) by applying
traction on the single crystal along X;. The orientation of the initial
configuration of variant-1 is presented in Fig. 2. The variant-2 has
the shorter length along the X, direction. When the magnetic field
intensity is high enough along the direction of spontaneous
magnetization (X, direction), variant-2 becomes preferred. We as-
sume that these two structural phases are magneto-elastic.

3.2. Energetics of variant 1

In this subsection, we discuss the coupled magneto-mechanical
energetics of variant-1. The Gibbs free energy is considered as

GVt =G (sE,H, T0>
and the elements of the integrity basis are

I} =Hy, I%:H§+12-I§, 13:552;Ls§3, I,=SE,
Is= [5}351] + [51152] , Is= [553] , I7=55,S53, Ig=H,S],+H3S5;.



Xy

(a)

Fig.1. (a) Orientation of the variant-3. x,y,z is the body fixed (local) coordinate system and X1,X,X3 is the global coordinate system (b) Stereographic representation of the symmetry

elements and local reference axes for 4/mmm point group.

X4
(Global Frame)
r X
aY
a
a
c r4
c a X . 4 >
y
z Variant-1 Variant-2

Fig. 2. Orientations of variant-1 and variant-2.

At a given reference temperature Ty, we consider the following
quadratic expansion

1
G'(I, I, 13,14,15, 1,17, Is) = G}(To) — o ((1111 +axl} +ashy
0
-+ (141% —+ (151421 —+ 0615 —+ (1716 —+ 11817
+aglg + ajolils + a11lily
+ ‘1121314>>
(9)

and we write the mechanical and magnetic constitutive equations
1
as

! The symmetric part of a second order tensor A is denoted by Sym
Al=1Aa+A").

El = —pOle 5E
(2asly + arpls + ay11;)i®i + 2 (2ass§2 + a9H2>Sym[i® il
+ (2a413 + agSEs + agaly + agoly ) j®j + 4a;S5; Symjok]
+2 <2a65’§1 + a9H3) Symk®i + (agsg2 +apaly + aroh
+ 2a413>k®k,
(10)
and

uoM' = —poG" 1
<a1 + 2ayHy + aqg (ng + 553) + anSf])i + <2(13H2

+ (195’152>j + <2(13H3 + Clgsgl)k.

(11)

3.3. Energetics of variant-2

Similarly, considering the Gibbs free energy for variant-2 as
G% = G% (sE, H, TO),
the elements of the integrity basis are given by

J1=Ha, ]5 =Hj3 +12‘127 J3=55 ersfp Ja=55,,
Js=[St] "+ [S5s] " Jo=[S51]" Jr=SEsSTr, Js—HaShs +Hush
It should be noted that the global components of the elements of

the integrity basis of variant-2 are different than variant-1 due to
different orientation. GY2 can be expanded up to quadratic power as



1
G"(h.J2.J3.Ja-J5.J6.J7.J8) = G§(To) — s <b1]1 +bayJi + baly
+byJ3 + bsJ§ + beJs + b7Js + bal
+ baJg + b1aJ1J3 + b11J1)a
+ b1z/3J4)~
(12)
The strain and magnetization can then be expressed as
E2 = —poGVz »SE
- (2b4]3 +bgSE; +byals +b10]1)i®i+2 (2b65§2 +b9H1>
x Sym[i@j] + (2bsJa + broJs + b11J1)i ®j +2 (2b6S5 + boHs )
x Sym[j ® k] +4b;SE, Symk®i]
+ (2b4]3 +b35$1 +biaJs+ bmh)k®k.

(13)
and
poM? = —poG"2
— (2b3Hy + boS%; )i+ (b1 + 2byHy + bio (S5 + ST )
n b11$§2> i+ <2b3H3 + bgs§3)k.
(14)

3.4. Reorienting from variant-1 to variant 2

Considering the initial phase of the single crystal MSMA as the
stress favored variant-1 and applying magnetic field, field favored
variant-2 nucleates. During the nucleation process, the two variants
coexist and form twin structure. The internal strain and magneti-
zation thus generated are taken into account by considering the
internal variables E" and M". We consider the Gibbs free energy of
this intermediate phase as

G = G’(SRH, Er,Mr,T()).

Since variant-2 is nucleating, we impose symmetry restrictions
of variant-2 on the scalar function G'. Considering only first order
stress and inelastic strain coupling, the elements of the integrity
basis can be written as

Ky =S5 +SE,, Ky=SE,, Ks=E5;+E},, Ky=E5
r E1% | [cE 12 E 12
Ks=Hy, Ko=M5, Ky=[SE| +[sh]" Ke=][s§]
2 2 2
Kq :5535%’ Kio = [E12]" + [Ebs]”, Kin = [E5]
Kia = E53Sy. Kis =S5,E8y, Kia= [553 —Sfl] (B33 —E1y]
2 2
Kis = E},S5, + E53S5s, Kig=H3 +H3, Ki7 = [M§]"+ [M]]",
Kig = HsM5 + H{ M}

Moreover, considering first order coupling between stress and
inelastic strain and between field and internal magnetization, the
expanded form of the Gibbs free energy is written as

G'(K1, Kz, K3,Ky, Ks, Ko, K12, K13, K14, K15, Kig)
= GB(T()) — :—0(C11<1 K3 + CzK] K4 + C3K2K3 + C4K2K4 + C5K5K6

+ cgK12 + c7Kq3 + cgKi4 + c9Kqs5 + c10K13)-
(15)
The constitutive equations for the above proposed scalar func-
tion G' are given by
E = prCI,SE
= [c1(E53 + EYq) + C2Eh; — cg(E53 — Efy) + coE33]i®i
+ 2¢oEq, Symi®j] + [c3(E33 + Efy) + G4Ep, | ®)
+ 209E}; Sym[j®K] + 2¢c7E5, Symk®i] + [c1 (B3 + Ef4)
+C2Eyy + g (E33 — Ep) [ k@K,
(16)

and

uoM! = —poGl .y = csKKs i + c10K1s

= C5MrZi+C10(Mqi+M5k). (17)

3.4.1. Evolution equations
As the strain and magnetization evolution equations are con-
cerned, we write the strain evolution equation as
E. = AL (SF)E
g = s

It can be shown that Airj can be spanned as (Haldar and
Lagoudas, 2014)

m
A= dp({1H 7},
p=1

where, dy's are the scalar polynomials,
{1} = {85 + 55, S5, (55)% (S5 — SF)?. (S5)? + (55)°) and the
elements of the set { ~} are given by

N

gl =i®i+keok, 7?2=j®j, 7°=2SF Sym[iok],
74— (5/353 -t (kek-ioi),
5> =28 Sym[i®j|+ 255 Sym[j®k].

9

Thus, spanning A" up to m = 5 in terms of the elements of { 7},
we write

A" =dq(i®i+ k®K) + dyj®j + 2d3SE, Sym[i® k|
+dy (S5 - sqﬁ) (kek - i®i) + 2ds (ShSymlisj)
+ 5’2535ym[j®k]).
Similarly, for the magnetization evolution equation

M = (S’E>é,

we can write
m
vi =Y dp({1}) AP,
p=1

where {1} = {S§; + S{i. (Sf)? + (S§3)?} and



gV =j, 7% =ski+SEk

The expression for y" is then given by

1+ dy (S + SEK).

3.4.2. Mixing energy
We consider the Gibbs free energy for the mixing as

GmiX(g") — —%gf. (18)

The evolution of the reorientation hardening energy g is related

with a hardening function f. The selection of such a function is
discussed in B.1.3 for a specific example.

3.5. Vectorization of matrices

The final combined forms of the strain and magnetization
constitutive equations are written as

E=—poGg =E' +£(AE) + E/, (19)

M= —Z—O Gy =M +£(aM) + M, (20)
0

where AE = E? — E! and AM = M>-ML

At this point we consider vectorization of matrices [E] and [SE],
which represents the constitutive equations in a convenient form
that is suitable for stability analysis. Moreover, since [E] and [SF] are
symmetric matrices, we consider half-vectorization. In a general
way, half-vectorization of a n x n symmetric matrix A is denoted by

T

VeCh(A):[All7-~~7An17A227--~7'&n27-4~aA(n—l)(n—]%A(n—])naAnn] .

We write for simplicity vech(A)=(A) and so
(E') = ASI(SF) + [A](H), (21)
(E?) = B:)(S") + Bul (H). (22)

Here [As]s « 6, [Bsls x 6 and [Ap]s 3, [Bn]s x 3 can be determined
from the constitutive responses (10) and (13). (+) is 6 x 1 for a
symmetric tensor and 3 x 1 for a vector. Thus we write (19) as

®) = (E") +£((£°) - (&) + (E)
= [A5)(S) + £ (S7) + AW (H) + E)H) + (E'),  (23)
where

[Tl] = [Bs] - [As]v [Tﬂ =

Similarly, we can write from (11) and (14)

(M) = (Ams] (S°) + (A (H)

(Br] — [An].

+(P); (24)

(M2> = [Bms] (SE> + Bl (H) + (q), (25)

where, the dimensions of the above matrices are [Ansls « 6
[Bimsl3 x 6 [Amnl3 x 3 and [Bmpl3 « 3 and from (20)

)= (M) +£((W7) - (M1)) + (1)
— [Ams] (S7) + &T1n] (S°) + ) (H) + £[Ton] (H) + (T30)2
+ (M),
where

(T1m] = Bms] — [Ams],
=(q) - (p)

Tom] = Bmn] = Amnl,  (T3m)

4. Tangent stiffness and incremental magneto-mechanical
constitutive equations

We now derive the tangent stiffness for the incremental

magneto-mechanical constitutive equations. By taking the time
derivative of Eq. (23) and write

(E) = (s )+5rm(sf)+5rr11( °) + 1A (H) + E[T)(H)

+£[T] (H) + E
= (1A + E[Tzll(sE) + (1A + £} (H) + (T (5°)
+[T,)(H) + (4) )£,
or
(8°) = [CI(E) + ) (W) + (D), (26)

where [C] = [[As] + £[T1]| ™, [F] = —[[A] +£[T1]) " [[Ay] +£[T2]] and
(D) = —[[As] + E[T4]] " ([T1](S%) + [T (H) + (A)).

Similarly,
(M) = [Ans] (87) + ET1n] (SF) + EMT1m) (S7) + [Apus] (H)
+ £Tom)(H) + ETap] (H) + £(T3) + M
= ([Ass) + M1 (87) + (Apun] + EMTm]) (H) + (ITyn](S°)
+ [Tam](H) + (T3) + (1) ).

or

(M) = (€l (S7) + [Fm) (H) + (D, 27)
where [Cm] = [Ams] + £[T1m), [Pm] = [Amn] + &[T2m] and
(Dm) = ([T1m](SE) + [T2m](H) + (T3m) + (v)). Substituting the rela-

tion (26) in (27) we obtain
(M) = (cml($7) + [Pm]( ) + (Dm)é
= [Cm] (21 (E) + P (H) + (D)E) + [Pm] (H) + (Dm)é
= [Cm][C)(E )+<[cmnm+wmb( ) + ([Cml(D) + (D))
= [Cn] (E) + [Ph] (H) + (D)2
(28)

Now, from the consistency condition (8) we consider two cases.
Case-I: ££0and ® = 0.



We write

o(SE,H,6) =0
hs . . (29)
= (D) (s ) + oy H+®£=0
and replacing §" from (26) we obtain
(@) (IC)(E) + (D)2) + ([P g + @y) H+ D25 = 0
. (@) [CE+ (PO + ) H
- (@) (D) + b7 :
(30)
Substituting back (30) in (26) we have
(8°) =1c1(E) + 71 ()
. (@.6:)-[C](E) + (P g + o) -H
(Pugr) (D) + Dy
()1 (s ya
=19 gy mrrag (B (31)

(D)@([F]Tthss—b—tb,ﬂ) ,
il L et N v

Here [L] is a 6 x 6 mechanical tangent stiffness matrix and [] is
a 6 x 3 magnetic stiffness matrix. Moreover, substituting back the
expression of ¢ in (28) we get

(M) = [ch] (E) + [Ph] (H)
o (®.g)- [CIE + ([P]T¢,SE+¢,H)AH
m (@) (D) + b7
(D;’n)®[‘c]T(Dst
)

-(E) (32)

L (s B () e

(

—1')-(E) + [-H

where [L'] is a 3 x 6 mechanical tangent stiffness matrix and [I<] is a
3 x 3 magnetic stiffness matrix.

Case-1I: £ =0and ® <0

In this case, [L] = [C], [K] = [P], [L'] = [C},] and [K'] = [P},]

4.1. Small strain approximation and 2-D reduction of the problem

Since, the experiments are performed in small strains, we
reduce the model into an infinitesimal strain model such thatE = e,
SE~of=0+ woH®M, H = h and M = m. We further reduce the
problem in 2-D, where the stress components are of;, o5, of,,
strain components are e11, €22, €12, the magnetic field components
are Hy,H», and the magnetizations are My, M>. The reduced form of
the strain constitutive equations in the matrix and vector notation
thus can be written as below

el 2as 0 app] [oh ap O
l=|0 o 2 £ H
€12 | = Gs (| o2 [+ 0 o ’

H,
ely a2z 0 2a4] \ 4%, ap 0

(33)

ety 2by 0 byy] (ot 0 bio] gy
e, | =] 0 0 2bg|| ok, |+ |bg O (H;) (34)
&5, biz 0 2bs |\ 4%, 0 by

The expressions of [Ag], [An] and [Bs], [Br], as discussed in Egs.
(21) and (22) respectively, can be found directly from the above two
relations for the 2-D case. Moreover, with the above mentioned
assumptions, Eq. (16) can be reduced to

el = [c1€]1 + C2ehy + Cgel1]i®i + [c36]; + Caehy ] ®].
Enforcing the isochoric condition, tr(¢) = 0, we can write £y =

r |C1+C3+Cg 7
-l {W} and obtain

E‘%] l
Ll =ity 0|, (35)
&) -1

where t; = W% Similarly, the matrix forms of the magne-
tization equations are

E
M-} _ a1 0 aio 0‘131 2(12 0 H] aq
Ko M%)‘{o ag 0 || %2 |T| 0 2a3|\H,) T 0)

™
—_
N

‘752
(36)
E
M2\ [0 by 0771 2b; 0 |(H 0
Ko M§>_[b1o 0 b11} Z}gz Tl o 2by|\Hy )by )
2
(37)

The expressions of [Ams], [Amn], (P) and [Buys], [Bmnl, (q) as
mentioned in Eq. (24) and (25) respectively, can be obtained from
the above two relations. The components form of the internal
magnetization can be expressed as

My _ (oM _ (crodidh )\ _ (@
vt ) - (o) - (o) - (3) 2

Finally, the 2-D reduction of (31) is written

('7‘131 L1 Lix Lys é11 K11 Kpa i
ofy | = |La1 Ly Ly ||é12|+ | Kz Kn [Hl] (39)

5, L31 L3z L33 ] [ém K31 K3 | -772

and Eq. (32) reads

y i ’ ’ €11 i / ¥
=l 2 e llee |+ [ k2] [] @
2 21 f22 P3| . 21 822 2

It should be noted that if we consider plane stress problem, the
out of plane strain needs to be calculated and under plane strain the

out of plane stress needs to be calculated and also the material
parameters have a different interpretation.



5. 2-D stability analysis of the magneto-mechanical coupled
system

Before performing stability analysis, we first list the system of
equations below

VH+VM=0 (41a)
VxH=0 (41b)
V-of + uy(V-HH =0 (41c)
of = (L) + [KH (41d)
M = [L'](¢) + [K'|H (41e)
e:%<1F+II‘T) (41f)
VxW=0. (41g)

We introduce a tensor potential ¥ = V®u, where u is the
displacement. Introducing a potential ¥ allows us to express the
coupled system as a system of first order PDEs. It should be noted
that we replaced B from the Gauss Law, i.e, V-B = 0, by means of the
constitutive equation B = uo(M + H) and also skw(aF) = 0 since oF is
symmetric.

These are 14 equations (in 2-D) and Hy,H2,M1,Ma, of, 0%, . o5,
112,622, P11, W12, Wo1,Woy are the 14 unknowns. We can write from

(41f)

1
enn =i, e =W, en=5Tn+ 1), (42)
and so
1
Wi i(‘ljlz + %)
el = |, . (43)
j(‘l’n +Wy2) W

Taking the time derivative we can further write

) 1 000 W

?11 1 1 W
(zu)— 00 3 2 ‘Fﬁ

- 01 0 0] \¥,
or
(€) =[] (%). (44)

Thus, (41d) becomes
(6F) = mir#)(d) + 1<) (M), (45)
and (41e) becomes
M = [L'][ ] (W) + [I] <H) (46)

Finally, from (45) with the help of (41c), (46) with the help of
(41a), (41b) and (41g), we eliminate ¢ and M respectively and
write the system of equations as

i e L
o [[0j ,d (@) o ,ﬂ {tw},=o
o (7] o [#]
where
] =11 0]+[1 0], [74]=[1 OJL][Z],
2] =10 1]+[0 1K, [#3]=[0 1]IL](#],
] vl of o 3ol <] 4] <o o] 1] ]
R AR RN R S I3(E!
o [ 4 )

The detailed derivation can be found in A. We denote the above
system of equations in the following compact form,

A@J + B@)’z =0, (47)

where © = {H1,H2,1F11,11122,1F12,‘P21}T. The above system becomes
elliptic, parabolic or hyperbolic when the eigenvalues of the
following characteristic equation are complex, equal or real,
respectively

det(B — oA) = 0, (48)

with a being the eigenvalue of the system.

6. Analytic results of stability analysis

.Our stability analysis will be based on the magnetization re-
sponses in Fig. 3, where the newly developed model predictions are
compared with Kiefer-Lagoudas model (Kiefer and Lagoudas,
2005).” The most important material constants for the model are

identified as M*, K, H', Hy, HY"* | H{"', Y E, ™™, ¢” and ny, n, s,
ng4 (Table B.7).> We consider M*®, HC and E to non-dimensionalize
the remaining material constants and material parameters. The
required material parameters are presented in Table 1. The non-
dimensionalized material constants and material parameters are
given in Tables 2 and 3, respectively. In terms of space non-
dimensionalization, we consider X; = x1/w, X3 = x/l, w[l = 7,
where w is the width and [ is the length of the specimen. Magnetic

field is non-dimensionalized as H; = £ and H, = £%. Moreover

o (M)’
E

we define non-dimensional quantities A=

¢* =%, where r =42,

Three case studies for stability conditions will be discussed next.
First (Case-I) we only consider the magnetostatic problem for
isotropy. Next we consider the coupled system with isotropy (Case-
II) and finally (Case-III) the anisotropic effect on the stability for the

coupled system is considered.

> _ T
, T=f and

6.1. Case-I: magnetostatic stability condition
We start stability analysis with a simple magnetostatic case.
2 The values of the material constants can be found in (Haldar et al., 2011).

3 A brief description of parameter identification procedure is presented in
Appendix B.



6.1.1. Before reorientation
Considering magnetostatic equations before reorientation, we
can write Eq. (47) in a non-dimensional way as

LY -
v "om, (’il)AJr{? “g‘”}(ﬁ“)A:o. (49)
B Hy/ 1 Hy/ 2
The characteristic polynomial Eq. (48) is given by
2 8a,
[44 —ﬁTlX+(1+6): (50)
oH»
for which the discriminant is
253
1- H2
Since Hy = 8 — M and M <1, for Hy € [0,HC], 1 — A2 >0.

- MSG[ - HC
Thus the sign of D w111 depend on the numerator only. The
numerator (Nr) further can be written as

B+2)
401 +B)H21}

At Hy=H,=0, D<0 since for this particular problem
0.776 > 0. Similarly, at H, = H, H, =0.5 (see Fig. 3), and again
0. So the system is elliptic in the entire range [0,HC].

Nr=4(1+p0) (52)

8=
D<

6.1.2. During reorientation
When reorientation starts, from (47) we can write

~C ~ ~2
Y T S0t r =] _=0.
Hy/ 1 Hy/ >
0 1 -1 0
(53)
The characteristic polynomial (48) is given by
~C -~ 2
aLM@WH 1_AM A>—o (54)
and so the discriminant
TN &
D := {( "? ) +4 = }—4. (55)

The elliptic/hyperbolic nature of the system depends on the sign
of D. When D > 0, the system is hyperbolic and when D <0, the
system is elliptic. Fig. 4 shows that the system behaves hyperbolic
at the beginning but recovers ellipticity around H, = 0.7 or at 0.84
[T].

6.2. Magneto-mechanical stability condition

6.2.1. Case-II: isotropic medium

As a next step, we consider a coupled magneto-mechanical
stability analysis by assuming an isotropic medium. The system of
equations can then be written as

~C ~
1 M, AM2 0 0
r
0 1 0 0
0 AAM M 1 2 dq2/ds
T ~2 ~ o~ ~2 ~2 ~2
v ™ @5 - dy,ds (405 - a1z> <4‘15 - ‘112>
AHZZfM 0 0 0
B-as
0 0
L O -1
- ~2
0 1AM 2 0 0
r
1 0 0 0
0 0 0 0
+ o~ o~ o~
AHAM  JAM M 1 dyy/ds 2
25 7 ~2 ~ ~2 ~2 ~2
peas T8 G —apyas (4a5 - 012) <4a5 — a7,
0 0 1 0
L o 0 0 0

0 0
0 0 ~
H,q
0 0 Hj
W
Wi
1 1 Wy
asdg asag | 22/ 1
-1 0
0 0
0 0
0 0 Hl
% % HZ
as50dg dsdg III.” — 07 (56)
R4V
0 0 W,
) W/ 2
0 0
0 1
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Fig. 3. Model prediction comparison of magnetization responses with Kiefer-Lagoudas
model (red dotted, with demagnetization correction Haldar et al. (2011)) and present
model (blue continuous). A,B; is the y-component and A;Bs; is the x-component. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 1
Material parameters (isotropic medium).

Mg = uo(KMS)HR", ME =/ (Ms)? — (My)?

2a3 = poB, B = poKM™™, by = uoM*™, AM = M*** — M
ay = pgy/ (Msat)? — g2H3, VH, € [0,HC), and

a; = woM§, VH, € [HE, HM:]

f -
a5 =04 =3, a1p = 2, G5 = 52, bio = dy = 0, d = £™*

for which the characteristic equation is
MSAM: AN 2
o2 -2 122 )Mazﬂ} —0. (57)
T r
For the real root, we only need to consider

—~ ~ ~2
atww pA";’ A):0 (58)

and so the conditions of stability are the same as for the
magnetostatic (Case-I). It should be noted that the nonlinear
magnetization constitutive equation causes the unstable behavior
to the entire magneto-mechanical system.

6.2.2. Case-III: anisotropic medium
This part is the main application of an anisotropic magneto-
mechanical coupling. Since, we do not have anisotropic magneto-

Table 2
Non-dimensionalized material constants.
~M, ~M, H"? ~M; gm ~M H"
=B = B = B =T

Table 3
Non-dimensionalized material parameters (isotropic medium).

My M

~c c oC ~Co
My = g = uoKHC, My = e =

1- (M)

203 =25 =8, by = hwr =1, aM = M4

~ =2
a1 = 4w = V1 - Hy, VH; € [0,H), and

~C
bew = My, YHa € [HSHYS), p=0

al:""ﬂ .

s =d4 =3, U1 = —v, dg = 1% d = ™™
Msat)2 =

a=mlEhT=pe =g

20

161 .................................
Hyperbolic

: i Elliptic
'3.5 0.6 . 0.7

Fig. 4. Change in sign of D during the reorientation process.

mechanical experimental characterization for the model calibra-
tion, we only assume the following (from (33), (34)) non zero
material constants for simplicity:

8%1 2(15

1 0 ain (7%1

e, apz 0 2a4 ]\ o,

T 2by 0 byp ] (o1 0 bio] /1y

e, |=10 0 2bg||dk, | +|0 O (Hl). (60)
e, bia 0 2bs ]\ ok, 0 0 2

Recall that superscripts 1 and 2 are for the variant-1 and variant-
2 respectively. The coefficient big couples H, with g%l, i.e, a piezo-
magnetic coefficient for variant-2. Since both the variants have the
same tetragonal structure, one needs to satisfy that the Gibbs free
energy GV' = G2, We can thus immediately write by = as, b1z = iy,
bs = a4 and bg = ag for purely mechanical conditions (from (9) and
(12)).

The matrix form of the magnetization equations are (from (36),

(37))



Table 4

‘l ~
Ml _ 1) (61) Material constants (anisotropy).
M% 0 / 1 1 —v —v. 14w
a5 = 557, (4 = 355, Q12 = F2 = 224, ag = —£'%, bio
and

M2\ [ 0 0 0] ”“ N ( 0 )
M3 ) [bio/uo O O 0%2 bi/uo )
922

The additional material constants for the anisotropic medium is
summarized in Table 4 and the non-dimensionalization is pre—

( 62 ) Table 5

Material parameters (anisotropy).

sented 11[12Table 5. Moreover like isotropy, we consider 7 = &
A= “°(M1 )" and * = 2. The non-dimensionalized system of PDEs

can then be written as

_ .
1 MX?““ 0 o 0 0
0 1 0 0 0 0 i,
0 Ap 2 42 0 Hy
y ay Wi
AH,AM 1 o
. 0 0 0 — || %
B°Cay Caqae Cazle | \Wo
0 0 0 0 -1 0
L O 0 0 -1 0 0 |
[ 0 B 2a4b105CB°  —d12b105CH° 0
A A
-1 0 0 0 0
0 0 0 0 AAlA
+ Cagag
A?AM B, -2 285 0
BeCagy ay ay
0 0 1 0 0
L O 0 0 0
where,
@ _ 1
4a,as — ag,
232 = M (Qemax + 2<€max + I/'}zgu))) — 21’)\10§
r ay
2 _ o -
. - 2¢2 ~%
312:17Ca4b106 £ AI\;I l+60?10

+Bb]£@ (alzgmaxg+za4<gmax+I/_\12510>>>

AI\A/I/\ 65 612 TN a 1270
By =277 22 max T2 (omax | O} Z12p.08
2= ( a48 + A (6‘ + 10) A 0

and the characteristic polynomial is in the following form
t6a6 + t5a5 + t4a4 + t30(3 + tzaz +tia+tg =0,

where the coefficients are

A = 4, G4 = g, Gry = —v1y = 785, G = 1+ vz, byg = M50
[ Tl i S
1
0
0 Ifl]
1 Hy
Caaas | | ¥ =0, (63)
W12
0 W1 |
Wi/ 2
0
~C ~
M, AMA
tg=1ts = —2——"14
r
205 a ~ - AM /' ~
= (1 +A—6+¥—H2b105> _ = (AMA— J*b]oﬁ)f},
ay ay r
~ o~ AMM, A a a
= —Hybqot — 52X <2A—6 #)t
a4 4

a a ag+a AM 2 b
:A +H2b105 12 G-AF 12 [1+ v _chf 1o]t
ay ay r

~C o~ o~ o~
— G MXAMﬂinbu)a]z
g 24,

L =2 2 FEPON
B (as b10/32> _ GsAM 3 G'dsAMbyoB

31)

Gq Ay (%3 a4r

AMszwﬁ

1 o
—_AMb max
5 108§ — aur

Due to complex dependency of the polynomial coefficients on
the material parameters, unlike previous two cases, it will be



practically a tedious task to obtain the discriminant of a sextic
equation. So, we like to analyze such a situation by numerically
investigating the eigenvalues. If all the six eigenvalues are complex
numbers, then the system will be elliptic, otherwise, with at least
one real eigenvalue the loss of ellipticity will take place. We
perform a parametric study with the piezomagnetic coefficient of
variant-2, bqg, to investigate the influence of anisotropic coupling
on the stability of the system. The result is shown in Fig. 5. We
introduce a binary indicator « with a colormap such that when all
the eigenvalues are complex numbers, | represents yellow and the
system becomes elliptic. If at least one eigenvalue becomes real, it
takes green color and loss of ellipticity occurs. As an example, in
Fig. 5(a), for b1p = 1.0 x 10’3,Athe material system becomes stable
only after H=0.71, where for b1g > 3.0 x 1073, the system remains
unconditionally unstable. Note that the lower limit H =0.5and the
upper limit H = 0.75 are the non-dimensionalized values of reor-
ientation start field (H?) and reorientation finish field (H}”z ). The
entire scenario changes considerably by changing some material
parameters in the magnetic constitutive equations (Fig. 3). Fig. 5(a)
explains the effect of shifting the reorientation finish field (H"?) as
twice as the existing value. This means that in the latter case a less
stiff constitutive equation is used, for which the material behaves
more stable in the entire range of reorientation.

7. Finite element analysis of the magneto-mechanically-
coupled field equations for MSMA

In the previous section we presented stability results for the non
dimensionalized magneto-mechanical problem for MSMAs. All the
analytical results were derived at a material point, based on the
newly proposed constitutive responses. The results of the study
show that the material instability may occur at a certain magnetic
field or at a certain range of magnetic fields. The unstable behavior
means that if a bulk material body is concerned and if there are
singularities in the body, the disturbances due to the singularities
propagate along the characteristics. This phenomenon is expected
to be observed by solving an appropriate boundary value problem.
We now consider a specific problem with real material parameters
(Table 1) in the FE implementation. The value of the material
constants (as presented in Table B.7) are taken from (Haldar et al,,
2011).

Field equations, constitutive relations and boundary conditions
are summarized in Table 6. Note that the magnetization constitu-
tive equations depend only on the magnetic field and so do not
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account explicitly the influence of stress variation on the consti-
tutive responses in the coupled problem. Moreover, the maximum
strain ¢™* is also assumed constant and so it is not coupled with
the non-uniform stress distribution in the material.

The numerical analysis presented here was performed using the
COMSOL Multi-physics finite element software package. The ge-
ometry and boundary conditions of the considered model problem
are illustrated in Fig. 6. This particular arrangement is motivated by
the experimental set up, explained in Appendix B. The computa-
tional domain may be regarded as the gap between the pole pieces
of an electromagnet of dimensions 26 mm x 26 mm x 26 mm for
which a uniform magnetic field of up to 2 T can be applied. Typical
specimen dimensions are 8 mm x 4 mm x 4 mm, or aspect ratios of
2:1:1, where the long axis is the x-direction. All the field equations
are summarized in Table 6 and more details can be found in Haldar
et al. (2011). A spatially constant magnetic potential

O — @M —0; M = —ugHIx, (64)
X y z 0y

is applied on all sides of the boundary. The mechanical boundary
conditions of the problem are illustrated in Fig. 7, where ty and t
denote the mechanical traction on the boundaries along the x- and
the y-directions, respectively. The compressive traction along the x-
direction is imposed by constraining the vertical displacement U of
the 8Q3 surface and by applying a mechanical load P = 2 MPa on the
0Q, surface. We fix the point R to eliminate rigid body motion in the
finite element analysis.

7.1. Numerical results

Magnetic field (H,) distribution at an applied field value ugHS =
1.1 [T], for which the magnetostatic system becomes unstable, is
presented in Fig. 8. It is numerically observed that two band-like
zones are created inside the specimen. An enlarged view of the
specimen is given in Fig. 9(a) with the plots of volume fraction & of
the newly oriented field induced variant (variant-2). In the figure,
uo<Hz> = 0.67 [T] represents the true magnetic field inside the
specimen in a constitutive sense (see, Fig. 3) corresponding to the
applied field ugHY = 1.1 [T] due to the shape and size effect of the
specimen geometry. We observe that at the top-left and bottom-
right corners, the volume fraction almost reaches 1 while in the
intermediate region, the volume fraction varies from 0 to 0.3.
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Fig. 5. Effect of the piezomagnetic coefficient byp on stability during reorientation. The green region is unstable where the yellow region is elliptic and stable. (a) Magnetization
response as described in Fig. 3 is considered and (b) where the reorientation finished field (H}"’Z ) is taken as twice as of case-(a). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)



Table 6
Summary of the field equations, constitutive equations and boundary conditions.

Maxwell equations:
AP™ = —ppV x M.
Conservation of Linear and Angular Momentum:
V-of — ugH(V-M) = 0, skw(ef) = 0.
Constitutive Equations:
My = My(H), My = M;(H2)
of =C: (e —&")eSym
withe =1 (Vu+vu'), e = A¢ and

|:1 0 0:|
Al =m0 —-1 0].

0 0 O

Boundary Conditions:
[Bl'n=0, [Hlxn=0,
[o + oM]-n = 0 where
oM = H®B -4 (H-H)I
=ofn = +4M-n)*n+ uo(HOM)n .

wHY | X :

y |

a
B

Fig. 6. Domain geometry, mesh and boundary conditions for the magnetostatic
problem.

Moreover there are sharp changes in the values of £ across the
observed banded zones. The magnetization vectors exhibit similar
behavior in Fig. 9(b). The directions of magnetization vectors
change very sharply in the regions A;—B;—Ci;—D; and
A>—By—C—D,. The appearance of the band like zones (Fig. 9)
during reorientation is due to loss of ellipticity. The discriminant D
that dictates the loss of ellipticity is plotted at ug<Hz> = 0.67 [T]
and is presented in Fig. 10(a). The Figure shows that for
wo<Hy> = 0.67 [T] there are two distinct regions ‘H’ where D > 0
and loss of ellipticity occurs. The stable elliptic regions (‘E’ in
Fig. 10(a)) with D < 0, which are separated by the unstable hyper-
bolic regions, have a completely different behavior in terms of the
field variables, like the magnetic field H; (Fig. 10(b)), the martensitic
variant volume fraction (Fig. 9(a)) and the magnetization vector
(Fig. 9(Db)).

The values of the characteristic angles in the unstable regions in
the non-dimensional spatial description are given by the Eq. (57)
and they vary spatially. In the present study the two character-
istic angles of all the critical points are almost the same (—60°
and —64° in the actual specimen dimensions). The magnetic field
shows a drastic change across characteristics that start from the top
right and bottom left corners (Fig. 10(b)).

In the solution of strain (only 11 component is presented here)
(Fig. 11(a)), we observe the banded regions. Similar trend is also

=0

U=0
=0

U=
&
%>‘R aQ3
t= (0,0)

&
tx=o 3Q4 v oQ, t=0

Y

Q

REC R

Fig. 7. Imposed mechanical boundary conditions. Q is the material domain and 9Q its
boundary.
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Fig. 8. Magnetic field distribution (H,) inside and outside the specimen at the applied
field uoHY = 1.1 [T].

observed in the stress field* (Fig. 11(b)). We like to emphasize here
that the magnetization constitutive equation is assumed to depend
only at a constant stress level. This means the variation of stress
does not have any impact on the magnetic constitutive response.
The main magneto-mechanical coupling in the system is through

4 We plotted stress values only in the range 0—7 MPa. Level curves for higher
values, which occur in particular near corners, are not shown.
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ig. 9. (a) Volume fraction of field induced variant and (b) magnetic field H, at wo<H>> = 0.67 [T].

Fig. 10. (a) Discriminant D at uo<H,> = 0.67 [T] and (b) jump in the magnetic field across characteristics.
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Fig. 11. Distribution of (a) e1; and (b) a11 at uo<Hy> = 0.67 [T](hyperbolic).
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Fig. 12. Distribution of (a) e1; and (b) o11 at uo<H2> = 1 [T] (elliptic).

the Maxwell equations, conservation of linear and angular
momentum.

Finally, the system becomes elliptic everywhere at the end of
reorientation and so becomes stable. The banded zones thus
disappear from the solutions (Fig. 12).

8. Discussion

The coupled magneto-mechanical stability analysis shows that
magnetic instabilities influences the mechanical field variables. The
magnetic field singularities that occur at the corners of the

specimen and propagate along the characteristics, intensifies the
mechanical field variables in the banded regions. We observe
around —7 MPa stress in the banded zones (Fig. 11(b)) which is even
higher than the blocking stress (—5 MPa). Moving a little bit across
those defect lines, the magnitude of the mechanical field variables
suddenly jumps to a different value. However, as the stress
dependence in the reorientation strain, i.e., €™ (see Table 6) is
assumed constant in the current FE analysis, the blocking stress
effect on strain could not be captured and we observe considerable
amount reorientation strain at the highly stressed regions
(Fig. 11(a)).



Depending on situations, these unstable phenomena can have
possible positive or negative impacts in the devices level appli-
cations. For example, in the current experimental conditions, a 2
[T] applied field may be considered as high. One way to reduce
this value is to provide some boundary defects, such as small V-
notches, which will facilitate to nucleate and propagate more
field singularities inside the materials and most of the interior
regions will be filled up with the unstable zones. Such a phe-
nomenon then increases the interior magnetic field intensities
and facilitate variant reorientation at a low applied field. Note
that singularities also increase the stress in the unstable zones
and tries to suppress variant reorientation if the magnitude be-
comes more than the blocking stress. So, to obtain the best
desired effects, one needs to optimize among the geometry with
surface defects and the maximum/minimum field-stress
requirements.

On the other hand, such an effect for Field Induced Phase
Transfer (FIPT) (Haldar et al., 2014), where the blocking stress is
much higher (= —130 MPa) than variant reoriantation, may lead to
a failure mechanism. The underlying mechanism in FIPT is phase
transformation from anti-ferromagnetic martensite to the ferro-
magnetic autenite by applying magnetic field. Unfortunately, the
applied field required for complete phase transformation is very
high (=15 [T]). If we consider magnetic instability for such a
material system, the stress in the banded regions could be large
enough to cause a failure of the material. However, stability
analysis of FIPT is not performed yet and we like to investigate the
related issues in a future work.

9. Conclusions

We propose a magneto-mechanical coupled constitutive
response for variant reorientation in single crystal MSMA.
Discrete symmetry is taken into account to implement single
crystal anisotropy. The developed constitutive equations are then
considered in the coupled stability analysis. The analytic
approach of stability analysis shows that the system becomes
unstable during martensitic variant reorientation due to highly
nonlinear magnetization constitutive response. We also have
found that the single crystal anisotropy is an important factor
and magneto-mechanical coupling due to anisotropy strongly
influences the stability conditions. An analytic parametric study
reveals that a material parameter which appears in the consti-
tutive equations due to anisotropy could be responsible to make
such a magneto-mechanically coupled material system unstable.
FE analysis is performed to solve a coupled BVP. However, we
only consider isotropy in the FE analysis as we aim to see the
influence of magnetic instability on the mechanical field vari-
ables through coupling. The results show that the appearance of
banded zones in the spacial distribution of the magnetic field
variables as well as in the mechanical field variables, when loss
of ellipticity occurs.
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Appendix
Appendix A. Calculations for the system of 1st order PDEs

Eq. (41a) can be written as

vol(), o ), o o),

+[0 1](%;)’2:0,

or

[1 0J(H) ; +[0 1](H),+[1 OJ[L'][](W) 1 +[1 OJ[K](H)

+[0 1[][#](®),+[0 1][K'](H),=0,
or
[1](H) 1 + [1](W) 1 + [#2](H) , + 2] (W) , = 0. (A-1)
Similarly, (41c) can be written as
E E
10 o070 o1 oD
{0 1 0} 712 {0 0 1} 712
‘752 1 ‘752 2

wual o] (1), *lo ) (i), =0
HolH, o]\Hy ), "0 H, (H2 P

or

E %ogl(?”{g )ty v sof 2 O],
+ 1o "I(H), =0,

N 0 H,

o 1 oJttetcm,+ [ ) olean,+ [0 ¢ Jlmiecm,
+{8 é J[K H)2+uo[ } ﬂLOB Z;](H);:o,

or we simply write

(1] (H) y + [79] (W) 1 + [#5] (H) 5 + [73] (W) , = (A-2)
From (41b) we get

Hy1 —Hqip =0,

and so

[0 1](55)1 +[-1 0}(23)12 =0,

or

[Z1](H) 1 +[#2](H) ; = 0. (A-3)

Finally, Eq. (41g), V x W = ¢ Wpyj,i€ ®€m = 0, gives two addi-
tional equations



Wiy, — Wip,1 =0, (A-4)
W12 — a1 =0. (A-5)
So we can write
Wy W1q
0 0 -1 0 Wy 1 000 W =0
0—100} Wi, +[0001} w, | T
Wy /)y W/ 5
or
(1] (W) 1+ [75] (W), =0 (A-6)
Combining (A-1), (A-2), (A-3) and (A-6) we write
2 A [ G
74 A (H A H _
(71 [0 {ov)} e o {<w>}2 0
0 @ 0] [#3]

Appendix B. MSMA experiments and magneto-mechanical
responses

In a typical experiment, the MSMA sample, initially in austenitic
phase, is subjected to a constant compressive mechanical load along
the x-axis to transform into stress induced variant (Fig. B.13). Then a
magnetic field is applied along the perpendicular y-axis. After a
critical value, field induced variant nucleates and both variants
coexist by forming a twinned microstructure. Complete variant
reorientation to field induced variant takes place at a high applied

magnetic field.
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Fig. B.13. Schamatic of the experimental setup. Traction is applied in the vertical di-
rection and magnetic field is applied in the horizontal direction.

As explained in Fig. B.14, we consider(A) an ideal stress favored
variant with single magnetic domain in the initial configuration.
180° domain walls in the variant-1 is assumed to be eliminated by
applying a small field along the easy axis.

When magnetic field is applied along the y-direction(hard axis),
the magnetization vectors start rotating. Once the critical field for
the variant reorientation has been reached, the field favored variant
nucleates. In this configuration, 90° domain forms due to the
presence of twin variants (O'Handley et al., 2003; Tickle, 2000).

After complete reorientation, only field induced martensitic
variant is present and the magnetization process becomes satu-
rated. The magnetization vectors are aligned along the applied
magnetic field, which is the easy axis of the field favored variant.
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Fig. B.15. (a) Experimental data of strain-field response at —1.4 MPa. The four critical magnetic fields for forward and reverse orientation and maximum inelastic strain are shown
(b) Magnetization response of stress favored martensitic variant at a high stress level (-3 MPa), such that no reorientation takes place Heczko (2005).



Under these circumstances, the x-component of the applied
magnetic field is assumed to be zero. The magnetic field along the x
direction due to the magnetization of the body is assumed to be
small and the dependence of M on H; is neglected. The magneti-
zation components are assumed to have the form of M; = M1(H>)
and M, = M>(H>). So, the components of the field variables are in
the following form

H = {0,H},M = {My,M,}. (B-1)

We also assume that the only non-zero stress component is o4,
which is uniform and constant inside the specimen during the
experiment.

Appendix B.1. Material parameter identification

We consider that the variant-1 is under axial traction along the x
direction and magnetic field is applied along the y direction, i.e,
of = ¢f,i®i and H = Hyj. Calibrations from different magneto-

mechanical parameters are given below.

V:ariant-1
Variant-2 @ @

Fig. B.14. Schematic representation of micro scale mechanism.

Appendix B.1.1. Mechanical response

Due to lack of complete experimental data for the full aniso-
tropic calibration of the model with the present magneto-
mechanical loading conditions, we only consider the x-compo-
nent of the elastic and inelastic responses. No stress dependence on
A" is considered, i.e, A" = d{i®i+ d>j®j + dik®k and so e'=A'¢.
Then Egs. (33)—(35) become

! = 2a50k,i®i, € = (2b4a$1 + waz)i®i,
¢ = di(i®i—j®j).

_ The total number of unknown parameters are as,bs, bio,
d = ¢}ty = dity. We further assume a5 = by = ﬁ, No magneto-

elastic coupling, i.e, bjp = 0. We set tid; = £™*, which can
be found from Fig. B.15(a). Thus, the strain response can be reduced
to

1
enn = (e1)p1 +Ees ey + (&) =gofy +e™E (B-2)

11 E

Appendix B.1.2. Magnetic response

The expression of the magnetization can be written as
M, M M3 M
= —+ —_
Ko ( M, ) Ko Mi uo M2 Ml

We assume no stress dependence in the magnetization of
variant-1 and variant-2, i.e, a;; = bygp = 0 and Variant-2 always be in
saturation state, i.e, b, = 0. Then Eqgs. (36)—(38) become

T
Ko Mé

(B-3)

poMy = aji+2a3Hsj,, oMy = byj, uoM' = péj, (B-4)

and parameters to be identified are ay, as, by and p = cs5d'1.
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Fig. B.16. Schematic of magnetization response.

A typical experimental observation of the magnetization com-
ponents is shown in Fig. B.16. MJ§ is the y-component of the
magnetization at the beginning of reorientation, i.e, at HC = HMz,
Knowing the experimental magnetization response (y-component)
of a pure stress favored martensitic variant, as shown in Fig. B.15(b),
we can immediately identify saturation magnetization M** and the
slope of the magnetization response K. Since OA (Fig. B.16) is the
linear response of the stress favored variant, Mf can be calculated
from HM and the slope K as

M = po (KM ) HY2. (B-5)
We can write directly, from the y-component of (B-4)
oMy
2a3 = Tcy = uof- (B-6)

Knowing the parameters of M, (y-component) from the exper-
iments, we will now determine the parameters pertaining to M
response if the micro-scale mechanism follows Fig. 14. Since the
magnetization vectors are only rotating in the region 0 < H, < H®
(Fig. 14, Case-B), we always need to satisfy |[M; | = M*%, and so we
can write



(M})* + ()" = (v,

, (B-7)
=a} + 4a5H3 = (uoM*™)”,
and then with the help of (B-6),
a; = uo (Msat)z — 52H% = #Oal. (B-S)

Note that M, the x-component of the magnetization at the
beginning of reorientation (H, = HS), can be written as

ME = 4/ (Msat)? — (M§)2.

Since variant-2 is always saturated, from (B-4), by = uoM*%,
which also implies p' = 0 as uoM = uoM*%j at £ = 1. Finally the
magnetization response takes the following form:

0 0](H; ai(Hy) c
o {12 ) () oo
i) T (Mg

(B-9)

<, for £(0,1).
My
(B-10a)
M? 0
M;) — () (B-10b)
2
(B-10c¢)

()~ ()

Appendix B.1.3. Thermodynamic driving force

The four critical magnetic fields are: the start of forward reor-
ientation, H™:, the end of forward reorientation, H?/IZ, the start of
reverse reorientation, H', and the end of reverse reorientation,
H}"“ (Fig. B.15a). The reduced form of the thermodynamic force (6)
is given by
7" = ok + ugAMyHy + fT — pAug, (B-11)
where pAug = pG3 — pG}. The hardening function is chosen as
Lagoudas et al. (2011)

(B e
5' ) // / e
) i b
=l |
Tw
T
1 —Model
‘/_/’ ---Experiment
00 02 04 06 08 1
hH IT]
(a)

(14+&m —(1-¢£)™)-B, >0,
fr= (B-12)

(1+&™ —(1-5™)-D, £<0,

NI N>

where, ny,nz,n3 and ng are some given exponents.

We need to know the parameters A,B,C,D,Y" and pAug. From the
Kuhn Tucker condition (8) we obtain two conditions at the begin-
ning and two conditions at the finish of the forward reorientation.

They are

7rr<a*7H§V’2) Y =0, foré>0, até=0 (B-13a)

wr(a*,HNb) Y =0, foré>0, ati=1 (B-13b)

f

Similarly, for reverse reorientation we get two more equations,

7rr<a*,H§V“>+Yr:O, for£<0, atf=1 (B-14a)

o (o*,H}V’l) 1Y =0, foré<0, até=0 (B-14b)

The constant stress level is denoted by ¢". The continuity of the
hardening function Lagoudas et al. (1996) gives us

(B-15)

Solving the above five equations (from B-13a to B-15), we get the
solution of five unknowns, A, B, C, D, Y". It should be noted that we
introduce a new constant B = B + pAug and D = D + pAug since B
and D absorbs the term pAug. The detailed derivation can be found
in the Appendix C. All the material constants are summarized in
Table B.7.

Table B.7
Material constants.

uoHM = 0.5[T], MOH}V’Z = 0.58[T], uoHM' = 0.28T], MOH}/“ =0.1[T]
MP9 =742 [KA/m], K = 1.25 [T] ", HC = HM2, "% — 5%, F = 2.0 [GPa]
n =66, =14,n3 =08 n4=03,0 =—14[MPa]

uo = 1.2566 x 107 [N/A?]

sat
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Fig. B.17. (a) Model simulation of strain-field response at —1.4 MPa and (b) model prediction of magnetization response at —1.4 MPa.



The model simulation is presented in Fig. B.17(a), followed by
the magnetization prediction in Fig. B.17(b). We consider the
following values for a transversely anisotropic medium (Table B.8)
for the Sub-section 6.2.2: The values of E; = E, M$ and AM are taken
from the isotropic material parameters, presented at Table B.7. The
rest of the values are assumed to proceed for the numerical
example.

Table B.8
Material parameters for anisotropic medium.
as as a as a; by
o+ =+ = Gi2 roMg HoAM
E1 [GPa] E; [GPa] 12 V21 G12[GPa]
2 4 0.2 04 24

Appendix C. Calculations of hardening parameters

Combining the transformation function (7) with the driving
force (B-11) and enforcing the Kuhn Tucker conditions (8), we can
write the following conditions.

Appendix C.1. Forward transformation (£ > 0):

ﬂf(a*,Hg‘/'Z) ~Y =0 and atf=0

(C-1)
o eMax +HOAMH_IgVIZ —pAug—B-Y =0,
Trr<a*,H}V’2)—YT:O and até=1 (C2)
0" €™ + uoAMH} — pAug +A—B—Y" = 0.
Appendix C.2. Reverse transformation (£ <0):
WT(JO*,HQ”I) +Y =0 andaté=1 (C-3)
o eMax +#OAMHQ/II — pAug + C—D+Y = 07

"(o*, HM') +Y"' =0 andaté=0

(o) v d (c-4)
o eMIX MOAMHf ' —pAug—D+Y =0,

Appendix C.3. Continuity of Gibbs free energy potential
The cyclic integral of the Gibbs free energy is zero. This implies
that we need to satisfy the condition (B-15), i.e,

A 1 1 C 1 1
B—D:z[”—‘m} _f{l+m_n4+l

(C-5)
So, from the five Egs. (C-1) to (C-5) we can now solve for five
material parameters A,B,C,D and Y'. (C-1)-(C-2) gives

A= ,uOAM(HQ”? - H;WZ) , (C-6)

(C-4)-(C-3) gives

C= quM(H}V" - HQ”‘) : (C-7)
(C-1)+(C-4)
B+D =2(o"e™™ + EDAM(HY: + H" ) ) — 2puq

= 2(®) - 2pAug (C-8)

where, ® denotes the expression under the braces. Solving (C-8)
and (C-5) we get,

A
B:®+ZP+

— pAlg

A 1 1
e e S 1

— pAug

1 1) Cfp,
n+1 ny+1| 4 n3+1 ng+1

cf,, 11
4 n3+l Tl4+1

and we denote

B = B+ poAug

A 1 1 C 1 1
‘@*Z[“nﬁf*}"{”nﬁ*nm}

B 4 n+1 ny+1 4 ny+1 ng+1
Finally by (C-1) we get®

Y = "M 4 ugAMHM: — B. (C-9)

The evolution of the volume fraction for the forward reor-
ientation is given below

Appendix C4. Forward reorientation (£>0):
®E=0=d"=0=>7"-Y" =0
for which £ can be obtained by solving the following equation

o €M | o AMH, +’§ (14" —(1-5)")—B—Y =0
(C-10)

Appendix C.5. Reverse reorientation (¢ <0):
PE=0=d" =0=>a"+Y =0
for which £ can be obtained by solving the following equation

J*Smaer,ugAMHerg(]JrEm*(175)”4)*D+Yr:0
(C-11)

5 For the anisotropic medium, as discussed in Subsection 6.2.2, due to the
presence of constant byo, we need to replace woAM by woAM + bygo”.
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