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A Survey on the Eigenvalues Local Behavior of

Large Complex Correlated Wishart Matrices

Walid Hachem ∗ , Adrien Hardy † , Jamal Najim ‡

September 16, 2015

Abstract

The aim of this note is to provide a pedagogical survey of the recent works [30, 31]
concerning the local behavior of the eigenvalues of large complex correlated Wishart ma-
trices at the edges and cusp points of the spectrum: Under quite general conditions, the
eigenvalues fluctuations at a soft edge of the limiting spectrum, at the hard edge when
it is present, or at a cusp point, are respectively described by mean of the Airy kernel,
the Bessel kernel, or the Pearcey kernel. Moreover, the eigenvalues fluctuations at several
soft edges are asymptotically independent. In particular, the asymptotic fluctuations of
the matrix condition number can be described. Finally, the next order term of the hard
edge asymptotics is provided.

1 The matrix model and assumptions

Consider the N ×N random matrix defined as

MN =
1

N
XNΣNX∗N (1.1)

where XN is an N × n matrix with independent and identically distributed (i.i.d.) entries
with zero mean and unit variance, and ΣN is a n×n deterministic positive definite Hermitian
matrix. The random matrix MN has N non-negative eigenvalues, but which may be of
different nature. Indeed, the smallest N − min(n,N) eigenvalues are deterministic and all
equal to zero, whereas the other min(n,N) eigenvalues are random. The problem is then to
describe the asymptotic behavior of the random eigenvalues of MN , as both dimensions of
XN grow to infinity at the same rate. Let us mention that the n × n random covariance
matrix

M̃N =
1

N
Σ

1/2
N X∗NXNΣ

1/2
N ,

which is also under consideration, has exactly the same random eigenvalues as MN , and hence
results on the random eigenvalues can be carried out from one model to the other immediately.

∗CNRS LTCI; Télécom ParisTech, 46 rue Barrault, 75046 Paris Cedex 13, France. Email:
walid.hachem@telecom-paristech.fr
†Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, 10044 Stockholm,
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The global behavior of the spectral distribution of M̃N in the large dimensional regime
is known since the work of Marčenko and Pastur [42], where it is shown that this spectral
distribution converges to a deterministic probability measure µ that can be identified. In this
paper, we will be interested in the local behavior of the eigenvalues of M̃N near the edge
points and near the so-called cusp points of the support of µ. The former will be called the
extremal eigenvalues of M̃N .

The random matrices MN and M̃N are ubiquitous in multivariate statistics [4], math-
ematical finance [39, 46], electrical engineering and signal processing [18], etc. Indeed, in
multivariate statistics, the performance study of the Principal Component Analysis algo-
rithms [36] requires the knowledge of the fluctuations of the extremal eigenvalues of M̃N .

In mathematical finance, M̃N represents the empirical covariance matrix obtained from a
sequence of asset returns. In signal processing, M̃N often stands for the empirical covariance
matrix of a spatially correlated signal received by an array of antennas, and source detec-
tion [12, 38] or subspace separation [45] algorithms also rely on the statistical study of these
extremal eigenvalues.

In this article, except when stated otherwise, we restrict ourselves to the case of complex
Wishart matrices. Namely, we make the following assumption.

Assumption 1. The entries of XN are i.i.d. standard complex Gaussian random variables.

Concerning the asymptotic regime of interest, we consider here the large random matrix
regime, where the number of rows and columns of MN both grow to infinity at the same pace.
More precisely, we assume n = n(N) and n,N →∞ in such a way that

lim
N→∞

n

N
= γ ∈ (0,∞) . (1.2)

This regime will be simply referred to as N →∞ in the sequel.
Turning to ΣN , let us denote by 0 < λ1 6 · · · 6 λn the eigenvalues of this matrix and let

νN =
1

n

n∑
j=1

δλj (1.3)

be its spectral measure. Then we make the following assumption.

Assumption 2.

1. The measure νN weakly converges towards a limiting probability measure ν as N →∞,
namely

1

n

n∑
j=1

f(λj) −−−−→
N→∞

∫
f(x)ν(dx)

for every bounded and continuous function f .

2. For N large enough, the eigenvalues of ΣN stay in a compact subset of (0,+∞) inde-
pendent of N , i.e.

0 < lim inf
N→∞

λ1, sup
N
λn < +∞. (1.4)
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Under these assumptions, a comprehensive description of the large N behavior of the
eigenvalues of MN can be made. To start with, we recall in Section 2 some classical results
describing the global asymptotic behavior of these eigenvalues, as a necessary step for studying
their local behavior. We review the results of Marčenko-Pastur [42] and those of Silverstein-
Choi [50], which show among other things that the spectral measure of MN converges to a
limit probability measure µ, that µ has a density away from zero, that the support of µ can be
delineated, and that the behavior of the density of µ near the positive endpoints (soft edges)
of this support can be characterized. We moreover complete the picture by describing the
behavior of the limiting density near the origin when it is positive there (hard edge), and also
when it vanishes in the interior of the support (cusp point). The latter results are extracted
from [31].

Next, in Section 3 we turn to the eigenvalues local behavior. More precisely, we investigate
the behavior of the random eigenvalues after zooming around several points of interest in the
support, namely the soft edges, the hard edge when existing, and the cusp points. In a word,
it is shown in the works [30, 31] that the Airy kernel, the Bessel kernel, and the Pearcey
kernel describe the local statistics around the soft edges, the hard edge, and the cusp points
respectively, provided that a regularity condition holds true. In particular, the extremal
eigenvalues fluctuate according to Tracy-Widom laws.

In Section 4, we provide sketches of proofs. We first recall an important expression for
the kernel KN associated to the (random) eigenvalues of MN and then outline how one can
prove asymptotic convergence towards Airy, Pearcey or Bessel kernels by zooming around the
points of interest: either a soft edge, a cusp point or the hard edge.

In Section 5, we provide a list of open questions, directly related to the results of the
paper.

Acknowledgements. WH is pleased to thank the organizers of the Journées MAS 2014
where the project of this note was initiated. During this work, AH was supported by the
grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation. The work of WH
and JN was partially supported by the program “modèles numériques” of the French Agence
Nationale de la Recherche under the grant ANR-12-MONU-0003 (project DIONISOS).

2 Global behavior

Since the seminal work of Marčenko and Pastur [42], it is known that under Assumptions 1
and 2 the spectral measure of MN almost surely (a.s.) converges weakly towards a limiting
probability measure µ with a compact support. Namely we have

1

N
Tr f(MN )

a.s.−−−−→
N→∞

∫
f(x)µ(dx) (2.1)

for every bounded and continuous function f . As a probability measure, µ can be character-
ized by its Cauchy transform: this is the holomorphic function defined by

m(z) =

∫
1

z − λ µ(dλ), z ∈ C+ =
{
z ∈ C : Im(z) > 0

}
,
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and which takes its values in C− = {z ∈ C : Im(z) < 0}. More precisely, for any open
interval I ⊂ R with neither endpoints on an atom of µ, we have the inversion formula

µ(I) = − 1

π
lim
ε→0

∫
I

Im
(
m(x+ iε)

)
dx.

For every z ∈ C+, the Cauchy transform m(z) of µ happens to be the unique solution m ∈ C−
of the fixed-point equation

m =

(
z − γ

∫
λ

1−mλν(dλ)

)−1

, (2.2)

where γ and ν were introduced in (1.2) and Assumption 2.
Moreover, using the free probability terminology [2, 32], the limiting distribution µ is also

known to be the free multiplicative convolution of the Marčenko-Pastur law (2.3)–(2.4) with
ν, and equation (2.2) is a consequence from the subordination property of the multiplicative
free convolution [19].

For example, in the case where ν = δ1, which happens e.g. when ΣN = In, this equation
has an explicit solution and the measure µ can be recovered explicitly.

µ(dx) = (1− γ)+ δ0 + ρ(x)dx, (2.3)

where x+ = max(x, 0) and the density ρ has the expression

ρ(x) =
1

2πx

√
(b− x)

(
x− a) 1[a,b](x), a = (1−√γ)2, b = (1 +

√
γ)2. (2.4)

This is the celebrated Marčenko-Pastur law.
When ν has a more complicated form, it is in general impossible to obtain an explicit

expression for µ, except in a few particular cases. Nonetheless, it is possible to make a
detailed analysis of the properties of this measure, and this analysis was done by Silverstein
and Choi in [50]. These authors started by showing that limz∈C+→xm(z) ≡ m(x) exists for
every x ∈ R∗ = R − {0}. Consequently, the function m(z) can be continuously extended to
C+ ∪R∗, and furthermore, µ has a density on R∗ defined as ρ(x) = −π−1Im (m(x)). We still
have the representation

µ(dx) = (1− γ)+ δ0 + ρ(x)dx (2.5)

with this new ρ, making ρ(x)dx the limiting distribution of the random eigenvalues of MN .
As is common in random matrix theory, we shall refer to the support of ρ(x)dx as the bulk;
we will denote (with a slight abuse of notation) its support by Supp(ρ). Silverstein and Choi
also showed that ρ is real analytic wherever it is positive, and they moreover characterized
the compact support Supp(µ) following the ideas of [42]. More specifically, one can see that
the function m(z) has an explicit inverse (for the composition law) on m(C+) defined by

g(m) =
1

m
+ γ

∫
λ

1−mλν(dλ), (2.6)

and that this inverse extends to C−∪D and is real analytic on D, where D is the open subset
of the real line

D =
{
x ∈ R : x 6= 0, x−1 /∈ Supp(ν)

}
. (2.7)
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Figure 1: Plot of g : D → R for γ = 0.1 and ν = 0.7δ1 + 0.3δ3. In this case,
D = (−∞, 0) ∪ (0, 1

3) ∪ (1
3 , 1) ∪ (1,∞). The two thick segments on the vertical

axis represent Supp(ρ).

It was proved in [50] that

R− Supp(ρ) =
{
g(m) : m ∈ D, g′(m) < 0

}
.

An illustration of these results is provided by Figures 1 and 2.
Of interest in this paper are the left edges, the right edges and the cusp points of Supp(ρ).

A left edge is a real number a satisfying for every δ > 0 small enough∫ a

a−δ
ρ(x)dx = 0,

∫ a+δ

a
ρ(x)dx > 0 .

A right edge is a real number a satisfying for every δ > 0 small enough∫ a

a−δ
ρ(x)dx > 0,

∫ a+δ

a
ρ(x)dx = 0 .

A cusp point is a real number a such that ρ(a) = 0 and, for every δ > 0 small enough,∫ a

a−δ
ρ(x)dx > 0 and

∫ a+δ

a
ρ(x)dx > 0 .

Of course all edges and cusp points are positive numbers, except perhaps the leftmost
edge. When the leftmost edge is the origin, it is common in random matrix theory to refer
to it as the hard edge. In contrast, any positive edge is also called a soft edge.

The results of [50] summarized above show that the study of the map g on the closure
D of D provides a complete description for the edges and the cusp points. First, a right

5



.

1 2 3 4 5 6 70 .

Figure 2: Plot of the density ρ in the framework of Figure 1.

edge is either a local minimum of g reached in D, or belongs to g(∂D), which means there is
c ∈ ∂D = D \D such that limx→c, x∈D g(x) exists, is finite, and equals to that edge. In the
former case, ρ(x) behaves like a square root near the edge.

Proposition 2.1. If a is a right edge, then either there is a unique c ∈ D such that

g(c) = a, g′(c) = 0, g′′(c) > 0, (2.8)

or a ∈ g(∂D). In the former case, we have

ρ(x) =
1

π

(
2

g′′(c)

)1/2 (
a− x

)1/2
(1 + o(1)) , x→ a− . (2.9)

Conversely , if c ∈ D satisfies (2.8), then a is a right edge and (2.9) holds true.

The case where an edge lies in g(∂D) turns out to be quite delicate. In the forthcoming
description of the eigenvalues local behavior near the edges, we shall restrict ourselves to the
edges arising as local minima of g, see also Section 5 for further discussion. Notice also that
if ν is a discrete measure, as exemplified by Figures 1 and 2, then g is infinite on ∂D and in
particular a right edge cannot belong to g(∂D): the right edges are in this case in a one-to-one
correspondence with the local minima of g on D.

The situation is similar for the soft left edges, except that they correspond to local maxima.

Proposition 2.2. If a > 0 is a left edge, then either there is a unique c ∈ D such that

g(c) = a, g′(c) = 0, g′′(c) < 0, (2.10)
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or a ∈ g(∂D). In the former case, we have

ρ(x) =
1

π

(
2

−g′′(c)

)1/2 (
x− a

)1/2
(1 + o(1)) , x→ a+ . (2.11)

Conversely, if c ∈ D satisfies (2.10), then a is a right edge and (2.11) holds true.

Propositions 2.1 and 2.2 have been established in [50]. We state below their counterparts
for the hard edge and a cusp point.

The hard edge setting turns out to be similar to the soft left edge one, except that c is
now located at infinity, and ρ(x) behaves like an inverse square root near the hard edge. More
precisely, observe that the map g is holomorphic at ∞ and g(∞) = 0, in the sense that the
map z 7→ g(1/z) is holomorphic at zero and vanishes at z = 0. We also denote by g′(∞) and
g′′(∞) the first and second derivatives of the latter map evaluated at z = 0.

Proposition 2.3. The bulk presents a hard edge if and only if

g(∞) = 0, g′(∞) = 0, g′′(∞) < 0, (2.12)

or equivalently if γ = 1. In this case, we have

ρ(x) =
1

π

(
2

−g′′(∞)

)−1/2

x−1/2 (1 + o(1)) , x→ 0+ . (2.13)

More precisely, we have the explicit formulas g′(∞) = 1−γ and g′′(∞) = −2γ
∫
λ−1ν(dλ).

In particular the statement g′′(∞) < 0 is always true, and so is g(∞) = 0 as explained above;
we included them in (2.12) to stress the analogy with (2.10).

A simple illustration of Propositions 2.1 to 2.3 is provided by the Marčenko-Pastur law.
From (2.4), one immediately sees that ρ(x) ∼ (b−x)1/2 as x→ b−, and that a similar square
root behavior near a holds if and only if a > 0, that is γ 6= 1. If γ = 1, i.e., a = 0, then
ρ(x) ∼ x−1/2 as x→ 0+ instead.

We now turn to the cusp points. Those who will be of interest here correspond to inflexion
points of g where this function is non decreasing. Moreover, a cubic root behavior for the
density ρ(x) is observed near such a cusp point, hence justifying the terminology (we recall
cusp usually refers to the curve defined by y2 = x3).

Proposition 2.4. Let a be a cusp point, set c = m(a) and assume c ∈ D. Then

g(c) = a, g′(c) = 0, g′′(c) = 0, and g′′′(c) > 0. (2.14)

Moreover,

ρ(x) =

√
3

2π

(
6

g′′′(c)

)1/3 ∣∣x− a
∣∣1/3 (1 + o(1)) , x→ a . (2.15)

Conversely, if c ∈ D satisfies g′(c) = g′′(c) = 0, then the real number a = g(c) is a cusp point,
g′′′(c) > 0 and (2.15) holds true.

Propositions 2.3 and 2.4 appear in [31]. Proposition 2.4 is illustrated in Figures 3 and 4.
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Figure 3: Plot of g for γ ' 0.336 and ν = 0.7δ1 + 0.3δ3. The thick segment on the vertical
axis represents Supp(µ). The point a is a cusp point.

3 Local behavior

The study of the eigenvalues local behavior of random matrices is a central topic in random
matrix theory. When dealing with large Hermitian random matrices, it is recognized that the
local correlation of the eigenvalues around an edge where the density vanishes like a square
root should be described by a particular point process involving the Airy kernel (see below),
whose maximal particle’s distribution is known as the Tracy-Widom law. For instance, this
has been established for unitary invariant random matrices and for Wigner matrices as well,
see e.g. the surveys [21, 27] and references therein. Similarly, the Bessel kernel is expected to
describe the fluctuations around an hard edge where the density vanishes like an inverse square
root, and the Pearcey kernel around a cusp with cubic root behavior. Let us also mention
that the sine kernel is expected around a point where the density is positive, and that more
sophisticated behaviors have also been observed in matrix models where the density vanishes
like a rational power of different order, but we will not further investigate these aspects here.
Another interesting feature not covered by this survey is the study of the random eigenvectors,
see e.g. [10, 13].

The purpose of this section is to present the central results of [30, 31], where such typical
local behaviors arise for the complex correlated Wishart matrices under consideration at every
edges and cusp points satisfying a certain regularity condition.

In fact, the free parameter family (νN ) may have a deep impact on the limiting local fluc-
tuations and one may not recover the expected fluctuations without further conditions. A first
manifestation of this phenomenon is the Baik-Ben Arous-Péché (BBP) phase transition, that
we present in Section 3.1. In a nutshell, this phase transition yields that slight variations on
the family (νN ) may modify the fluctuations at a soft edge and may no longer be described by
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Figure 4: Plot of the density of µ in the framework of Figure 3.

the Tracy-Widom law. Such phenomenas motivate the introduction of a regularity condition
which essentially rules out this kind of behaviors.

In Section 3.2, we provide the existence of finite N approximations of the edges or cusp
points under study and satisfying the regularity condition; the reader not interested in these
precise definitions may skip this section.

Next, in Section 3.3 we introduce the Airy kernel, the Tracy-Widom law, and state our
results concerning the soft edges. In Section 3.4 , we introduce the Bessel kernel and describe
the fluctuations at the hard edge. As an application, we provide in Section 3.5 a precise
description for the asymptotic behavior of the condition number of MN . Finally, in Section
3.6 we introduce the Pearcey kernel, and state our result concerning the asymptotic behavior
near a cusp point.

3.1 The BBP phase transition and the regularity assumption

First, assume ΣN is the identity matrix, so that the (limiting) spectral distribution ν of ΣN

is δ1, and hence the limiting density ρ(x) is provided by (2.4). If xmax stands for the maximal
eigenvalue of MN , then it has been established that xmax converges a.s. towards the right
edge and fluctuates at the scale N2/3 according to the Tracy-Widom law [34]. Next, following
Baik, Ben Arous and Péché [7], assume instead ΣN is a finite rank additive perturbation of the
identity, meaning that the rank of the perturbation is independent on N . Thus we still have
ν = δ1 and the limiting density ρ(x) remains unchanged. They established that if the strength
of the perturbation is limited, then the behavior for xmax is the same as in the non-perturbed
case, see [7, Theorem 1.1(a), k = 0]. On the contrary, if the perturbation is strong enough,
then xmax converges a.s. outside of the bulk and the fluctuations are of different nature, see [7,

9



Theorem 1.1(b)]. But in this case, one can consider instead the largest eigenvalue that actually
converges to the right edge and show that the Tracy-Widom fluctuations still occur (this is
a consequence of Theorem 1 below). However, they also established there is an intermediary
regime, where xmax converges a.s. to the right edge and fluctuates at the scale N2/3 but
not according to the Tracy-Widom law, see [7, Theorem 1.1(a), k > 1], hence leaving the
random matrix universality class since the right edge exhibits a square root behavior. Here
the fluctuations are actually described by a deformation of the Tracy-Widom law, but in the
general ΣN ’s setting much exotic behaviors must be expected.

In conclusion, although the eigenvalues global behavior only depends on the limiting
parameters ν and γ, the local behavior is quite sensitive in addition to the mode of convergence
of the spectral measure νN of ΣN to its limit ν. In order to obtain universal fluctuations in
the more general setting under investigation, it is thus necessary to add an extra condition
for the edges, and actually for the cusp points too. A more precise consideration of the non-
universal intermediary regime considered by Baik, Ben Arous and Péché reveals that, if we
write the right edge as g(c), see Proposition 2.1 and the comments below, then some of the
inverse eigenvalues of ΣN converge towards c. Recalling the λj ’s stand for the eigenvalues of
ΣN , this motivates us to introduce the following condition.

Definition 3.1. A real number c satisfies the regularity condition if

lim inf
N→∞

n
min
j=1

∣∣∣∣c− 1

λj

∣∣∣∣ > 0. (3.1)

Moreover, if c satisfies the regularity condition, we then say that g(c) is regular.

Remark 3.2. Propositions 2.1 and 2.2 tell us that every soft edge reads g(c) for some c ∈ D.
In fact, since g(0) = +∞ and Supp(µ) is compact, necessarily c 6= 0. If we moreover assume
the soft edge to be regular then, since by definition D = {x ∈ R : x 6= 0, x−1 6∈ Supp(ν)} and
because νN converges weakly to ν, necessarily c ∈ D. In particular, Propositions 2.1 and 2.2
yield that at a regular soft edge the density show a square root behavior. As regards the hard
edge, the analogue of the regularity condition turns out to be lim infN λ1 > 0 and is therefore
contained in Assumption 2.

Remark 3.3. We show in [30] that, if γ > 1, then the leftmost edge a is always regular.
Namely there exists c ∈ D which is regular such that a = g(c). In fact, we have c < 0.

Before we state our results on the eigenvalues local behavior around the regular edges or
the cusp points, we now provide the existence of the appropriate scaling parameters we shall
use in the later statements.

3.2 Consequences of the regularity condition and finite N approximations
for the edges and the cusp points

Recall from Section 2 that the Cauchy transform of the limiting eigenvalue distribution µ
of MN is defined as the unique solution m ∈ C− of the fixed-point equation (2.2). We
now consider the probability measure µN induced after replacing (γ, ν) by its finite horizon
analogue (n/N, νN ) in this equation (we recall νN was introduced in (1.3)). Namely, let µN
be the probability measure whose Cauchy transform is defined as the unique solution m ∈ C−

10



of the fixed-point equation

m =

(
z − n

N

∫
λ

1−mλνN (dλ)

)−1

.

The probability measure µN should be thought of as a deterministic approximation of the
distribution of the eigenvalues of MN at finite N , and is referred to as the deterministic
equivalent of the spectral measure of MN . The measure µN reads

µN (dx) =
(

1− n

N

)+
δ0 + ρN (x)dx,

and one can apply all the results stated in Section 2 to describe ρN , after replacement of g
with

gN (z) =
1

z
+
n

N

∫
λ

1− zλνN (dλ). (3.2)

Recalling D has been introduced in (2.7), the following proposition encodes the essential
consequence of the regularity condition.

Proposition 3.4. If c ∈ D satisfies the regularity condition (3.1), then there exists δ > 0
such that gN is holomorphic on {z ∈ C : |z − c| < δ} ⊂ D for every N large enough and
converges uniformly towards g there.

It is an easy consequence of Montel’s theorem. Now, if a sequence of holomorphic function
hN converges uniformly to a (holomorphic) function h on an open disc, then a standard result

from complex analysis provides that the kth order derivative h
(k)
N also converges uniformly

to h(k) there, for every k > 1. Moreover, Hurwitz’s theorem states that, if h has a zero c
of multiplicity ` in this disc, then hN has exactly ` zeros, including multiplicity, converging
towards c as N →∞.

Thus, as a consequence of the previous proposition, by applying Hurwitz’s theorem to g′N
(and the symmetry g′N (z̄) = g′N (z)), it is easy to obtain the following statement.

Proposition 3.5. Assume c ∈ D satisfies the regularity condition (3.1) and moreover

g′(c) = 0, g′′(c) < 0, resp. g′′(c) > 0.

Then there exists a sequence (cN ), unique up to a finite number of terms, converging to c and
such that, for every N large enough, we have cN ∈ D and

lim
N→∞

gN (cN ) = g(c), g′N (cN ) = 0, g′′N (cN ) < 0, resp. g′′N (cN ) > 0.

Having in mind Propositions 2.2 and 2.1, this proposition thus states that if one considers
a regular left (resp. right) soft edge a, and thus a = g(c) with c ∈ D by Remark 3.2, then
there exists a sequence, unique up to a finite number of terms, of left (resp. right) soft edges
aN = gN (cN ) for the deterministic equivalent µN converging towards a. These soft edges (aN )
are finite N approximations of the edge a, while the cN ’s are finite N approximations of the
preimage c.

When dealing with regular cusp points, the situation is slightly more delicate. The reason
for this is that if a = g(c) is a regular cusp point, then c is now a zero of multiplicity two
for g′. By applying Hurwitz’s theorem to g′N as above, one would obtain two sequences of
non-necessarily real zeros for g′N converging towards c. It is actually more convenient to apply
Hurwitz’s theorem to g′′N instead, in order to get the following statement.
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Proposition 3.6. Assume c ∈ D satisfies the regularity condition (3.1) and moreover

g′(c) = 0, g′′(c) = 0, (hence g′′′(c) > 0 by Prop. 2.4).

Then there exists a sequence (cN ), unique up to a finite number of terms, converging to c and
such that, for every N large enough, we have cN ∈ D and

lim
N→∞

gN (cN ) = g(c), lim
N→∞

g′N (cN ) = 0, g′′N (cN ) = 0, g′′′N (cN ) > 0.

Notice that Proposition 3.6 doesn’t guarantee that g′N (cN ) = 0. Hence, a cusp point is
not necessarily the limit of cusp points of the deterministic equivalents µN . As we shall see in
Section 3.6, the speed at which g′N (cN ) goes to zero will actually influence the local behavior
around the cusp.

Definition 3.7. Given a soft left edge, resp. right edge, resp. cusp point a which is regular,
and thus a = g(c) with g′(c) = 0 and g′′(c) < 0, resp. g′′(c) > 0, resp. g′′(c) = 0 and g′′′(c) > 0,
the sequence associated with a is the sequence (cN ) provided by Propositions 3.5 and 3.6.

Equipped with Propositions 3.5 and 3.6, we are now in position to state the results con-
cerning the local asymptotics.

3.3 The Airy kernel and Tracy-Widom fluctuations at a soft edge

Given a function K(x, y) from R×R to R satisfying appropriate conditions, one can consider
its associated determinantal point process, which is a simple point process on R having as
correlation functions the determinants det[ K(yi, yj)]. More precisely, it is a probability dis-
tribution P over the configurations (yi) of real numbers (the particles), namely over discrete
subsets of R which are locally finite, characterized in the following way: For every k > 1 and
any test function Φ : Rk → R,

E

 ∑
yi1 6= ··· 6= yik

Φ(yi1 , . . . , yik)

 =

∫
R
· · ·
∫
R

Φ(y1, . . . , yk) det
[
K(yi, yj)

]k
i,j=1

dy1 · · · dyk,

where the sum runs over the k-tuples of pairwise distinct particles of the configuration (yi).
Hence the correlation between the particles yi’s is completely encoded by the kernel K(x, y).
In particular, the inclusion-exclusion principle yields a closed formula for the gap probabilities
in terms of Fredholm determinants. Namely, for any interval J ⊂ R, the probability that no
particle lies in J reads

P
(

(yi) ∩ J = ∅
)

= 1 +
∞∑
k=1

(−1)k

k!

∫
J
· · ·
∫
J

det
[
K(yi, yj)

]k
i,j=1

dy1 · · · dyk ,

and the latter is the Fredholm determinant det(I −K)L2(J) of the integral operator acting on
L2(J) with kernel K(x, y), provided it makes sense. We refer to [33, 35] for further information
on determinantal point processes.

Consider the Airy point process PAiry which is defined as the determinantal point
process on R associated with the Airy kernel

KAiry(x, y) =
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x− y , (3.3)
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where the Airy function

Ai(x) =
1

π

∫ ∞
0

cos

(
u3

3
+ ux

)
du

is a solution of the differential equation f ′′(x) = xf(x).
The configurations (yi) generated by the Airy point process a.s. involve an infinite number

of particles but have a largest particle ymax. The distribution of ymax is the Tracy-Widom
law (see e.g. [35, Section 2.2]), and its distribution function reads, for every s ∈ R,

PAiry

(
ymax 6 s

)
= PAiry

(
(yi) ∩ (s,+∞) = ∅

)
= det(I −KAiry)L2(s,∞). (3.4)

Tracy and Widom [51] established the famous representation

PAiry

(
ymax 6 s

)
= exp

(
−
∫ ∞
s

(x− s)q(x)2dx

)
,

where q is the Hastings-McLeod solution of the Painlevé II equation, namely the unique so-
lution of f ′′(x) = f(x)3 + xf(x) with boundary condition f(x) ∼ Ai(x) as x→ +∞.

Recalling that gN has been introduced in (3.2), we are now in position to describe the
eigenvalues local behavior around regular soft edges. In the three upcoming theorems, we
denote by x̃1 6 · · · 6 x̃n the ordered eigenvalues of M̃N . We also use the notational convention
x̃0 = 0 and x̃n+1 = +∞.

Theorem 1. Let a be a right edge and assume it is regular. Writing a = g(c), let ϕ(N) =
max{j : λ−1

j > c}. Then, almost surely,

x̃ϕ(N) −−−−→
N→∞

a, lim inf
N→∞

(
x̃ϕ(N)+1 − a

)
> 0. (3.5)

Moreover, let (cN )N be the sequence associated with a as in Definition 3.7. Set

aN = gN (cN ), σN =

(
2

g′′N (cN )

)1/3

, (3.6)

so that aN → a, cN → c, and σN → (2/g′′(c))1/3 > 0 as N →∞. Then, for every s ∈ R,

lim
N→∞

P
(
N2/3σN

(
x̃ϕ(N) − aN

)
6 s
)

= PAiry

(
ymax 6 s

)
. (3.7)

Remark 3.8. Let us stress that the sequence ϕ(N) may be non-trivial even when considering
the rightmost edge: As explained in Section 3.1, it is indeed possible that a certain amount
of eigenvalues (possibly infinite) will converge outside of the limiting support. Thus, if we
assume the rightmost edge is regular, then Theorem 1 states that there exists a maximal
eigenvalue xϕ(N) which actually converge to the rightmost edge and fluctuates according to
the Tracy-Widom law.

Let us comment on the history of this theorem. The Tracy-Widom fluctuations have been
first obtained by Johansson [34] for the maximal eigenvalue when ΣN is the identity. Baik,
Ben Arous and Péché [7] then proved this still holds true when ΣN is a finite rank perturbation
of the identity, provided the perturbation is small enough. Assuming a condition which is
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equivalent to the regularity condition (3.1) and that the maximal eigenvalue converges towards
the rightmost edge, El Karoui [26] established the Tracy-Widom fluctuations for the maximal
eigenvalue for general ΣN ’s assuming γ 6 1, and Onatski [48] got rid of the last restriction.
The statement on the existence of extremal eigenvalues converging to each regular right edge
is [30, Theorem 2] and essentially relies on the exact separation results of Bai and Silverstein
[5, 6]; the definition of the sequence ϕ(N) indexing these extremal eigenvalues relies on these
results. Finally, the Tracy-Widom fluctuations for the extremal eigenvalues associated to any
right regular edge is [30, Theorem 3-(b)].

We now provide a similar statement for the left soft edges.

Theorem 2. Let a be a left edge of the bulk. If γ > 1 and a is the leftmost edge of the bulk,
set ϕ(N) = n − N + 1. Otherwise, assume that a > 0 is regular, write a = g(c) and set
ϕ(N) = min{λj : λ−1

j < c}. Then, almost surely,

x̃ϕ(N) −−−−→
N→∞

a, lim inf
N→∞

(
a− x̃ϕ(N)−1

)
> 0. (3.8)

Moreover, let (cN )N be the sequence associated with a as in Definition 3.7. Set

aN = gN (cN ), σN =

(
2

−g′′N (cN )

)1/3

, (3.9)

so that aN → a, cN → c, and σN → (−2/g′′(c))1/3 > 0 as N →∞. Then, for every s ∈ R,

lim
N→∞

P
(
N2/3σN

(
aN − x̃ϕ(N)

)
6 s
)

= PAiry

(
ymax 6 s

)
. (3.10)

Prior to this result, which is a combination of Theorem 2 and Theorem 3-(a) from [30],
the Tracy-Widom fluctuations for the smallest random eigenvalue when ΣN is the identity
has been obtained by Borodin and Forrester [15].

Let us also mention that when ν is the sum of two Dirac masses, a local uniform conver-
gence to the Airy kernel (which is a weaker statement than the Tracy-Widom fluctuations)
at every (regular) right and soft left edges follows from [41], see also [43, 44].

Finally, we state our last result, concerning the asymptotic independence of the Tracy-
Widom fluctuations at a finite number of regular soft edges. For a more precise statement,
we refer to [30, Theorem 4].

Theorem 3. Let (aj)j∈J be a finite collection of soft edges, and assume all these edges are
regular. For each j ∈ J , consider the rescaled eigenvalue N2/3σN,j(x̃ϕj(N) − aN,j) associated
with the soft edge aj provided by (3.5)–(3.6) and (3.8)–(3.9). Then the family of random
variables {N2/3σN,j(x̃ϕj(N) − aN,j)}j∈J becomes asymptotically independent as N →∞.

The asymptotic independence has been previously established for the smallest and largest
eigenvalues when ΣN is the identity by Basor, Chen and Zhang [9].

Remark 3.9. The results presented in this survey rely on the fact that the entries of XN

are complex Gaussian random variables, a key assumption in order to take advantage of the
determinantal structure of the eigenvalues of the model under study. A recent work [37]
by Knowles and Yin enables to transfer the results of Theorems 1, 2 and 3 to the case of
complex, but not necessarily Gaussian, random variables. Indeed, by combining the local
convergence to the limiting distribution established in [37] together with Theorems 1, 2 and
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3, one obtains Tracy-Widom fluctuations and asymptotic independence in this more general
setting, provided that the entries of matrix XN fulfill some moment condition. Let us stress
that the case of real Gaussian random variables (except the largest one covered in [40]), of
important interest in statistical applications, remains open.

We now turn to the hard edge and the Bessel point process.

3.4 The Bessel point process at the hard edge

The Bessel point process P(α)
Bessel of parameter α ∈ Z is the determinantal point process on

R+ associated with the kernel

K
(α)
Bessel(x, y) =

√
y Jα(

√
x)J ′α(

√
y)−√xJ ′α(

√
x)Jα(

√
y)

2(x− y)
, (3.11)

where the Bessel function of the first kind Jα with parameter α is defined for x > 0 by

Jα(x) =
(x

2

)α ∞∑
n=0

(−1)n

n! Γ(n+ α+ 1)

(x
2

)2n
(3.12)

and satisfies the differential equation x2f ′′(x) + xf ′(x) + (x2 − α2)f(x) = 0.
The configurations (yi) generated by the Bessel point process a.s. have an infinite number

of particles yi but have a smallest particle ymin. The law of ymin is characterized, for every
s > 0, by

P(α)
Bessel

(
ymin > s

)
= P(α)

Bessel

(
(yi) ∩ (0, s) = ∅

)
= det(I −K

(α)
Bessel)L2(0,s). (3.13)

When α = 0, this reduces to an exponential law of parameter 1, namely P(0)
Bessel

(
ymin >

s
)

= e−s, as observed by Edelman [24]. In the general case, Tracy and Widom obtained the
representation [52],

P(α)
Bessel

(
ymin > s

)
= exp

(
−1

4

∫ s

0
(log s− log x)q(x)2dx

)
,

where q is the solution of a differential equation which is reducible to a particular case of the
Painlevé V equation (involving α in its parameters) and boundary condition q(x) ∼ Jα(

√
x)

as x→ 0+.
Recalling the λj ’s are the eigenvalues of ΣN and their distributional limit ν has a compact

support in (0,∞), we now provide our statement concerning the eigenvalues local behavior
around the hard edge.

Theorem 4. Assume that n = N + α with α ∈ Z independent of N and set

σN = −2g′′N (∞) =
4

N

n∑
j=1

1

λj
, ζN = −4

3
g′′′N (∞) =

8

N

n∑
j=1

1

λ2
j

.

Thus σN → 4
∫
λ−1ν(dλ) > 0 and ζN → 8

∫
λ−2ν(dλ) > 0 as N →∞.

Let xmin be the smallest random eigenvalue of MN . Then, for every s > 0, we have

lim
N→∞

P
(
N2σN xmin > s

)
= P(α)

Bessel

(
ymin > s

)
. (3.14)
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Furthermore, we have the expansion as N →∞,

P
(
N2σN xmin > s

)
= P(α)

Bessel

(
ymin > s

)
− 1

N

(
αζN
σ2
N

)
s

d

ds
P(α)

Bessel

(
ymin > s

)
+O

(
1

N2

)
.

(3.15)

When ΣN is the identity, the convergence (3.14) has been established by Forrester [28].
As for the next order term (3.15), it has been obtained when ΣN is the identity by Perret
and Schehr [49] and Bornemann [14], motivated by a question raised by Edelman, Guionnet
and Péché in [25]. The statement (3.14) has been first obtained in [30], while the stronger
statement (3.15) is [31, Theorem 6].

3.5 Application to condition numbers

In this subsection, we study the fluctuations of the ratio

κN =
xmax

xmin

of the largest to the smallest random eigenvalue of MN . Notice that if n > N , then κN is
the condition number of MN while if n 6 N , then κN is the condition number of M̃N . The
condition number is a central object of study in numerical linear algebra [47, 29]. Using our
previous results, we can obtain an asymptotic description for κN . Let us emphasize that the
leftmost edge a of the support of ρ is positive if and only if γ 6= 1, see [31, Proposition 3].

Proposition 3.10. Assume γ 6= 1. Denote by a the leftmost edge and by b the rightmost one.
Assume that a, b are regular, xmin → a and xmax → b a.s. as N → ∞ (that a is regular and
xmin → a a.s. is always true when γ > 1). Write a = g(c), b = g(d), consider the sequences
(cN ) and (dN ) associated with c and d respectively (see Definition 3.7) and set

aN = gN (cN ) , σ =

(
2

−g′′(c)

)1/3

, bN = gN (dN ) , δ =

(
2

g′′(d)

)1/3

.

Then,

κN
a.s.−−−−→

N→∞
b

a
and N2/3

(
κN −

bN
aN

)
D−−−−→

N→∞
X

δa
+

bY

σa2

where
D−→ stands for the convergence in distribution and where X and Y are two independent

random variables with the Tracy-Widom distribution.

We now handle the case where γ = 1.

Proposition 3.11. Assume n = N + α, where α ∈ Z is independent of N , and moreover
xmax → b a.s. for some b > 0. Then,

1

N2
κN

D−−−−→
N→∞

4b

X

(∫
λ−1ν(dλ)

)
where P(X > s) = P(α)

Bessel

(
ymin > s

)
for every s > 0.

Remark 3.12. Interestingly, in the square case where γ = 1, the fluctuations of the largest
eigenvalue xmax have no influence on the fluctuations of κN as these are imposed by the
limiting distribution of xmin and the a.s. limit b of xmax.

Finally, we turn to the eigenvalues local behavior near a cusp point.
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3.6 The Pearcey kernel at a cusp point

Given any τ ∈ R, following [53] we introduce the Pearcey-like integral functions

ϕ(x) =
1

2iπ

∮
Σ
exz−τz

2/2+z4/4dz, ψ(y) =
1

2iπ

∫ i∞

−i∞
e−yw+τw2/2−w4/4dw,

where the contour Σ consists in two rays going from ±eiπ/4∞ to zero, and two rays going
from zero to ±e−iπ/4. They satisfy the respective differential equations

ϕ′′′(x)− τϕ′(x) + xϕ(x) = 0, ψ′′′(y)− τψ′(y)− yψ(y) = 0.

The Pearcey point process P(τ)
Pearcey is the determinantal point process associated with the

Pearcey kernel

K
(τ)
Pearcey(x, y) =

ϕ′′(x)ψ(y)− ϕ′(x)ψ′(y) + ϕ(x)ψ′′(y)− τψ(x)ψ(y)

x− y . (3.16)

This process has been first introduced by Brézin and Hikami [16, 17] when τ = 0, and
subsequent generalizations have been considered by Tracy and Widom [53].

The configurations (yi) generated by the Pearcey point process are a.s. infinite and do
not have a largest nor smallest particle. With this respect, the quantities of interest here are
the gap probabilities of the Pearcey point process, defined for every 0 < s < t by

P(τ)
Pearcey

(
(yi) ∩ [s, t] = ∅

)
= det(I −K

(τ)
Pearcey)L2(s,t). (3.17)

Seen as a function of s, t and τ , the log of the righthand side of (3.17) is know to satisfy a
system of PDEs, see [53, 11, 1].

In [31, Theorem 5], we prove the following statement.

Theorem 5. Let a = g(c) be a cusp point such that c ∈ D, and assume it is regular. Let (cN )
be the sequence associated with a as in Definition 3.7. Assume moreover the following decay
assumption holds true: There exists κ ∈ R such that

√
N g′N (cN ) −−−−→

N→∞
κ . (3.18)

We set

aN = gN (cN ), σN =

(
6

g
(3)
N (cN )

)1/4

, τ = −κ
(

6

g(3)(c)

)1/2

, (3.19)

so that aN → a and σN → (6/g′′′(c))1/4 > 0 as N →∞. Then, for every s > 0, we have

lim
N→∞

P
((
N3/4σN (xi − aN )

)
∩ [−s, s] = ∅

)
= P(τ)

Pearcey

(
(yi) ∩ [−s, s] = ∅

)
, (3.20)

where the xi’s are the random eigenvalues of MN .

This result has been obtained by Mo when ΣN has exactly two distinct eigenvalues [44].
As advocated in Section 3.2, the precise decay for g′N (cN )→ 0 does influence the eigenval-

ues local behavior near a cusp (see Proposition 3.6 and the discussion below). Our assump-
tion (3.18) covers the general case where

√
Ng′N (cN ) → 0, and hence the limiting kernel is

K
(0)
Pearcey(x, y) introduced by Brézin and Hikami, and the limiting regime where

√
Ng′N (cN )

has a limit as well.

17



Remark 3.13. (erosion of a valley) In the case where this limit κ in (3.18) is positive,
the deterministic equivalent measure µN will not feature a cusp but rather a valley that will
become deeper as N →∞, see the thin curve in Figure 5. The density of µN will always be
positive near the cusp and the condition

g′N (cN ) ∼ κ√
N

should be thought of as a speed condition of the erosion of the valley.

Remark 3.14. (moving cliffs) In the case where κ < 0 in (3.18), g′N (cN ) is always negative
for N large enough. In particular, there exists a small N -neighborhood of cN whose image
by gN is outside the support of µN : There is a small hole in the support of µN but the
two connected components move towards one another (moving cliffs), see the dotted curve in
Figure 5. In this case, the condition

g′N (cN ) ∼ κ√
N

can also be interpreted as a speed condition at which the cliffs approach one another.

.

a
.

Figure 5: Zoom of the density of µN near the cusp point a. The thick curve is the density of
µ in the framework of Figure 4. The thin curve (resp. the dotted curve) is the density of µN
when

√
Ng′N (cN ) > 0 (resp.

√
Ng′N (cN ) < 0).

Remark 3.15. (slow decay) The slow decay setting where
√
Ng′N (cN )→ ±∞

is not covered by our results. In this case, we do not expect the Pearcey point process to arise
anymore, and refer to Section 5 for further discussion.
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4 Sketches of the proofs

In this section, we provide an outline for the proofs of the results presented in Section 3.

4.1 The random eigenvalues of MN form a determinantal point process

The key input on which all our proofs are based on, is that when the elements of XN are
complex Gaussian (Assumption 1), the configuration of the random eigenvalues xi’s of MN

form a determinantal point process with an explicit kernel. More precisely Baik, Ben Arous
and Péché provided in [7] a formula for that kernel, to which they give credit to Johansson.
It is given by the following double complex integral

KN (x, y) =
N

(2iπ)2

∮
Γ

dz

∮
Θ

dw
1

w − z e
−Nx(z−q)+Ny(w−q)

( z
w

)N n∏
j=1

(
w − λ−1

j

z − λ−1
j

)
, (4.1)

where the q ∈ R is a free parameter (see [30, Remark 4.3]) and we recall the λj ’s are the eigen-
values of ΣN . The contours Γ and Θ are disjoint and closed, both oriented counterclockwise,
such that Γ encloses all the λ−1

j ’s whereas Θ encloses the origin.

.

λ−1
n−1λ−1

n λ−1
1

Γ

Θ

.

Figure 6: The contours of integration

Remark 4.1. The main ingredient to obtain this determinantal representation is the Harish-
Chandra-Itzykson-Zuber integral formula, which allows to write a particular integral over the
unitary group in terms of determinants, see [7, Section 2.1]. The analogue of this integral
formula does not seem to exist for correlated Wishart matrices with real or quaternionic
entries, and thus the determinantal structure seems only available in the complex setting.

If we consider a random configuration of the form(
NβσN (xi − aN )

)
,

then a change of variables yields it is a determinantal point process with kernel

1

NβσN
KN

(
aN +

x

NβσN
, aN +

y

NβσN

)
, (4.2)

where KN is as in (4.1). Hence, the study of the eigenvalues local behavior boils down to
the asymptotic analysis as N →∞ of kernels of the form (4.2) with different choices for the
scaling parameters β, σN , aN .
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4.2 Modes of convergence

In order to prove the convergence (3.14) at the hard edge, it is enough to establish a local

uniform convergence on R+ × R+ for the kernel (4.2) to the Bessel kernel K
(α)
Bessel(x, y), after

choosing appropriately the scaling parameters. Similarly, the local uniform convergence on

R×R to the Pearcey kernel K
(τ)
Pearcey(x, y) yields the convergence (3.20) for the gap probabilities

around a cusp. The convergences (3.7) and (3.10) to the Tracy-Widom law however require
a stronger mode of convergence (such as the trace-class norm convergence, or the Hilbert-
Schmidt norm plus trace convergence, for the associated operators acting on L2(s,∞), for
every s ∈ R; we refer to [30, Section 4.2] for further information). This essentially amounts
to obtain a local uniform convergence on (s,+∞)× (s,+∞) plus tail estimates for KN (x, y).

From now, we shall disregard these convergence issues and provide heuristics on why the
Airy kernel, the Bessel kernel and the Pearcey kernel should appear in different scaling limits.

4.3 Towards the Airy kernel

Here we provide an heuristic for the convergence to the Airy kernel. The gap to be filled in
order to make this sketch of a proof mathematically rigorous can be found in [30]; this heuristic
may actually serve as a roadmap for the quite lengthy and technical proof we provided there.

Since we are dealing with contours integrals, it is more convenient to use the following
alternative representation for the Airy kernel (3.3),

KAiry(x, y) =
1

(2iπ)2

∫
Ξ

dz

∫
Ξ′

dw
1

w − z e
−xz+yw+z3/3−w3/3, (4.3)

which is based on the contour integral formula for the Airy function (see e.g. the proof of
[30, Lemma 4.15]). The contours Ξ and Ξ′ are disjoint and unbounded contours, and Ξ goes
from eiπ/3∞ to e−iπ/3∞ whereas Ξ′ goes from e−2iπ/3∞ to e2iπ/3∞, as shown on Figure 7.

.

π/3

Ξ

Ξ′

.

Figure 7: The paths of integration for the Airy kernel

Consider the scaling parameters associated with a soft edge provided in Theorem 1; we
thus focus on the right edge setting, but the situation for a left edge is similar. More precisely,
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by using the formula (4.1) where we take q = cN , we investigate

1

N2/3σN
KN

(
aN +

x

N2/3σN
, aN +

y

N2/3σN

)
(4.4)

=
N1/3

(2iπ)2σN

∮
Γ

dz

∮
Θ

dw
1

w − z e
−N1/3x(z−cN )/σN+N1/3y(w−cN )/σN eNfN (z)−NfN (w),

where we introduced the map

fN (z) = −aN (z − cN ) + log(z)− 1

N

n∑
j=1

log(1− λjz). (4.5)

After performing the change of variables z 7→ cN + σNz/N
1/3 and w 7→ cN + σNw/N

1/3, the
right-hand side of (4.4) becomes

1

(2iπ)2

∮
ϕN (Γ)

dz

∮
ϕN (Θ)

dw
1

w − z e
−xz+yw+NfN

(
cN+σN

z

N1/3

)
−NfN

(
cN+σN

w

N1/3

)
, (4.6)

where we set for convenience ϕN (z) = N1/3(z − cN )/σN .
Next, recalling gN was introduced in (3.2), the crucial observation that

f ′N (z) = gN (z)− aN (4.7)

allows to infer on the local behavior of fN around cN . More precisely, since by definition of
the scaling parameters we have

gN (cN ) = aN , g′N (cN ) = 0, g′′N (cN ) −−−−→
N→∞

g′′(c) > 0,

a Taylor expansion for fN around cN yields the approximation

N
(
fN (cN + σN

z

N1/3
)− fN (cN )

)
' 1

3
z3 , (4.8)

where the constant 1/3 comes from the definition of σN , see (3.6). In conclusion, after plugging
(4.8) into (4.6), we obtain the approximation

1

N2/3σN
KN

(
aN +

x

N2/3σN
, aN +

y

N2/3σN

)
' 1

(2iπ)2

∮
ϕN (Γ)

dz

∮
ϕN (Θ)

dw
1

w − z e
−xz+yw+z3/3−w3/3, (4.9)

and we can almost read the Airy kernel (4.3), up to contour deformations.
To frame the previous heuristic into a rigorous mathematical setting, a few technical points

should be addressed, since of course the approximation (4.8) is only valid when |z| is not too
large and the contours appearing in the Airy kernel are unbounded. With this respect, the
standard move is to split the contours Γ and Θ into different parts and then to deform each
part in an appropriate way.

In a neighborhood of cN , after simple transformations, one chooses Γ and Θ to match with
the contours of the Airy kernel there, and then justify rigorously the approximation (4.9) after
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restriction of z, w to that neighborhood. This can be done by quantifying the approximation
(4.8) and then performing tedious but rather simple computations.

Then, outside of this neighborhood, one proves that the remaining of the integrals don’t
contribute in the large N limit. In the present setting of a general matrix ΣN , this is the
hard part of the proof. To do so, one establishes the existence of admissible deformations for
the contours Γ and Θ so that they complete the Airy contours truncated on a neighborhood
of cN , and where the contribution coming from the term exp{NfN (z) − NfN (w)} brings
an exponential decay on the remaining part. This can be done by looking for the so-called
steepest descent/ascent contours (i.e. contours on which Re fN is decreasing/increasing), and
this was the strategy used by Baik, Ben Arous, Péché [7] and El Karoui [26] when dealing
with the rightmost edge. When considering any right or left soft edge, following this strategy
requires to consider many sub-cases and to perform again most of the computations in several
case. In [30], we instead developed a unified (abstract) method to provide the existence of
appropriate contours by mean of the maximum principle for subharmonic functions.

For the reader interested in having a look at the proofs of [30], let us mention it turns out
it is more convenient to work at a scale where the contours Γ,Θ live in a bounded domain, and
this is the reason why we did not performed there the changes of variables z 7→ cN +σNz/N

1/3

and w 7→ cN + σNw/N
1/3 as we did in the present heuristic.

4.4 Towards the Pearcey kernel

Now we turn to the heuristics for Pearcey kernel and refer to [31] for a rigorous proof. The
setting is essentially the same as in the Airy case, except that now cN is a simple zero for g′′N
instead of g′N , and g′N (cN )→ 0, which entails a different behavior for the map fN near cN .

We start with the alternative representation for the Pearcey kernel (3.16),

K
(τ)
Pearcey(x, y) =

1

(2iπ)2

∫
Ξ

dz

∫ i∞

−i∞
dw

1

w − z e
−xz− τz2

2
+ z4

4
+yw+ τw2

2
−w4

4 , (4.10)

where the contour Ξ is disjoint to the imaginary axis, and has two components. The first
part goes from eiπ/4∞ to e−iπ/4∞, whereas the other part goes from e−3iπ/4∞ to e3iπ/4∞.

See [53] for a proof (and also [16] when τ = 0). Notice also the symmetry K
(τ)
Pearcey(x, y) =

K
(τ)
Pearcey(−x,−y) which follows from the change of variables z, w 7→ −z,−w.

Consider the scaling parameters associated with a regular cusp point provided in Theo-
rem 5. By using the formula (4.1) where we choose q = cN , we now consider

1

N3/4σN
KN

(
aN +

x

N3/4σN
, aN +

y

N3/4σN

)
(4.11)

=
N1/4

(2iπ)2σN

∮
Γ

dz

∮
Θ

dw
1

w − z e
−N1/4x

(z−cN )

σN
+N1/4y

(w−cN )

σN eNfN (z)−NfN (w),

where the map fN is the same as in (4.5). After the change of variables z 7→ cN + σNz/N
1/4

and w 7→ cN + σNw/N
1/4, the right-hand side of (4.11) reads

1

(2iπ)2

∮
ϕN (Γ)

dz

∮
ϕN (Θ)

dw
1

w − z e
−xz+yw+NfN

(
cN+σN

z

N1/4

)
−NfN

(
cN+σN

w

N1/4

)
, (4.12)
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where we introduced for convenience ϕN (z) = N1/4(z − cN )/σN .
In this setting, the definition of the scaling parameters yields

gN (cN ) = aN ,
√
Ng′N (cN ) −−−−→

N→∞
κ, g′′N (cN ) = 0, g′′′N (cN ) −−−−→

N→∞
g′′′(c) > 0.

Recalling the identity (4.7) and the definition (3.19) of τ , a Taylor expansion around cN then
yields the approximation

N
(
fN (cN + σN

z

N1/4
)− fN (cN )

)
' −τ

2
z2 +

1

4
z4 , (4.13)

where the constant 1/4 comes from the definition of σN , see (3.19). Thus, by plugging (4.13)
into (4.12), we obtain the approximation

1

N3/4σN
KN

(
aN +

x

N3/4σN
, aN +

y

N3/4σN

)
' 1

(2iπ)2

∮
ϕN (Γ)

dz

∮
ϕN (Θ)

dw
1

w − z e
−xz− τz2

2
+ z4

4
+yw+ τw2

2
−w4

4 , (4.14)

and we can almost see the Pearcey kernel (4.10), up to contour deformations.
As to make this approximation rigorous, the method is the same as for the Airy kernel. Let

us mention that the abstract argument we mention previously for the existence of appropriate
contour deformations also applies in this setting.

4.5 Towards the Bessel kernel

Finally, we provide heuristics for the appearance of the Bessel kernel and refer to [31] for a
rigorous proof. The main input here is, according to Section 2, the critical point c associated
with the hard edge is now located at infinity.

The first step is to write the Bessel kernel (3.11) as the double contour integral,

K
(α)
Bessel(x, y) =

1

(2iπ)2

(y
x

)α/2 ∮
|z|= r

dz

z

∮
|w|=R

dw

w

1

z − w
( z
w

)α
e−

x
z

+ z
4

+ y
w
−w

4 , (4.15)

where 0 < r < R, and which is provided in [30, Lemma 6.2]. The contours of integration
are circles oriented counterclockwise. Let us stress this formula is only available when α ∈ Z,
since otherwise the term (z/w)α in the integrand would not make sense on the whole of the
integration contours.

Setting σN as in Theorem 4 and using the formula (4.1) where we choose q = 0, we now
consider

1

N2σN
KN

(
x

N2σN
,

y

N2σN

)
(4.16)

=
1

(2iπ)2NσN

∮
Γ

dz

∮
Θ

dw
1

w − z
( z
w

)N
e
− zx
NσN

+ wy
NσN

n∏
j=1

w − λ−1
j

z − λ−1
j

.

Having in mind the critical point is located at infinity, we perform the change of variables
z 7→ NσN/z and w 7→ NσN/w, so that the right-hand side of (4.16) reads

1

(2iπ)2

∮
ϕN (Γ)

dz

z

∮
ϕN (Θ)

dw

w

1

z − w
( z
w

)α
e−

x
z

+ y
w
−NGN (z)+NGN (w), (4.17)
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where we introduced the maps

GN (z) =
1

N

n∑
j=1

log

(
z

NσN
− λj

)

and ϕN (z) = NσN/z. We emphasize that, during the previous step, we used that n = N +α
and witnessed a cancellation leading to the term (z/w)α, which does not depend on N .

Now, a Taylor expansion of GN around zero yields the approximation

N
(
GN (z)−GN (0)

)
' − z

4N
. (4.18)

Thus, by plugging (4.18) into (4.17), we obtain the approximation

1

N2σN
KN

(
x

N2σN
,

y

N2σN

)
' 1

(2iπ)2

∮
ϕN (Γ)

dz

z

∮
ϕN (Θ)

dw

w

1

z − w
( z
w

)α
e−

x
z

+ y
w

+ z
4
−w

4 , (4.19)

and we can almost see the Bessel kernel (4.15), up to contour deformations and the pref-
actor (y/x)α/2. Finally, in order to deal with that prefactor, one considers the operator E
of multiplication by xα/2 acting on L2(0, s), and then use that replacing the Bessel kernel

K
(α)
Bessel(x, y) by the kernel of the operator EK

(α)
BesselE

−1, which is (4.15) without the prefactor

(y/x)α/2, leaves the Fredholm determinant det(I −K
(α)
Bessel)L2(0,s) invariant.

To make this heuristic rigorous, the method is far less demanding than in the setting
of the Airy or the Pearcy kernel. Indeed, in the present setting one can legally deform the
contours Γ and Θ in such a way that ϕN (Γ) and ϕN (Θ) match the integration contours for
the Bessel kernel (4.15). After making this deformation, a simple Taylor expansion of the
map GN around zero will be enough to establish the convergence towards the Bessel kernel
and therefore to obtain (3.14).

By pushing the Taylor expansion (4.18) one step further, one can also obtain the more
accurate estimate (3.15), provided with an identity involving the resolvent of the Bessel kernel
established by Tracy and Widom [52]. We refer the reader to [31] for further information.

5 Open questions

The results presented here naturally entail a number of open questions that we list below.

1. At the edge of the definition domain and exotic local behaviors. The results
on the eigenvalues local behavior presented in this survey only concern edges or cusp
points a which read a = g(c) with c ∈ D. If we focus on the rightmost edge for the
sake of simplicity, then Proposition 2.1 states this edge may actually belong to g(∂D)
(notice that this cannot happen if the limiting spectral distribution ν of ΣN is a finite
combination of Dirac measures). In this case, the square root behavior of the density
around this edge is not guaranteed anymore, and the laws describing the fluctuations of
the eigenvalues near such an edge seem completely unknown and a priori different from
Tracy-Widom distribution. We believe the fluctuations will actually depend on ν, and
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hence lie outside of the random matrix universality class. Quite interestingly, the same
phenomenon arise in the study of the additive deformation of a GUE random matrix
[20] and random Gelfand-Tsetlin patterns [22, 23].

2. Alternative regime at a cusp point I. In the context of Theorem 5, our speed
assumption (3.18) does not cover the following case

√
N g′N (cN ) −−−−→

N→∞
+∞ .

This condition corresponds to the situation where the density of the deterministic equiv-
alent µN is positive in a neighborhood of cN . It essentially states that the bulk of µN
will degenerate into a cusp around g(c) quite slowly and we do not expect to witness
Pearcey-like fluctuations around gN (cN ) anymore. We believe instead that the sine
kernel will arise at the scale

√
N/g′N (cN ), which strictly lies in between N1/2 and N3/4.

3. Alternative regime at a cusp point II. Another case that is not covered by our
assumption (3.18) is when √

N g′N (cN ) −−−−→
N→∞

−∞ .

In this case, cN lies outside the support of µN and g′N has two distinct real zeroes
near cN , say cN,1 and cN,2. Hence, for N sufficiently large, gN (cN,1) and gN (cN,2) both
correspond to edges of the support of µN which both converge towards the cusp point
g(c). The previous condition entails that such a convergence will happen at a quite
slow rate. In this case, we do not expect to observe the Pearcey kernel around gN (cN )
either, because of the absence of particles, but we believe a local analysis around the
edge gN (cN,1) or gN (cN,2) may uncover the Airy kernel at an intermediary scale.

4. Study of the fluctuations at the hard edge in more general cases. The hard
edge fluctuations were described here when n = N+α with a fixed α ∈ Z , but the hard
edge is always present as soon as n/N → 1. Thus it would be of interest to describe the
hard edge fluctuations in more general situations, for example when α = α(n) → +∞
so that n/N → 1. In this case one would expect Tracy-Widom fluctuations near the
leftmost edge aN of µN , the latter being positive but converging to zero as N →∞.

5. Non-Gaussian entries.

All the fluctuations results presented here rely on the fact that the entries of matrix
XN are complex Gaussian. It is however of major interest, for applications and for
the general theory as well, to study the universality of such results for non-Gaussian
complex random variables. As explained in Remark 3.9, the Tracy-Widom fluctuations
for the extremal eigenvalues associated with any regular soft edges are now established
in this general setting (under some moment conditions for the entries), by combining
theorems 1 and 2 with Knowles and Yin’s recent preprint [37] (see also [8]). However,
natural related questions remain open: Would it be possible to describe the fluctuations
at

(a) the hard edge, for general complex entries?

(b) a (regular) cusp point, for general complex entries?
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Another universality class of interest is the case where the matrix XN has real entries.
In this case, the techniques based on the determinantal structure of the eigenvalues
are no longer available. Lee and Schnelli [40] recently succeeded to establish GOE
Tracy-Widom fluctuations of the largest eigenvalue when the entries are real Gaussian
or simply real (with subexponential decay), under the assumption that the covariance
matrix ΣN is diagonal. The techniques developed by Knowles and Yin [37] enable to
relax the diagonal assumption for the covariance matrix ΣN . A number of questions
remain open: Would it be possible to describe the fluctuations at

(c) any (regular) soft edge, when the entries are real Gaussian?

(d) the hard edge, when the entries are real (Gaussian or not)?

(e) a (regular) cusp point, when the entries are real (Gaussian or not)?
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